
Computational Complexity:A Conceptual PerspectiveOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.December 30, 2006

Ito Dana

cCopyright 2006 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom use isgranted without fee provided that copies are not made or distributed for pro�t or com-mercial advantage and that new copies bear this notice and the full citation on the �rstpage. Abstracting with credit is permitted.

II

PrefaceThe strive for e�ciency is ancient and universal, as time and other resources arealways in shortage. Thus, the question of which tasks can be performed e�cientlyis central to the human experience.A key step towards the systematic study of the aforementioned question is arigorous de�nition of the notion of a task and of procedures for solving tasks. Thesede�nitions were provided by computability theory, which emerged in the 1930's.This theory focuses on computational tasks, and considers automated procedures(i.e., computing devices and algorithms) that may solve such tasks.In focusing attention on computational tasks and algorithms, computabilitytheory has set the stage for the study of the computational resources (like time) thatare required by such algorithms. When this study focuses on the resources that arenecessary for any algorithm that solves a particular task (or a task of a particulartype), the study becomes part of the theory of Computational Complexity (alsoknown as Complexity Theory).1Complexity Theory is a central �eld of the theoretical foundations of ComputerScience. It is concerned with the study of the intrinsic complexity of computationaltasks. That is, a typical Complexity theoretic study looks at the computational re-sources required to solve a computational task (or a class of such tasks), rather thanat a speci�c algorithm or an algorithmic schema. Actually, research in ComplexityTheory tends to start with and focus on the computational resources themselves,and addresses the e�ect of limiting these resources on the class of tasks that can besolved. Thus, Computational Complexity is the study of the what can be achievedwithin limited time (and/or other limited natural computational resources).The (half-century) history of Complexity Theory has witnessed two main re-search e�orts (or directions). The �rst direction is aimed towards actually estab-lishing concrete lower bounds on the complexity of computational problems, viaan analysis of the evolution of the process of computation. Thus, in a sense, theheart of this direction is a \low-level" analysis of computation. Most research incircuit complexity and in proof complexity falls within this category. In contrast, a1In contrast, when the focus is on the design and analysis of speci�c algorithms (rather thanon the intrinsic complexity of the task), the study becomes part of a related sub�eld that maybe called Algorithmic Design and Analysis. Furthermore, Algorithmic Design and Analysis tendsto be sub-divided according to the domain of mathematics, science and engineering in which thecomputational tasks arise. In contrast, Complexity Theory typically maintains a unity of thestudy of tasks solveable within certain resources (regardless of the origins of these tasks).III

IVsecond research e�ort is aimed at exploring the connections among computationalproblems and notions, without being able to provide absolute statements regardingthe individual problems or notions. This e�ort may be viewed as a \high-level"study of computation. The theory of NP-completeness as well as the studies ofapproximation, probabilistic proof systems, pseudorandomness and cryptographyall fall within this category.The current book focuses on the latter e�ort (or direction). We list severalreasons for our decision to focus on the \high-level" direction. The �rst is the greatconceptual signi�cance of the known results; that is, many known results (as well asopen problems) in this direction have an extremely appealing conceptual message,which can be appreciated also by non-experts. Furthermore, these conceptualaspects may be explained without entering excessive technical detail. Consequently,the \high-level" direction is more suitable for an exposition in a book of the currentnature. Finally, there is a subjective reason: the \high-level" direction is withinour own expertise, while this cannot be said about the \low-level" direction.The last paragraph brings us to a discussion of the nature of the current book,which is captured by the subtitle (i.e., \a conceptual perspective"). Our mainthesis is that complexity theory is extremely rich in conceptual content, and thatthis contents should be explicitly communicated in expositions and courses on thesubject. The desire to provide a corresponding textbook is indeed the motivationfor writing the current book and its main governing principle.This book o�ers a conceptual perspective on complexity theory, and the pre-sentation is designed to highlight this perspective. It is intended to serve as anintroduction to the �eld, and can be used either as a textbook or for self-study.Indeed, the book's primary target audience consists of students that wish to learncomplexity theory and educators that intend to teach a course on complexity the-ory. The book is also intended to promote interest in complexity theory and makeit acccessible to general readers with adequate background (which is mainly beingcomfortable with abstract discussions, de�nitions and proofs). We expect mostreaders to have a basic knowledge of algorithms, or at least be fairly comfortablewith the notion of an algorithm.The book focuses on several sub-areas of complexity theory (see the followingorganization and chapter summaries). In each case, the exposition starts from theintuitive questions addresses by the sub-area, as embodied in the concepts that itstudies. The exposition discusses the fundamental importance of these questions,the choices made in the actual formulation of these questions and notions, theapproaches that underly the answers, and the ideas that are embedded in theseanswers. Our view is that these (\non-technical") aspects are the core of the �eld,and the presentation attempts to reect this view.We note that being guided by the conceptual contents of the material leads, insome cases, to technical simpli�cations. Indeed, for many of the results presentedin this book, the presentation of the proof is di�erent (and arguably easier tounderstand) than the standard presentations.

Organization and ChapterSummariesThis book consists of ten chapters and seven appendices. The chapters constitutethe core of this book and are written in a style adequate for a textbook, whereas theappendices provide additional perspective and are written in the style of a surveyarticle. The relative length and ordering of the chapters (and appendices) does notreect their relative importance, but rather an attempt at the best logical order(i.e., minimizing the number of forward pointers).Following are brief summaries of the book's chapters and appendices. Thesessummaries are more novice-friendly than those provided in Section 1.1.3 but lessdetailed than the summaries provided at the beginning of each chapter.Chapter 1: Introduction and Preliminaries. The introduction provides ahigh-level overview of some of the content of complexity theory as well as a discus-sion of some of the characteristic features of this �eld. In addition, the introductioncontains several important comments regarding the approach and conventions ofthe current book. The preliminaries provide the relevant background on com-putability theory, which is the setting in which complexity theoretic questions arebeing studied. Most importantly, central notions such as search and decision prob-lems, algorithms that solve such problems, and their complexity, are de�ned. Inaddition, this part presents the basic notions underlying non-uniform models ofcomputation (like Boolean circuits).Chapter 2: P, NP and NP-completeness. The P-vs-NP Question can bephrased as asking whether or not �nding solutions is harder than checking the cor-rectness of solutions. An alternative formulation asks whether or not discoveringproofs is harder than verifying their correctness; that is, is proving harder thanverifying. It is widely believed that the answer to the two equivalent formulationis that �nding (resp., proving) is harder than checking (resp., verifying); that is,it is believed that P is di�erent from NP. At present, when faced with a hardproblem in NP, we can only hope to prove that it is not in P assuming that NPis di�erent from P. This is where the theory of NP-completeness, which is basedon the notion of a reduction, comes into the picture. In general, one computa-tional problem is reducible to another problem if it is possible to e�ciently solveV

VIthe former when provided with an (e�cient) algorithm for solving the latter. Aproblem (in NP) is NP-complete if any problem in NP is reducible to it. Amaz-ingly enough, NP-complete problems exist, and furthermore hundreds of naturalcomputational problems arising in many di�erent areas of mathematics and scienceare NP-complete.Chapter 3: Variations on P and NP. Non-uniform polynomial-time (P/poly)captures e�cient computations that are carried out by devices that handle speci�cinput lengths. The basic formalism ignores the complexity of constructing suchdevices (i.e., a uniformity condition), but a �ner formalism (based on \machinesthat take advice") allows to quantify the amount of non-uniformity. This providesa generalization of P. In contrast, the Polynomial-time Hierarchy (PH) generalizesNP by considering statements expressed by a quanti�ed Boolean formula with a�xed number of alternations of existential and universal quanti�ers. It is widelybelieved that each quanti�er alternation adds expressive power to the class of suchformulae. The two di�erent classes are related by showing that if NP is containedin P/poly then the Polynomial-time Hierarchy collapses to its second level (i.e.,�2).Chapter 4: More Resources, More Power? When using \nice" functions todetermine the algorithm's resources, it is indeed the case that more resources allowfor more tasks to be performed. However, when \ugly" functions are used for thesame purpose, increasing the resources may have no e�ect. By nice functions wemean functions that can be computed without exceeding the amount of resourcesthat they specify. Thus, we get results asserting, for example, that there areproblems that are solvable in cubic-time but not in quadratic-time. In the case ofnon-uniform models of computation, the issue of \nicety" does not arise, and it iseasy to establish separations results.Chapter 5: Space Complexity. This chapter is devoted to the study of thespace complexity of computations, while focusing on two rather extreme cases.The �rst case is that of algorithms having logarithmic space complexity, whichseem a proper and natural subset of the set of polynomial-time algorithms. Thesecond case is that of algorithms having polynomial space complexity, which inturn can solve almost all computational problems considered in this book. Amongthe many results presented in this chapter are a log-space algorithm for exploring(undirected) graphs, and a log-space reduction of the set of directed graphs that arenot strongly connected to the set of directed graphs that are strongly connected.These results capture fundamental properties of space-complexity, which seems todi�erentiate it from time-complexity.Chapter 6: Randomness and Counting. Probabilistic polynomial-time algo-rithms with various types of failure give rise to complexity classes such as BPP,RP , and ZPP. The results presented include the emulation of probabilistic choices

VIIby non-uniform advice (i.e., BPP � P=poly) and the emulation of two-sided prob-abilistic error by an 98-sequence of quanti�ers (i.e., BPP � �2). Turning tocounting problems (i.e., counting the number of solutions for NP-type problems),we distinguish between exact counting and approximate counting (in the sense ofrelative approximation). While any problem in PH is reducible to the exact count-ing class #P, approximate counting (for #P) is (probabilisticly) reducible to NP .Additional related topics include #P-completeness, the complexity of searching forunique solutions, and the relation between approximate counting and generatingalmost uniformly distributed solutions.Chapter 7: The Bright Side of Hardness. It turns out that hard problem canbe \put to work" to our bene�t, most notably in cryptography. One key issue thatarises in this context is bridging the gap between \occasional" hardness (e.g., worst-case hardness or mild average-case hardness) and \typical" hardness (i.e., strongaverage-case hardness). We consider two conjectures that are related to P 6= NP .The �rst conjecture is that there are problems that are solvable in exponential-time but are not solvable by (non-uniform) families of small (say polynomial-size)circuits. We show that these types of worst-case conjectures can be transformedinto average-case hardness results that yield non-trivial derandomizations of BPP(and even BPP = P). The second conjecture is that there are problems in NPfor which it is easy to generate (solved) instances that are hard to solve for otherpeople. This conjecture is captured in the notion of one-way functions, which arefunctions that are easy to evaluate but hard to invert (in an average-case sense). Weshow that functions that are hard to invert in a relatively mild average-case senseyield functions that are hard to invert almost everywhere, and that the latter yieldpredicates that are very hard to approximate (called hard-core predicates). Thelatter are useful for the construction of general-purpose pseudorandom generatorsas well as for a host of cryptographic applications.Chapter 8: Pseudorandom Generators. A fresh view at the question of ran-domness was taken in the theory of computing: It has been postulated that adistribution is pseudorandom if it cannot be told apart from the uniform distri-bution by any e�cient procedure. The paradigm, originally associating e�cientprocedures with polynomial-time algorithms, has been applied also with respectto a variety of limited classes of such distinguishing procedures. The archetypicalcase of pseudorandom generators refers to e�cient generators that fool any feasibleprocedure; that is, the potential distinguisher is any probabilistic polynomial-timealgorithm, which may be more complex than the generator itself. These generatorsare called general-purpose, because their output can be safely used in any e�cientapplication. In contrast, for purposes of derandomization, one may use pseudoran-dom generators that are somewhat more complex than the potential distinguisher(which represents the algorithm to be derandomized). Following this approach andusing various hardness assumptions, one may obtain corresponding derandomiza-tions of BPP (including a full derandomization; i.e., BPP = P). Other forms ofpseudorandom generators include ones that fool space-bounded distinguishers, and

VIIIeven weaker ones that only exhibit some limited random behavior (e.g., outputtinga pair-wise independent sequence).Chapter 9: Probabilistic Proof Systems. Randomized and interactive veri-�cation procedures, giving rise to interactive proof systems, seem much more pow-erful than their deterministic counterparts. In particular, interactive proof systemsexist for any set in PSPACE � coNP (e.g., for the set of unsatis�ed proposi-tional formulae), whereas it is widely believed that some sets in coNP do nothave NP-proof systems. Interactive proofs allow the meaningful conceptualizationof zero-knowledge proofs, which are interactive proofs that yield nothing (to theveri�er) beyond the fact that the assertion is indeed valid. Under reasonable com-plexity assumptions, every set in NP has a zero-knowledge proof system. (Thisresult has many applications in cryptography.) A third type of probabilistic proofsystems underlies the model of PCPs, which stands for probabilistically checkableproofs. These are (redundant) NP-proofs that o�ers a trade-o� between the numberof locations (randomly) examined in the proof and the con�dence in its validity.In particular, a small constant error probability can be obtained by reading a con-stant number of bits in the redundant NP-proof. The PCP Theorem asserts thatNP-proofs can be e�ciently transformed into PCPs. The study of PCPs is closelyrelated to the study of the complexity of approximation problems.Chapter 10: Relaxing the Requirement. In light of the apparent infeasibilityof solving numerous useful computational problems, it is natural to seek relaxationsof these problems that remain useful for the original applications and yet allow forfeasible solving procedures. Two such types of relaxations are provided by adequatenotions of approximation and a theory of average-case complexity. The notions ofapproximation refer to the computational problems themselves; that is, for eachproblem instance we extend the set of admissible solutions. In the context of searchproblems this means settling for solutions that have a value that is \su�cientlyclose" to the value of the optimal solution, whereas in the context of decisionproblems this means settling for procedures that distinguish yes-instances frominstances that are \far" from any yes-instance. Turning to average-case complexity,we note that a systematic study of this notion requires the development of a non-trivial conceptual framework. One major aspect of this framework is limiting theclass of distributions in a way that, on one hand, allows for various types of naturaldistributions and, on the other hand, prevents the collapse of average-case hardnessto worst-case hardness.Appendix A: Glossary of Complexity Classes. The glossary provides self-contained de�nitions of most complexity classes mentioned in the book. The glos-sary is partitioned into two parts, dealing separately with complexity classes thatare de�ned in terms of algorithms and their resources (i.e., time and space com-plexity of Turing machines) and complexity classes de�ned in terms of non-uniformcircuit (and referring to their size and depth). In particular, the following classes

IXare de�ned: P , NP , coNP , BPP, RP , coRP , ZPP, #P , PH, E , EXP , NEXP ,L, NL, RL, PSPACE, P=poly, NCk, and ACk.Appendix B: On the Quest for Lower Bounds. This brief survey describesthe most famous attempts at proving lower bounds on the complexity of naturalcomputational problems. The �rst part, devoted to Circuit Complexity, reviewslower bounds for the size of (restricted) circuits that solve natural computationalproblems. This represents a program whose long-term goal is proving that P 6=NP . The second part, devoted to Proof Complexity, reviews lower bounds on thelength of (restricted) propositional proofs of natural tautologies. This represents aprogram whose long-term goal is proving that NP 6= coNP .Appendix C: On the Foundations of Modern Cryptography. This sur-vey of the foundations of cryptography, focuses on the paradigms, approaches andtechniques that are used to conceptualize, de�ne and provide solutions to natu-ral security concerns. It presents some of these conceptual tools as well as someof the fundamental results obtained using them. The appendix augments the par-tial treatment of one-way functions, pseudorandom generators, and zero-knowledgeproofs (which is included in Chapters 7{9). Using these basic tools, the appendixprovides a treatment of basic cryptographic applications such as encryption, sig-natures, and general cryptographic protocols.Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-domization. The probabilistic preliminaries include conventions regarding ran-dom variables as well as three useful inequalities (i.e., Markov Inequality, Cheby-shev's Inequality, and Cherno� Bound). The advanced topics include constructionsand lemmas regarding families of hashing functions, a study of the sample- andrandomness- complexities of estimating the average value of an arbitrary function,and the problem of randomness extraction (i.e., procedures for extracting almostperfect randomness from sources of weak or defected randomness).Appendix E: Explicit Constructions. Complexity theory provides a clearperspective on the intuitive notion of an explicit construction. This perspective isdemonstrated with respect to error correcting codes and expander graphs. Startingwith codes, the appendix focuses on various computational aspects, and o�ers areview of several popular constructions as well as a construction of a binary codeof constant rate and constant relative distance. Also included are a brief reviewof the notions of locally testable and locally decodable codes, and a useful upper-bound on the number of codewords that are close to any single sequence. Turningto expander graphs, the appendix contains a review of two standard de�nitions ofexpanders, two levels of explicitness, two properties of expanders that are related to(single-step and multi-step) random walks on them, and two explicit constructionsof expander graphs.

XAppendix F: Some Omitted Proofs. This appendix contains some proofsthat were not included in the main text (for a variety of reasons) and still arebene�cial as alternatives to the original and/or standard presentations. Includedare a proof that PH is reducible to #P via randomized Karp-reductions, and thepresentation of two useful transformations regarding interactive proof systems.Appendix G: Some Computational Problems. This appendix includes def-initions of most of the speci�c computational problems that are referred to in themain text. In particular, it contains a brief introduction to graph algorithms,Boolean formulae, and �nite �elds.

AcknowledgmentsMy perspective on complexity theory was most inuenced by Shimon Even andLeonid Levin. In fact, it was hard not to be inuenced by these two remarkable andhighly opinionated researchers (especially for somebody like me who was fortunateto spend a lot of time with them).2Shimon Even viewed complexity theory as the study of the limitations of al-gorithms, a study concerned with natural computational resources and naturalcomputational tasks. Complexity theory was there to guide the engineer and toaddress the deepest questions that bother an intellectually curious computer sci-entist. I believe that this book shares Shimon's perspective of complexity theoryas evolving around such questions.Leonid Levin emphasized the general principles that underly complexity theory,rejecting any \model-dependent e�ects" as well as the common coupling of com-plexity theory with the theory of automata and formal languages. In my opinion,this book is greatly inuenced by these perspectives of Leonid.I wish to acknowledge the inuence of numerous other colleagues on my pro-fessional perspectives and attitudes. These include Sha� Goldwasser, Dick Karp,Silvio Micali, and Avi Wigderson. I also wish to thank many colleagues for theircomments and advice regarding earlier versions of this text. A partial list includesNoam Livne, Omer Reingold, Dana Ron, Ronen Shaltiel, Amir Shpilka, MadhuSudan, Salil Vadhan, and Avi Wigderson.Lastly, I am grateful to Mohammad Mahmoody Ghidary and Or Meir for theircareful reading of drafts of this manuscript and for the numerous corrections andsuggestions they have provided.Relation to previous texts of mine. Some of the text of this book has beenadapted from previous texts of mine. In particular, Chapters 8 and 9 were writtenbased on my surveys [86, Chap. 3] and [86, Chap. 2], respectively; but the expositionhas been extensively revised to �t the signi�cantly di�erent aims of the currentbook. Similarly, Section 7.1 and Appendix C were written based on my survey [86,Chap. 1] and books [87, 88]; but, again, the previous texts are very di�erent in manyways. In contrast, Appendix B was adapted with relatively little modi�cations froman early draft of a section of an article by Avi Wigderson and myself [103].2Shimon Even was my graduate studies adviser (at the Technion, 1980-83); whereas I had alot of meetings with Leonid Levin during my post-doctoral period (at MIT, 1983-86).XI

XII

Contents
Preface IIIOrganization and Chapter Summaries VAcknowledgments XI1 Introduction and Preliminaries 11.1 Introduction : 21.1.1 A brief overview of Complexity Theory : : : : : : : : : : : : 21.1.2 Characteristics of Complexity Theory : : : : : : : : : : : : : 71.1.3 Contents of this book : 81.1.4 Approach and style of this book : : : : : : : : : : : : : : : : 131.1.4.1 The general principle : : : : : : : : : : : : : : : : : 141.1.4.2 On a few speci�c choices : : : : : : : : : : : : : : : 141.1.4.3 On the presentation of technical details : : : : : : : 151.1.4.4 Organizational principles : : : : : : : : : : : : : : : 161.1.4.5 Additional notes : 171.1.5 Standard notations and other conventions : : : : : : : : : : : 171.2 Computational Tasks and Models : 181.2.1 Representation : 191.2.2 Computational Tasks : 201.2.2.1 Search problems : 201.2.2.2 Decision problems : : : : : : : : : : : : : : : : : : : 211.2.2.3 Promise problems (an advanced comment) : : : : : 221.2.3 Uniform Models (Algorithms) : : : : : : : : : : : : : : : : : : 221.2.3.1 Overview and general principles : : : : : : : : : : : 221.2.3.2 A concrete model: Turing machines : : : : : : : : : 241.2.3.3 Uncomputable functions : : : : : : : : : : : : : : : : 291.2.3.4 Universal algorithms : : : : : : : : : : : : : : : : : : 321.2.3.5 Time and space complexity : : : : : : : : : : : : : : 351.2.3.6 Oracle machines : 381.2.3.7 Restricted models : : : : : : : : : : : : : : : : : : : 391.2.4 Non-uniform Models (Circuits and Advice) : : : : : : : : : : 401.2.4.1 Boolean Circuits : 41XIII

XIV CONTENTS1.2.4.2 Machines that take advice : : : : : : : : : : : : : : 441.2.4.3 Restricted models : : : : : : : : : : : : : : : : : : : 451.2.5 Complexity Classes : 47Chapter Notes : 472 P, NP and NP-Completeness 492.1 The P versus NP Question : 512.1.1 The search version: �nding versus checking : : : : : : : : : : 522.1.1.1 The class P as a natural class of search problems : : 532.1.1.2 The class NP as another natural class of searchproblems : 542.1.1.3 The P versus NP question in terms of search problems 552.1.2 The decision version: proving versus verifying : : : : : : : : : 552.1.2.1 The class P as a natural class of decision problems : 562.1.2.2 The class NP and NP-proof systems : : : : : : : : : 572.1.2.3 The P versus NP question in terms of decision prob-lems : 592.1.3 Equivalence of the two formulations : : : : : : : : : : : : : : 602.1.4 The traditional de�nition of NP : : : : : : : : : : : : : : : : 612.1.5 In support of P di�erent from NP : : : : : : : : : : : : : : : 632.1.6 Two technical comments regarding NP : : : : : : : : : : : : : 642.2 Polynomial-time Reductions : 642.2.1 The general notion of a reduction : : : : : : : : : : : : : : : : 642.2.1.1 The actual formulation : : : : : : : : : : : : : : : : 652.2.1.2 Special cases : 662.2.1.3 Terminology and a brief discussion : : : : : : : : : : 672.2.2 Reducing optimization problems to search problems : : : : : 672.2.3 Self-reducibility of search problems : : : : : : : : : : : : : : : 692.2.3.1 Examples : 702.2.3.2 Self-reducibility of NP-complete problems : : : : : : 722.3 NP-Completeness : 732.3.1 De�nitions : 742.3.2 The existence of NP-complete problems : : : : : : : : : : : : 742.3.3 Some natural NP-complete problems : : : : : : : : : : : : : : 772.3.3.1 Circuit and formula satis�ability: CSAT and SAT : 782.3.3.2 Combinatorics and graph theory : : : : : : : : : : : 842.3.4 NP sets that are neither in P nor NP-complete : : : : : : : : 882.4 Three relatively advanced topics : 922.4.1 Promise Problems : 932.4.1.1 De�nitions : 932.4.1.2 Applications : 952.4.1.3 The standard convention of avoiding promise prob-lems : 962.4.2 Optimal search algorithms for NP : : : : : : : : : : : : : : : 982.4.3 The class coNP and its intersection with NP : : : : : : : : : 100Chapter Notes : 103

CONTENTS XVExercises : 1053 Variations on P and NP 1153.1 Non-uniform polynomial-time (P/poly) : : : : : : : : : : : : : : : : : 1163.1.1 Boolean Circuits : 1163.1.2 Machines that take advice : 1183.2 The Polynomial-time Hierarchy (PH) : : : : : : : : : : : : : : : : : : 1203.2.1 Alternation of quanti�ers : 1213.2.2 Non-deterministic oracle machines : : : : : : : : : : : : : : : 1243.2.3 The P/poly-versus-NP Question and PH : : : : : : : : : : : : 127Chapter Notes : 128Exercises : 1294 More Resources, More Power? 1354.1 Non-uniform complexity hierarchies : : : : : : : : : : : : : : : : : : : 1364.2 Time Hierarchies and Gaps : 1374.2.1 Time Hierarchies : 1384.2.1.1 The Time Hierarchy Theorem : : : : : : : : : : : : 1384.2.1.2 Impossibility of speed-up for universal computation 1424.2.1.3 Hierarchy theorem for non-deterministic time : : : : 1424.2.2 Time Gaps and Speed-Up : 1444.3 Space Hierarchies and Gaps : 146Chapter Notes : 147Exercises : 1475 Space Complexity 1515.1 General preliminaries and issues : 1525.1.1 Important conventions : 1525.1.2 On the minimal amount of useful computation space : : : : : 1545.1.3 Time versus Space : 1555.1.3.1 Two composition lemmas : : : : : : : : : : : : : : : 1555.1.3.2 An obvious bound : : : : : : : : : : : : : : : : : : : 1575.1.3.3 Subtleties regarding space-bounded reductions : : : 1585.1.3.4 Complexity hierarchies and gaps : : : : : : : : : : : 1595.1.3.5 Simultaneous time-space complexity : : : : : : : : : 1605.1.4 Circuit Evaluation : 1605.2 Logarithmic Space : 1615.2.1 The class L : 1615.2.2 Log-Space Reductions : 1615.2.3 Log-Space uniformity and stronger notions : : : : : : : : : : 1625.2.4 Undirected Connectivity : 1635.2.4.1 The basic approach : : : : : : : : : : : : : : : : : : 1645.2.4.2 The actual implementation : : : : : : : : : : : : : : 1655.3 Non-Deterministic Space Complexity : : : : : : : : : : : : : : : : : : 1705.3.1 Two models : 1705.3.2 NL and directed connectivity : : : : : : : : : : : : : : : : : : 171

XVI CONTENTS5.3.2.1 Completeness and beyond : : : : : : : : : : : : : : : 1725.3.2.2 Relating NSPACE to DSPACE : : : : : : : : : : : : 1735.3.2.3 Complementation or NL=coNL : : : : : : : : : : : : 1755.3.3 Discussion : 1795.4 PSPACE and Games : 180Chapter Notes : 182Exercises : 1836 Randomness and Counting 1916.1 Probabilistic Polynomial-Time : 1926.1.1 Two-sided error: The complexity class BPP : : : : : : : : : : 1966.1.1.1 On the power of randomization : : : : : : : : : : : : 1976.1.1.2 A probabilistic polynomial-time primality test : : : 1996.1.2 One-sided error: The complexity classes RP and coRP : : : : 2006.1.2.1 Testing polynomial identity : : : : : : : : : : : : : : 2016.1.2.2 Relating BPP to RP : : : : : : : : : : : : : : : : : : 2026.1.3 Zero-sided error: The complexity class ZPP : : : : : : : : : : 2066.1.4 Randomized Log-Space : 2076.1.4.1 De�nitional issues : : : : : : : : : : : : : : : : : : : 2076.1.4.2 The accidental tourist sees it all : : : : : : : : : : : 2086.2 Counting : 2096.2.1 Exact Counting : 2106.2.1.1 On the power of #P : : : : : : : : : : : : : : : : : : 2106.2.1.2 Completeness in #P : : : : : : : : : : : : : : : : : : 2116.2.2 Approximate Counting : 2196.2.2.1 Relative approximation for #Rdnf : : : : : : : : : : 2206.2.2.2 Relative approximation for #P : : : : : : : : : : : : 2226.2.3 Searching for unique solutions : : : : : : : : : : : : : : : : : : 2246.2.4 Uniform generation of solutions : : : : : : : : : : : : : : : : : 2276.2.4.1 Relation to approximate counting : : : : : : : : : : 2286.2.4.2 A direct procedure for uniform generation : : : : : : 231Chapter Notes : 234Exercises : 2377 The Bright Side of Hardness 2497.1 One-Way Functions : 2507.1.1 The concept of one-way functions : : : : : : : : : : : : : : : : 2517.1.2 Ampli�cation of Weak One-Way Functions : : : : : : : : : : 2547.1.3 Hard-Core Predicates : 2587.2 Hard Problems in E : 2637.2.1 Ampli�cation wrt polynomial-size circuits : : : : : : : : : : : 2657.2.1.1 Fromworst-case hardness to mild average-case hard-ness : 2657.2.1.2 Yao's XOR Lemma : : : : : : : : : : : : : : : : : : 2687.2.1.3 List decoding and hardness ampli�cation : : : : : : 2747.2.2 Ampli�cation wrt exponential-size circuits : : : : : : : : : : : 276

CONTENTS XVII7.2.2.1 Hard regions : 2787.2.2.2 Hardness ampli�cation via hard regions : : : : : : : 281Chapter Notes : 284Exercises : 2858 Pseudorandom Generators 291Introduction : 2928.1 The General Paradigm : 2958.2 General-Purpose Pseudorandom Generators : : : : : : : : : : : : : : 2978.2.1 The basic de�nition : 2978.2.2 The archetypical application : : : : : : : : : : : : : : : : : : 2998.2.3 Computational Indistinguishability : : : : : : : : : : : : : : : 3018.2.4 Amplifying the stretch function : : : : : : : : : : : : : : : : : 3058.2.5 Constructions : 3068.2.6 Non-uniformly strong pseudorandom generators : : : : : : : : 3098.2.7 Other variants and a conceptual discussion : : : : : : : : : : 3118.2.7.1 Stronger notions : 3118.2.7.2 Conceptual Discussion : : : : : : : : : : : : : : : : : 3128.3 Derandomization of time-complexity classes : : : : : : : : : : : : : : 3138.3.1 De�nition : 3148.3.2 Construction : 3158.3.3 Variants and a conceptual discussion : : : : : : : : : : : : : : 3198.3.3.1 Construction 8.17 as a general framework : : : : : : 3198.3.3.2 A conceptual discussion regarding derandomization 3218.4 Space-Bounded Distinguishers : 3218.4.1 De�nitional issues : 3228.4.2 Two Constructions : 3238.4.2.1 Overviews of the proofs of Theorems 8.21 and 8.22 : 3248.4.2.2 Derandomization of space-complexity classes : : : : 3288.5 Special Purpose Generators : 3298.5.1 Pairwise-Independence Generators : : : : : : : : : : : : : : : 3308.5.1.1 Constructions : 3308.5.1.2 Applications : 3328.5.2 Small-Bias Generators : 3338.5.2.1 Constructions : 3338.5.2.2 Applications : 3348.5.2.3 Generalization : 3358.5.3 Random Walks on Expanders : : : : : : : : : : : : : : : : : : 336Chapter Notes : 338Exercises : 3419 Probabilistic Proof Systems 353Introduction and Preliminaries : 3549.1 Interactive Proof Systems : 3559.1.1 De�nition : 3589.1.2 The Power of Interactive Proofs : : : : : : : : : : : : : : : : : 360

XVIII CONTENTS9.1.2.1 A simple example : : : : : : : : : : : : : : : : : : : 3609.1.2.2 The full power of interactive proofs : : : : : : : : : 3629.1.3 Variants and �ner structure: an overview : : : : : : : : : : : 3679.1.3.1 Arthur-Merlin games a.k.a public-coin proof systems 3679.1.3.2 Interactive proof systems with two-sided error : : : 3679.1.3.3 A hierarchy of interactive proof systems : : : : : : : 3689.1.3.4 Something completely di�erent : : : : : : : : : : : : 3699.1.4 On computationally bounded provers: an overview : : : : : : 3699.1.4.1 How powerful should the prover be? : : : : : : : : : 3709.1.4.2 Computational-soundness : : : : : : : : : : : : : : : 3719.2 Zero-Knowledge Proof Systems : 3719.2.1 De�nitional Issues : 3729.2.1.1 A wider perspective: the simulation paradigm : : : 3739.2.1.2 The basic de�nitions : : : : : : : : : : : : : : : : : : 3739.2.2 The Power of Zero-Knowledge : : : : : : : : : : : : : : : : : : 3759.2.2.1 A simple example : : : : : : : : : : : : : : : : : : : 3759.2.2.2 The full power of zero-knowledge proofs : : : : : : : 3789.2.3 Proofs of Knowledge { a parenthetical subsection : : : : : : : 3829.3 Probabilistically Checkable Proof Systems : : : : : : : : : : : : : : : 3849.3.1 De�nition : 3849.3.2 The Power of Probabilistically Checkable Proofs : : : : : : : 3869.3.2.1 Proving that NP � PCP(poly; O(1)) : : : : : : : : 3889.3.2.2 Overview of the �rst proof of the PCP Theorem : : 3909.3.2.3 Overview of the second proof of the PCP Theorem : 3959.3.3 PCP and Approximation : 3999.3.4 More on PCP itself: an overview : : : : : : : : : : : : : : : : 4019.3.4.1 More on the PCP characterization of NP : : : : : : 4019.3.4.2 PCP with super-logarithmic randomness : : : : : : 403Chapter Notes : 403Exercises : 40610 Relaxing the Requirements 41510.1 Approximation : 41610.1.1 Search or Optimization : 41710.1.1.1 A few positive examples : : : : : : : : : : : : : : : : 41810.1.1.2 A few negative examples : : : : : : : : : : : : : : : 41910.1.2 Decision or Property Testing : : : : : : : : : : : : : : : : : : 42210.1.2.1 De�nitional issues : : : : : : : : : : : : : : : : : : : 42310.1.2.2 Two models for testing graph properties : : : : : : : 42510.1.2.3 Beyond graph properties : : : : : : : : : : : : : : : 42810.2 Average Case Complexity : 42810.2.1 The basic theory : 43010.2.1.1 De�nitional issues : : : : : : : : : : : : : : : : : : : 43010.2.1.2 Complete problems : : : : : : : : : : : : : : : : : : 43610.2.1.3 Probabilistic versions : : : : : : : : : : : : : : : : : 44210.2.2 Rami�cations : 443

CONTENTS XIX10.2.2.1 Search versus Decision : : : : : : : : : : : : : : : : : 44410.2.2.2 Simple versus sampleable distributions : : : : : : : 446Chapter Notes : 452Exercises : 455Epilogue 463A Glossary of Complexity Classes 465A.1 Preliminaries : 465A.2 Algorithm-based classes : 466A.2.1 Time complexity classes : 467A.2.1.1 Classes closely related to polynomial time : : : : : : 467A.2.1.2 Other time complexity classes : : : : : : : : : : : : 468A.2.2 Space complexity : 469A.3 Circuit-based classes : 470B On the Quest for Lower Bounds 473B.1 Preliminaries : 474B.2 Boolean Circuit Complexity : 475B.2.1 Basic Results and Questions : : : : : : : : : : : : : : : : : : : 476B.2.2 Monotone Circuits : 477B.2.3 Bounded-Depth Circuits : 477B.2.4 Formula Size : 478B.3 Arithmetic Circuits : 479B.3.1 Univariate Polynomials : 480B.3.2 Multivariate Polynomials : 481B.4 Proof Complexity : 482B.4.1 Logical Proof Systems : 484B.4.2 Algebraic Proof Systems : 484B.4.3 Geometric Proof Systems : 485C On the Foundations of Modern Cryptography 487C.1 Introduction and Preliminaries : 488C.1.1 Modern cryptography : 488C.1.2 Preliminaries : 490C.1.2.1 E�cient Computations and Infeasible ones : : : : : 490C.1.2.2 Randomized (or probabilistic) Computations : : : : 491C.1.3 Prerequisites, Organization, and Beyond : : : : : : : : : : : : 491C.2 Computational Di�culty : 492C.2.1 One-Way Functions : 493C.2.2 Hard-Core Predicates : 495C.3 Pseudorandomness : 495C.3.1 Computational Indistinguishability : : : : : : : : : : : : : : : 496C.3.2 Pseudorandom Generators : 497C.3.3 Pseudorandom Functions : 498C.4 Zero-Knowledge : 500

XX CONTENTSC.4.1 The Simulation Paradigm : 500C.4.2 The Actual De�nition : 501C.4.3 A construction and a generic application : : : : : : : : : : : : 502C.4.3.1 Commitment schemes : : : : : : : : : : : : : : : : : 502C.4.3.2 E�ciency considerations : : : : : : : : : : : : : : : 503C.4.3.3 A generic application : : : : : : : : : : : : : : : : : 503C.4.4 Variants and Issues : 504C.4.4.1 De�nitional variations : : : : : : : : : : : : : : : : : 504C.4.4.2 Related notions: POK, NIZK, and WI : : : : : : : : 506C.5 Encryption Schemes : 508C.5.1 De�nitions : 510C.5.2 Constructions : 512C.5.3 Beyond Eavesdropping Security : : : : : : : : : : : : : : : : : 514C.6 Signatures and Message Authentication : : : : : : : : : : : : : : : : 515C.6.1 De�nitions : 517C.6.2 Constructions : 518C.7 General Cryptographic Protocols : 520C.7.1 The De�nitional Approach and Some Models : : : : : : : : : 521C.7.1.1 Some parameters used in de�ning security models : 522C.7.1.2 Example: Multi-party protocols with honest majority523C.7.1.3 Another example: Two-party protocols allowing abort525C.7.2 Some Known Results : 526C.7.3 Construction Paradigms and Two Simple Protocols : : : : : : 527C.7.3.1 Passively-secure computation with shares : : : : : : 528C.7.3.2 From passively-secure protocols to actively-secureones : 530C.7.4 Concluding Remarks : 533D Probabilistic Preliminaries and Advanced Topics in Randomiza-tion 535D.1 Probabilistic preliminaries : 536D.1.1 Notational Conventions : 536D.1.2 Three Inequalities : 537D.2 Hashing : 540D.2.1 De�nitions : 540D.2.2 Constructions : 541D.2.3 The Leftover Hash Lemma : : : : : : : : : : : : : : : : : : : 542D.3 Sampling : 545D.3.1 Formal Setting : 546D.3.2 Known Results : 546D.3.3 Hitters : 548D.4 Randomness Extractors : 549D.4.1 De�nitions and various perspectives : : : : : : : : : : : : : : 550D.4.1.1 The Main De�nition : : : : : : : : : : : : : : : : : : 550D.4.1.2 Extractors as averaging samplers : : : : : : : : : : : 551D.4.1.3 Extractors as randomness-e�cient error-reductions : 552

CONTENTS XXID.4.1.4 Other perspectives : : : : : : : : : : : : : : : : : : : 553D.4.2 Constructions : 554D.4.2.1 Some known results : : : : : : : : : : : : : : : : : : 554D.4.2.2 The pseudorandomness connection : : : : : : : : : : 555D.4.2.3 Recommended reading : : : : : : : : : : : : : : : : 557E Explicit Constructions 559E.1 Error Correcting Codes : 560E.1.1 A few popular codes : 561E.1.1.1 A mildly explicit version of Proposition E.1 : : : : : 562E.1.1.2 The Hadamard Code : : : : : : : : : : : : : : : : : 562E.1.1.3 The Reed{Solomon Code : : : : : : : : : : : : : : : 563E.1.1.4 The Reed{Muller Code : : : : : : : : : : : : : : : : 563E.1.1.5 Binary codes of constant relative distance and con-stant rate : 564E.1.2 Two additional computational problems : : : : : : : : : : : : 565E.1.3 A list decoding bound : 567E.2 Expander Graphs : 568E.2.1 De�nitions and Properties : 569E.2.1.1 Two Mathematical De�nitions : : : : : : : : : : : : 569E.2.1.2 Two levels of explicitness : : : : : : : : : : : : : : : 570E.2.1.3 Two properties : 571E.2.2 Constructions : 574E.2.2.1 The Margulis{Gabber{Galil Expander : : : : : : : : 576E.2.2.2 The Iterated Zig-Zag Construction : : : : : : : : : : 576F Some Omitted Proofs 581F.1 Proving that PH reduces to #P : 581F.2 Proving that IP(f) � AM(O(f)) � AM(f) : : : : : : : : : : : : : 587F.2.1 Emulating general interactive proofs by AM-games : : : : : : 587F.2.1.1 The basic approach : : : : : : : : : : : : : : : : : : 587F.2.1.2 Random selection : : : : : : : : : : : : : : : : : : : 589F.2.1.3 The iterated partition protocol : : : : : : : : : : : : 590F.2.2 Linear speed-up for AM : 593F.2.2.1 The basic switch (from MA to AM) : : : : : : : : : 594F.2.2.2 The augmented switch (from [MAMA]j to [AMA]jA)596G Some Computational Problems 599G.1 Graphs : 599G.2 Boolean Formulae : 601G.3 Finite Fields, Polynomials and Vector Spaces : : : : : : : : : : : : : 603G.4 The Determinant and the Permanent : : : : : : : : : : : : : : : : : : 603G.5 Primes and Composite Numbers : 604Bibliography 605

XXII CONTENTS

List of Figures1.1 Dependencies among the advanced chapters. : : : : : : : : : : : : : : 101.2 A single step by a Turing machine. : : : : : : : : : : : : : : : : : : : 261.3 A circuit computing f(x1; x2; x3; x4) = (x1 � x2; x1 ^ :x2 ^ x4). : : : 421.4 Recursive construction of parity circuits and formulae. : : : : : : : : 462.1 An array representing ten computation steps on input 110y1y2. : : : 802.2 The idea underlying the reduction of CSAT to SAT. : : : : : : : : : 822.3 The reduction to G3C { the clause gadget and its sub-gadget. : : : : 882.4 The reduction to G3C { connecting the gadgets. : : : : : : : : : : : 892.5 The world view under P 6= coNP \NP 6= NP . : : : : : : : : : : : : 1033.1 Two levels of the Polynomial-time Hierarchy. : : : : : : : : : : : : : 1265.1 Algorithmic composition for space-bounded computation : : : : : : : 1565.2 The recursive procedure in NL � Dspace(O(log2)). : : : : : : : : : 1745.3 The main step in proving NL = coNL. : : : : : : : : : : : : : : : : 1786.1 Tracks connecting gadgets for the reduction to cycle cover. : : : : : : 2146.2 External edges for the analysis of the clause gadget : : : : : : : : : : 2156.3 A Deus ex Machina clause gadget for the reduction to cycle cover. : 2166.4 A structured clause gadget for the reduction to cycle cover. : : : : : 2176.5 External edges for the analysis of the box : : : : : : : : : : : : : : : 2177.1 The hard-core of a one-way function { an illustration. : : : : : : : : 2597.2 Proofs of hardness ampli�cation: organization : : : : : : : : : : : : : 2668.1 Pseudorandom generators { an illustration. : : : : : : : : : : : : : : 2948.2 Analysis of stretch ampli�cation { the ith hybrid. : : : : : : : : : : : 3058.3 The �rst generator that \fools" space-bounded machines. : : : : : : 3268.4 An a�ne transformation de�ned by a Toeplitz matrix. : : : : : : : : 3318.5 The LFSR small-bias generator (for t = k=2). : : : : : : : : : : : : : 3348.6 Pseudorandom generators at a glance : : : : : : : : : : : : : : : : : 3389.1 Zero-knowledge proofs { an illustration. : : : : : : : : : : : : : : : : 3729.2 Detail for testing consistency of linear and quadratic forms. : : : : : 3899.3 The amplifying reduction in the second proof of the PCP Theorem. : 397XXIII

XXIV LIST OF FIGURES10.1 Two types of average-case completeness : : : : : : : : : : : : : : : : 44710.2 Worst-case vs average-case assumptions : : : : : : : : : : : : : : : : 453E.1 Detail of the zig-zag product of G0 and G. : : : : : : : : : : : : : : : 577F.1 The transformation of an MA-game into an AM-game. : : : : : : : : 594F.2 The transformation of MAMA into AMA. : : : : : : : : : : : : : : : 596

Chapter 1Introduction andPreliminariesWhen you set out on your journey to Ithaca,pray that the road is long,full of adventure, full of knowledge.K.P. Cavafy, IthacaThe current chapter consists of two parts. The �rst part provides a high-levelintroduction to (computational) complexity theory. This introduction is muchmore detailed than the laconic statements made in the preface, but is quite sparsewhen compared to the richness of the �eld. In addition, the introduction containsseveral important comments regarding the contents, approach, and conventions ofthe current book.
P

BPP RP

average-case

IP ZK
PCP

approximation

pseudorandomness

PH

NP coNP

NL
L lower bounds

PSPACE

The second part of this chapter provides the necessary preliminaries to the restof the book. It includes a discussion of computational tasks and computationalmodels, as well as natural complexity measures associated with the latter. Morespeci�cally, this part recalls the basic notions and results of computability theory(including the de�nition of Turing machines, some undecidability results, the notionof universal machines, and the de�nition of oracle machines). In addition, this partpresents the basic notions underlying non-uniform models of computation (likeBoolean circuits). 1

2 CHAPTER 1. INTRODUCTION AND PRELIMINARIES1.1 IntroductionThis introduction consists of two parts: the �rst part refers to the area itself,whereas the second part refers to the current book. The �rst part provides a briefoverview of Complexity Theory (Section 1.1.1) as well as some reections aboutits characteristics (Section 1.1.2). The second part describes the contents of thisbook (Section 1.1.3), the considerations underlying the choice of topics as well asthe way they are presented (Section 1.1.4), and various notations and conventions(Section 1.1.5).1.1.1 A brief overview of Complexity TheoryOut of the tough came forth sweetness1Judges, 14:14The following brief overview is intended to give a avor of the questions addressedby Complexity Theory. This overview is quite vague, and is merely meant as ateaser. Most of the topics mentioned in it will be discussed at length in the variouschapters of this book.Complexity Theory is concerned with the study of the intrinsic complexity ofcomputational tasks. Its \�nal" goals include the determination of the complex-ity of any well-de�ned task. Additional goals include obtaining an understandingof the relations between various computational phenomena (e.g., relating one factregarding computational complexity to another). Indeed, we may say that theformer type of goals is concerned with absolute answers regarding speci�c compu-tational phenomena, whereas the latter type is concerned with questions regardingthe relation between computational phenomena.Interestingly, so far Complexity Theory has been more successful in coping withgoals of the latter (\relative") type. In fact, the failure to resolve questions of the\absolute" type, led to the ourishing of methods for coping with questions of the\relative" type. Musing for a moment, let us say that, in general, the di�cultyof obtaining absolute answers may naturally lead to seeking conditional answers,which may in turn reveal interesting relations between phenomena. Furthermore,the lack of absolute understanding of individual phenomena seems to facilitate thedevelopment of methods for relating di�erent phenomena. Anyhow, this is whathappened in Complexity Theory.Putting aside for a moment the frustration caused by the failure of obtainingabsolute answers, we must admit that there is something fascinating in the successto relate di�erent phenomena: in some sense, relations between phenomena aremore revealing than absolute statements about individual phenomena. Indeed, the�rst example that comes to mind is the theory of NP-completeness. Let us considerthis theory, for a moment, from the perspective of these two types of goals.Complexity theory has failed to determine the intrinsic complexity of tasks suchas �nding a satisfying assignment to a given (satis�able) propositional formula1The quote is commonly interpreted as meaning that bene�t arose out of misfortune.

1.1. INTRODUCTION 3or �nding a 3-coloring of a given (3-colorable) graph. But it has succeeded inestablishing that these two seemingly di�erent computational tasks are in somesense the same (or, more precisely, are computationally equivalent). We �nd thissuccess amazing and exciting, and hope that the reader shares these feelings. Thesame feeling of wonder and excitement is generated by many of the other discoveriesof Complexity theory. Indeed, the reader is invited to join a fast tour of some ofthe other questions and answers that make up the �eld of Complexity theory.We will indeed start with the P versus NP Question. Our daily experience isthat it is harder to solve a problem than it is to check the correctness of a solution(e.g., think of either a puzzle or a research problem). Is this experience merely acoincidence or does it represent a fundamental fact of life (i.e., a property of theworld)? Could you imagine a world in which solving any problem is not signi�cantlyharder than checking a solution to it? Would the term \solving a problem" notlose its meaning in such a hypothetical (and impossible in our opinion) world?The denial of the plausibility of such a hypothetical world (in which \solving" isnot harder than \checking") is what \P di�erent from NP" actually means, whereP represents tasks that are e�ciently solvable and NP represents tasks for whichsolutions can be e�ciently checked.The mathematically (or theoretically) inclined reader may also consider thetask of proving theorems versus the task of verifying the validity of proofs. Indeed,�nding proofs is a special type of the aforementioned task of \solving a problem"(and verifying the validity of proofs is a corresponding case of checking correctness).Again, \P di�erent from NP" means that there are theorems that are harder toprove than to be convinced of their correctness when presented with a proof. Thismeans that the notion of a \proof" is meaningful; that is, proofs do help whenseeking to be convinced of the correctness of assertions. Here NP represents setsof assertions that can be e�ciently veri�ed with the help of adequate proofs, andP represents sets of assertions that can be e�ciently veri�ed from scratch (i.e.,without proofs).In light of the foregoing discussion it is clear that the P-versus-NP Question isa fundamental scienti�c question of far-reaching consequences. The fact that thisquestion seems beyond our current reach led to the development of the theory ofNP-completeness. Loosely speaking, this theory identi�es a set of computationalproblems that are as hard as NP. That is, the fate of the P-versus-NP Question lieswith each of these problems: if any of these problems is easy to solve then so are allproblems in NP. Thus, showing that a problem is NP-complete provides evidenceto its intractability (assuming, of course, \P di�erent than NP"). Indeed, demon-strating the NP-completeness of computational tasks is a central tool in indicatinghardness of natural computational problems, and it has been used extensively bothin computer science and in other disciplines. Note that NP-completeness indicatesnot only the conjectured intractability of a problem but rather also its \richness"in the sense that the problem is rich enough to \encode" any other problem inNP. The use of the term \encoding" is justi�ed by the exact meaning of NP-completeness, which in turn establishes relations between di�erent computationalproblems (without referring to their \absolute" complexity).

4 CHAPTER 1. INTRODUCTION AND PRELIMINARIESThe foregoing discussion of NP-completeness hints to the importance of repre-sentation, since it referred to di�erent problems that encode one another. Indeed,the importance of representation is a central aspect of complexity theory. In gen-eral, complexity theory is concerned with problems for which the solutions areimplicit in the problem's statement (or rather in the instance). That is, the prob-lem (or rather its instance) contains all necessary information, and one merelyneeds to process this information in order to supply the answer.2 Thus, complex-ity theory is concerned with manipulation of information, and its transformationfrom one representation (in which the information is given) to another representa-tion (which is the one desired). Indeed, a solution to a computational problem ismerely a di�erent representation of the information given; that is, a representationin which the answer is explicit rather than implicit. For example, the answer tothe question of whether or not a given Boolean formula is satis�able is implicit inthe formula itself (but the task is to make the answer explicit). Thus, complex-ity theory clari�es a central issue regarding representation; that is, the distinctionbetween what is explicit and what is implicit in a representation. Furthermore, iteven suggests a quanti�cation of the level of non-explicitness.In general, complexity theory provides new viewpoints on various phenomenathat were considered also by past thinkers. Examples include the aforementionedconcepts of solutions, proofs, and representation as well as concepts like random-ness, knowledge, interaction, secrecy and learning. We next discuss the latterconcepts and the perspective o�ered by complexity theory.The concept of randomness has puzzled thinkers for ages. Their perspectivecan be described as ontological: they asked \what is randomness" and wonderedwhether it exist at all (or is the world deterministic). The perspective of complexitytheory is behavioristic: it is based on de�ning objects as equivalent if they cannotbe told apart by any e�cient procedure. That is, a coin toss is (de�ned to be)\random" (even if one believes that the universe is deterministic) if it is infeasibleto predict the coin's outcome. Likewise, a string (or a distribution of strings) is\random" if it is infeasible to distinguish it from the uniform distribution (regard-less of whether or not one can generate the latter). Interestingly, randomness (orrather pseudorandomness) de�ned this way is e�ciently expandable; that is, undera reasonable complexity assumption (to be discussed next), short pseudorandomstrings can be deterministically expanded into long pseudorandom strings. Indeed,it turns out that randomness is intimately related to intractability. Firstly, notethat the very de�nition of pseudorandomness refers to intractability (i.e., the infea-sibility of distinguishing a pseudorandomness object from a uniformly distributedobject). Secondly, as stated, a complexity assumption, which refers to the exis-tence of functions that are easy to evaluate but hard to invert (called one-wayfunctions), implies the existence of deterministic programs (called pseudorandomgenerators) that stretch short random seeds into long pseudorandom sequences. Infact, it turns out that the existence of pseudorandom generators is equivalent to2In contrast, in other disciplines, solving a problem may require gathering information that isnot available in the problem's statement. This information may either be available from auxiliary(past) records or be obtained by conducting new experiments.

1.1. INTRODUCTION 5the existence of one-way functions.Complexity theory o�ers its own perspective on the concept of knowledge (anddistinguishes it from information). Speci�cally, complexity theory views knowledgeas the result of a hard computation. Thus, whatever can be e�ciently done by any-one is not considered knowledge. In particular, the result of an easy computationapplied to publicly available information is not considered knowledge. In contrast,the value of a hard-to-compute function applied to publicly available informationis knowledge, and if somebody provides you with such a value then it has providedyou with knowledge. This discussion is related to the notion of zero-knowledgeinteractions, which are interactions in which no knowledge is gained. Such interac-tions may still be useful, because they may convince a party of the correctness ofspeci�c data that was provided beforehand. For example, a zero-knowledge inter-active proof may convince a party that a given graph is 3-colorable without yieldingany 3-coloring.The foregoing paragraph has explicitly referred to interaction, viewing it as avehicle for gaining knowledge and/or gaining con�dence. Let us highlight the latterapplication by noting that it may be easier to verify an assertion when allowed tointeract with a prover rather than when reading a proof. Put di�erently, interactionwith a good teacher may be more bene�cial than reading any book. We commentthat the added power of such interactive proofs is rooted in their being randomized(i.e., the veri�cation procedure is randomized), because if the veri�er's questionscan be determined beforehand then the prover may just provide the transcript ofthe interaction as a traditional written proof.Another concept related to knowledge is that of secrecy: knowledge is somethingthat one party may have while another party does not have (and cannot feasiblyobtain by itself) { thus, in some sense knowledge is a secret. In general, complexitytheory is related to Cryptography, where the latter is broadly de�ned as the studyof systems that are easy to use but hard to abuse. Typically, such systems involvesecrets, randomness and interaction as well as a complexity gap between the easeof proper usage and the infeasibility of causing the system to deviate from its pre-scribed behavior. Thus, much of Cryptography is based on complexity theoreticassumptions and its results are typically transformations of relatively simple com-putational primitives (e.g., one-way functions) into more complex cryptographicapplications (e.g., secure encryption schemes).We have already mentioned the concept of learning when referring to learningfrom a teacher versus learning from a book. Recall that complexity theory providesevidence to the advantage of the former. This is in the context of gaining knowledgeabout publicly available information. In contrast, computational learning theoryis concerned with learning objects that are only partially available to the learner(i.e., reconstructing a function based on its value at a few random locations or evenat locations chosen by the learner). Complexity theory sheds light on the intrinsiclimitations of learning (in this sense).Complexity theory deals with a variety of computational tasks. We have alreadymentioned two fundamental types of tasks: searching for solutions (or rather \�nd-ing solutions") and making decisions (e.g., regarding the validity of assertions). We

6 CHAPTER 1. INTRODUCTION AND PRELIMINARIEShave also hinted that in some cases these two types of tasks can be related. Nowwe consider two additional types of tasks: counting the number of solutions andgenerating random solutions. Clearly, both the latter tasks are at least as hard as�nding arbitrary solutions to the corresponding problem, but it turns out that forsome natural problems they are not signi�cantly harder. Speci�cally, under somenatural conditions on the problem, approximately counting the number of solutionsand generating an approximately random solution is not signi�cantly harder than�nding an arbitrary solution.Having mentioned the notion of approximation, we note that the study of thecomplexity of �nding \approximate solutions" is also of natural importance. Onetype of approximation problems refers to an objective function de�ned on the set ofpotential solutions: Rather than �nding a solution that attains the optimal value,the approximation task consists of �nding a solution that attains an \almost opti-mal" value, where the notion of \almost optimal" may be understood in di�erentways giving rise to di�erent levels of approximation. Interestingly, in many cases,even a very relaxed level of approximation is as di�cult to obtain as solving theoriginal (exact) search problem (i.e., �nding an approximate solution is as hardas �nding an optimal solution). Surprisingly, these hardness of approximation re-sults are related to the study of probabilistically checkable proofs, which are proofsthat allow for ultra-fast probabilistic veri�cation. Amazingly, every proof can bee�ciently transformed into one that allows for probabilistic veri�cation based onprobing a constant number of bits (in the alleged proof). Turning back to approx-imation problems, we note that in other cases a reasonable level of approximationis easier to achieve than solving the original (exact) search problem.Approximation is a natural relaxation of various computational problems. An-other natural relaxation is the study of average-case complexity, where the \aver-age" is taken over some \simple" distributions (representing a model of the prob-lem's instances that may occur in practice). We stress that, although it was notstated explicitly, the entire discussion so far has referred to \worst-case" analysisof algorithms. We mention that worst-case complexity is a more robust notionthan average-case complexity. For starters, one avoids the controversial questionof what are the instances that are \important in practice" and correspondinglythe selection of the class of distributions for which average-case analysis is to beconducted. Nevertheless, a relatively robust theory of average-case complexity hasbeen suggested, albeit it is less developed than the theory of worst-case complexity.In view of the central role of randomness in complexity theory (as evident, say,in the study of pseudorandomness, probabilistic proof systems, and cryptography),one may wonder as to whether the randomness needed for the various applicationscan be obtained in real-life. One speci�c question, which received a lot of atten-tion, is the possibility of \purifying" randomness (or \extracting good randomnessfrom bad sources"). That is, can we use \defected" sources of randomness in or-der to implement almost perfect sources of randomness. The answer depends, ofcourse, on the model of such defected sources. This study turned out to be relatedto complexity theory, where the most tight connection is between some type ofrandomness extractors and some type of pseudorandom generators.

1.1. INTRODUCTION 7So far we have focused on the time complexity of computational tasks, whilerelying on the natural association of e�ciency with time. However, time is notthe only resource one should care about. Another important resource is space:the amount of (temporary) memory consumed by the computation. The studyof space-complexity has uncovered several fascinating phenomena, which seem toindicate a fundamental di�erence between space-complexity and time-complexity.For example, in the context of space-complexity, verifying proofs of validity ofassertions (of any speci�c type) has the same complexity as verifying proofs ofinvalidity for the same type of assertions.In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour ofsome mountain tops, and dizziness is to be expected. Needless to say, the rest ofthe book o�ers a totally di�erent touring experience. We will climb some of thesemountains by foot, step by step, and will often stop to look around and reect.Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute re-sults are not known for many of the \big questions" of complexity theory (mostnotably the P-versus-NP Question). However, several highly non-trivial absoluteresults have been proved. For example, it was shown that using negation canspeed-up the computation of monotone functions (which do not require negationfor their mere computation). In addition, many promising techniques were intro-duced and employed with the aim of providing a low-level analysis of the progress ofcomputation. However, as stated in the preface, the focus of this book is elsewhere.1.1.2 Characteristics of Complexity TheoryWe are successful because we use the right level of abstractionAvi Wigderson (1996)Using the \right level of abstraction" seems to be a main characteristic of the The-ory of Computation at large. The right level of abstraction means abstracting awaysecond-order details, which tend to be context-dependent, while using de�nitionsthat reect the main issues (rather than abstracting them away too). Indeed, usingthe right level of abstraction calls for an extensive exercising of good judgment, andone indication for having chosen the right abstractions is the result of their study.One major choice, taken by the theory of computation at large, is the choiceof a model of computation and corresponding complexity measures and classes.The choice, which is currently taken for granted, was to use a simple model thatavoids both the extreme of being too realistic (and thus too detailed) as well as theextreme of being too abstract (and vague). On the one hand, the main model ofcomputation (which is used in complexity theory) does not try to mimic (or mirror)the actual operation of real-life computers used at a speci�c historical time. Sucha choice would have made it very hard to develop complexity theory as we know itand to uncover the fundamental relations discussed in this book: the mass of detailswould have obscured the view. On the other hand, avoiding any reference to anyconcrete model (like in the case of recursive function theory) does not encourage the

8 CHAPTER 1. INTRODUCTION AND PRELIMINARIESintroduction and study of natural measures of complexity. Indeed, as we shall see inSection 1.2.3, the choice was (and is) to use a simple model of computation (whichdoes not mirror real-life computers), while avoiding any e�ects that are speci�c tothat model (by keeping a eye on a host of variants and alternative models). Thefreedom from the speci�cs of the basic model is obtained by considering complexityclasses that are invariant under a change of model (as long as the alternative modelis \reasonable").Another major choice is the use of asymptotic analysis. Speci�cally, we con-sider the complexity of an algorithm as a function of its input length, and studythe asymptotic behavior of this function. It turns out that structure that is hiddenby concrete quantities appears at the limit. Furthermore, depending on the case,we classify functions according to di�erent criteria. For example, in case of timecomplexity we consider classes of functions that are closed under multiplication,whereas in case of space complexity we consider closure under addition. In eachcase, the choice is governed by the nature of the complexity measure being consid-ered. Indeed, one could have developed a theory without using these conventions,but this would have resulted in a far more cumbersome theory. For example, ratherthan saying that �nding a satisfying assignment for a given formula is polynomial-time reducible to deciding the satis�ability of some other formulae, one could havestated the exact functional dependence of the complexity of the search problem onthe complexity of the decision problem.Both the aforementioned choices are common to other branches of the theory ofcomputation. One aspect that makes complexity theory unique is its perspectiveon the most basic question of the theory of computation; that is, the way it studiesthe question of what can be e�ciently computed. The perspective of complexitytheory is general in nature. This is reected in its primary focus on the relevantnotion of e�ciency (captured by corresponding resource bounds) rather than onspeci�c computational problems. In most cases, complexity theoretic studies donot refer to any speci�c computational problems or refer to such problems merelyas an illustration. Furthermore, even when speci�c computational problems arestudied, this study is (explicitly or at least implicitly) aimed at understanding thecomputational limitations of certain resource bounds.The aforementioned general perspective seems linked to the signi�cant role ofconceptual considerations in the �eld: The rigorous study of an intuitive notion ofe�ciency must be initiated with an adequate choice of de�nitions. Since this studyrefers to any possible (relevant) computation, the de�nitions cannot be derived byabstracting some concrete reality (e.g., a speci�c algorithmic schema). Indeed, thede�nitions attempt to capture any possible reality, which means that the choiceof de�nitions is governed by conceptual principles and not merely by empiricalobservations.1.1.3 Contents of this bookThis book is intended to serve as an introduction to Computational Complexitytheory. It consists of ten chapters and seven appendices, and can be used eitheras a textbook or for self-study. The chapters constitute the core of this book and

1.1. INTRODUCTION 9are written in a style adequate for a textbook, whereas the appendices provideadditional perspective and are written in the style of a survey article.Section 1.2 and Chapter 2 are a prerequisite for the rest of the book. Technicallyspeaking, the notions and results that appear in these parts are extensively usedin the rest of the book. More importantly, the former parts are the conceptualframework that shapes the �eld and provides a good perspective on the �eld'squestions and answers. Indeed, Section 1.2 and Chapter 2 provide the very basicmaterial that must be understood by anybody having an interest in complexitytheory.In contrast, the rest of the book covers more advanced material, which meansthat none of it can be claimed to be absolutely necessary for a basic understandingof complexity theory. In particular, although some advanced chapters refer tomaterial in other advanced chapters, the relation between these chapters is not afundamental one. Thus, one may choose to read and/or teach an arbitrary subsetof the advanced chapters and do so in an arbitrary order, provided one is willingto follow the relevant references to some parts of other chapters (see Figure 1.1).Needless to say, we recommend reading and/or teaching all the advanced chapters,and doing so by following the order presented in this book.As illustrated by Figure 1.1, some chapters (i.e., Chapters 3, 6 and 10) lumptogether topics that are usually presented separately. These decisions are relatedto our perspective on the corresponding topics.The rest of this section provides a brief summary of the contents of the variouschapters and appendices. This summary is intended for the teacher and/or theexpert, whereas the student is referred to the more novice-friendly summaries thatappear in the book's pre�x.Section 1.2: Preliminaries. This section provides the relevant background oncomputability theory, which is the basis for the rest of this book (as well as forcomplexity theory at large). Most importantly, it contains a discussion of centralnotions such as search and decision problems, algorithms that solve such problems,and their complexity. In addition, this section presents non-uniform models ofcomputation (e.g., Boolean circuits).Chapter 2: P, NP and NP-completeness. This chapter presents the P-vs-NPQuestion both in terms of search problems and in terms of decision problems. Thesecond main topic of this chapter is the theory of NP-completeness. The chapteralso provides a treatment of the general notion of a (polynomial-time) reduction,with special emphasis on self-reducibility. Additional topics include the existence ofproblems in NP that are neither NP-complete nor in P, optimal search algorithms,the class coNP, and promise problems.Chapter 3: Variations on P and NP. This chapter provides a treatmentof non-uniform polynomial-time (P/poly) and of the Polynomial-time Hierarchy(PH). Each of the two classes is de�ned in two equivalent ways (e.g., P/poly isde�ned both in terms of circuits and in terms of \machines that take advice"). In

10 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

6.1 6.2

7.1 7.2

in E

8.2 8.3 8.4 8.5

8.1 paragidm

de-ran. space
gen.
pur.

OWF

 case

10.1.1

prop.
test.

10.1.2

9.1 IP

9.2 ZK

PCP

9.3

average

10.2

rand. count.

6.1.4

7.1.3

5.2
L

5.4

4.1 advice

4.3 space
3.1

PHP/poly

5.3
PSPACE

5.1 general
3.2.3

3.2
4.2 TIME

5.2.4

(of opt.)
approx.

5.3.1

NL

(RL)

Solid arrows indicate the use of speci�c results that are stated in thesection to which the arrow points. Dashed lines (and arrows) indicatean important conceptual connection; the wider the line, the tighterthe connection. When relations are only between subsections, theirindex is indicated.Figure 1.1: Dependencies among the advanced chapters.addition, it is shown that if NP is contained in P/poly then PH collapses to itssecond level (i.e., �2).Chapter 4: More Resources, More Power? The focus of this chapter ison Hierarchy Theorems, which assert that typically more resources allow for solv-ing more problems. These results depend on using bounding functions that canbe computed without exceeding the amount of resources that they specify, andotherwise Gap Theorems may apply.Chapter 5: Space Complexity. Among the results presented in this chapterare a log-space algorithm for testing connectivity of (undirected) graphs, a proofthat NL = coNL, and complete problems for NL and PSPACE (under log-space

1.1. INTRODUCTION 11and poly-time reductions, respectively).Chapter 6: Randomness and Counting. This chapter focuses on variousrandomized complexity classes (i.e., BPP, RP , and ZPP) and the counting class#P . The results presented in this chapter include BPP � P=poly and BPP ��2, the #P-completeness of the Permanent, the connection between approximatecounting and uniform generation of solutions, and the randomized reductions ofapproximate counting to NP and ofNP to solving problems with unique solutions.Chapter 7: The Bright Side of Hardness. This chapter deals with two con-jectures that are related to P 6= NP . The �rst conjecture is that there are problemsin E that are not solvable by (non-uniform) families of small (say polynomial-size)circuits, whereas the second conjecture is equivalent to the notion of one-way func-tions. Most of this chapter is devoted to \hardness ampli�cation" results thatconvert these conjectures into tools that can be used for non-trivial derandomiza-tions of BPP (resp., for a host of cryptographic applications).Chapter 8: Pseudorandom Generators. The pivot of this chapter is the no-tion of computational indistinguishability and corresponding notions of pseudoran-domness. The de�nition of general-purpose pseudorandom generators (running inpolynomial-time and withstanding any polynomial-time distinguisher) is presentedas a special case of a general paradigm. The chapter also contains a presentationof other instantiations of the latter paradigm, including generators aimed at deran-domizing complexity classes such as BPP, generators withstanding space-boundeddistinguishers, and some special-purpose generators.Chapter 9: Probabilistic Proof Systems. This chapter provides a treatmentof three types of probabilistic proof systems: interactive proofs, zero-knowledgeproofs, and probabilistic checkable proofs. The results presented include IP =PSPACE , zero-knowledge proofs for any NP-set, and the PCP Theorem. For thelatter, only overviews of the two di�erent known proofs are provided.Chapter 10: Relaxing the Requirement. This chapter provides a treatmentof two types of approximation problems and a theory of average-case (or rathertypical-case) complexity. The traditional type of approximation problems refersto search problems and consists of a relaxation of standard optimization prob-lems. The second type is known as \property testing" and consists of a relaxationof standard decision problems. The theory of average-case complexity involvesseveral non-trivial de�nitional choices (e.g., an adequate choice of the class of dis-tributions).Appendix A: Glossary of Complexity Classes. The glossary provides self-contained de�nitions of most complexity classes mentioned in the book.

12 CHAPTER 1. INTRODUCTION AND PRELIMINARIESAppendix B: On the Quest for Lower Bounds. The �rst part, devotedto Circuit Complexity, reviews lower bounds for the size of (restricted) circuitsthat solve natural computational problems. The second part, devoted to ProofComplexity, reviews lower bounds on the length of (restricted) propositional proofsof natural tautologies.Appendix C: On the Foundations of Modern Cryptography. The �rstpart of this appendix augments the partial treatment of one-way functions, pseu-dorandom generators, and zero-knowledge proofs (which is included in Chapters7{9). Using these basic tools, the second part provides a treatment of basic cryp-tographic applications such as encryption, signatures, and general cryptographicprotocols.Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-domization. The probabilistic preliminaries include conventions regarding ran-dom variables and overviews of three useful inequalities (i.e., Markov Inequality,Chebyshev's Inequality, and Cherno� Bound). The advanced topics include con-structions of hashing functions and variants of the Leftover Hashing Lemma, andoverviews of samplers and extractors (i.e., the problem of randomness extraction).Appendix E: Explicit Constructions. This appendix focuses on various com-putational aspects of error correcting codes and expander graphs. On the topicof codes, the appendix contains a review of the Hadamard code, Reed-Solomoncodes, Reed-Muller codes, and a construction of a binary code of constant rate andconstant relative distance. Also included are a brief review of the notions of locallytestable and locally decodable codes, and a list-decoding bound. On the topic ofexpander graphs, the appendix contains a review of the standard de�nitions andproperties as well as a presentation of the Margulis-Gabber-Galil and the Zig-Zagconstructions.Appendix F: Some Omitted Proofs. This appendix contains some proofsthat are bene�cial as alternatives to the original and/or standard presentations.Included are proofs that PH is reducible to #P via randomized Karp-reductions,and that IP(f) � AM(O(f)) � AM(f).Appendix G: Some Computational Problems. This appendix contains abrief introduction to graph algorithms, Boolean formulae, and �nite �elds.Bibliography. As stated in x1.1.4.4, we tried to keep the bibliographic list asshort as possible (and still reached a couple of hundreds of entries). As a result,many relevant references were omitted. In general, our choice of references wasbiased in favor of textbooks and survey articles. We tried, however, not to omitreferences to key papers in an area.

1.1. INTRODUCTION 13Absent from this book. As stated in the preface, the current book does not pro-vide a uniform cover of the various areas of complexity theory. Notable omissionsinclude the areas of circuit complexity (cf. [43, 225]) and proof complexity (cf. [25]),which are briey reviewed in Appendix B. Additional topics that are commonlycovered in complexity theory courses but are omitted here include the study ofbranching programs and decision trees (cf. [226]), parallel computation [134], andcommunication complexity [142]. We mention that the forthcoming textbook ofArora and Barak [13] contains a treatment of all these topics. Finally, we men-tion two areas that we consider related to complexity theory, although this view isnot very common. These areas are distributed computing [16] and computationallearning theory [136].1.1.4 Approach and style of this bookAccording to a common opinion, the most important aspect of a scienti�c workis the technical result that it achieves, whereas explanations and motivations aremerely redundancy introduced for the sake of \error correction" and/or comfort. Itis further believed that, like in a work of art, the interpretation of the work shouldbe left with the reader.The author strongly disagrees with the aforementioned opinions, and arguesthat there is a fundamental di�erence between art and science, and that this dif-ference refers exactly to the meaning of a piece of work. Science is concerned withmeaning (and not with form), and in its quest for truth and/or understanding sci-ence follows philosophy (and not art). The author holds the opinion that the mostimportant aspects of a scienti�c work are the intuitive question that it addresses,the reason that it addresses this question, the way it phrases the question, the ap-proach that underlies its answer, and the ideas that are embedded in the answer.Following this view, it is important to communicate these aspects of the work.The foregoing issues are even more acute when it comes to complexity theory,�rstly because conceptual considerations seems to play an even more central role incomplexity theory (than in other �elds; cf., Section 1.1.2). Secondly (and even moreimportantly), complexity theory is extremely rich in conceptual content. Thus,communicating this content is of primary importance, and failing to do so missesthe most important aspects of complexity theory.Unfortunately, the conceptual content of complexity theory is rarely communi-cated (explicitly) in books and/or surveys of the area.3 The annoying (and quiteamazing) consequences are students that have only a vague understanding of themeaning and general relevance of the fundamental notions and results that theywere taught. The author's view is that these consequences are easy to avoid by tak-ing the time to explicitly discuss the meaning of de�nitions and results. A closelyrelated issue is using the \right" de�nitions (i.e., those that reect better the fun-damental nature of the notion being de�ned) and emphasizing the (conceptually)3It is tempting to speculate on the reasons for this phenomenon. One speculation is thatcommunicating the conceptual content of complexity theory involves making bold philosophicalassertions that are technically straightforward, whereas this combination does not �t the person-ality of most researchers in complexity theory.

14 CHAPTER 1. INTRODUCTION AND PRELIMINARIES\right" results. The current book is written accordingly.1.1.4.1 The general principleIn accordance with the foregoing, the focus of this book is on the conceptual aspectsof the technical material. Whenever presenting a subject, the starting point is theintuitive questions being addressed. The presentation explains the importance ofthese questions, the speci�c ways that they are phrased (i.e., the choices made inthe actual formulation), the approaches that underly the answers, and the ideasthat are embedded in these answers. Thus, a signi�cant portion of the text isdevoted to motivating discussions that refer to the concepts and ideas that underlythe actual de�nitions and results.The material is organized around conceptual themes, which reect fundamen-tal notions and/or general questions. Speci�c computational problems are rarelyreferred to, with exceptions that are used either for sake of clarity or because thespeci�c problem happens to capture a general conceptual phenomenon. For exam-ple, in this book, \complete problems" (e.g., NP-complete problems) are alwayssecondary to the class for which they are complete.41.1.4.2 On a few speci�c choicesOur technical presentation often di�ers from the standard one. In many casesthis is due to conceptual considerations. At times, this leads to some technicalsimpli�cations. In this subsection we only discuss general themes and/or choicesthat have a global impact on much of the presentation. This discussion is intendedmainly for the teacher and/or the expert.Avoiding non-deterministic machines. We try to avoid non-deterministicmachines as much as possible. As argued in several places (e.g., Section 2.1.4),we believe that these �ctitious \machines" have a negative e�ect both from aconceptual and technical point of view. The conceptual damage caused by usingnon-deterministic machines is that it is unclear why one should care about whatsuch machines can do. Needless to say, the reason to care is clear when noting thatthese �ctitious \machines" o�er a (convenient but rather slothful) way of phrasingfundamental issues. The technical damage caused by using non-deterministic ma-chines is that they tend to confuse the students. Furthermore, they do not o�erthe best way to handle more advanced issues (e.g., counting classes).In contrast, we use search problems as the basis for much of the presentation.Speci�cally, the class PC (see De�nition 2.3), which consists of search problems4We admit that a very natural computational problem can give rise to a class of problems thatare computationally equivalent to it, and that in such a case the class may be less interestingthan the original problem. This is not the case for any of the complexity classes presented inthis book. Still, in some cases (e.g., NP and #P), the historical evolution actually went from aspeci�c computational problem to a class of problems that are computationally equivalent to it.However, in all cases presented in this book, a retrospective evaluation of the material suggeststhat the class is actually more important than the original problem.

1.1. INTRODUCTION 15having e�ciently checkable solutions, plays a central role in our presentation. In-deed, de�ning this class is slightly more complicated than the standard de�nitionof NP (which is based on non-deterministic machines), but the technical bene�tsstart accumulating as we proceed. Needless to say, the class PC is a fundamentalclass of computational problems and this fact is the main motivation for its presen-tation. (Indeed, the most conceptually appealing phrasing of the P-vs-NP Questionconsists of asking whether every search problem in PC can be solved e�ciently.)Avoiding model-dependent e�ects. Complexity theory evolves around thenotion of e�cient computation. Indeed, a rigorous study of this notion seems torequire reference to some concrete model of computation; however, all questions andanswers considered in this book are invariant under the choice of such a concretemodel, provided of course that the model is \reasonable" (which, needless to say,is a matter of intuition). The foregoing text reects the tension between the needto make rigorous de�nitions and the desire to be independent of technical choices,which are unavoidable when making rigorous de�nitions. It also reects the factthat, by their fundamental nature, the questions that we address are quite model-independent (i.e., are independent of various technical choices). Note that we donot deny the existence of model-dependent questions, but rather avoid addressingsuch questions and view them as less fundamental in nature. In contrast to commonbeliefs, the foregoing comments refer not only to time-complexity but also to space-complexity. However, in both cases, the claim of invariance may not hold formarginally small resources (e.g., linear-time or sub-logarithmic space).In contrast to the foregoing paragraph, in some cases we choose to be spe-ci�c. The most notorious case is the association of e�ciency with polynomial-timecomplexity (see x1.2.3.5). Indeed, all the questions and answers regarding e�cientcomputation can be phrased without referring to polynomial-time complexity (i.e.,by stating explicit functional relations between the complexities of the problemsinvolved), but such a generalized treatment will be painful to follow.1.1.4.3 On the presentation of technical detailsIn general, the more complex the technical material is, the more levels of exposi-tions we employ (starting from the most high-level exposition, and when necessaryproviding more than one level of details). In particular, whenever a proof is notvery simple, we try to present the key ideas �rst, and postpone implementationdetails to later. We also try to clearly indicate the passage from a high-level presen-tation to its implementation details (e.g., by using phrases such as \details follow").In some cases, especially in the case of advanced results, only proof sketches areprovided and the implication is that the reader should be able to �ll-up the missingdetails.Few results are stated without a proof. In some of these cases the proof ideaor a proof overview is provided, but the reader is not expected to be able to �ll-upthe highly non-trivial details. (In these cases, the text clearly indicates this stateof a�airs.) One notable example is the proof of the PCP Theorem (Theorem 9.16).

16 CHAPTER 1. INTRODUCTION AND PRELIMINARIESWe tried to avoid the presentation of material that, in our opinion, is neitherthe \last word" on the subject nor represents the \right" way of approaching thesubject. Thus, we do not always present the \best" known result.1.1.4.4 Organizational principlesEach of the main chapters starts with a high-level summary and ends with chapternotes and exercises. The latter are not aimed at testing or inspiring creativity, butare rather designed to help and verify the basic understanding of the main text. Insome cases, exercises (augmented by adequate guidelines) are used for presentingadditional related material.The book contains material that ranges from topics that are currently taughtin undergraduate courses (on computability and basic complexity theory) to topicsthat are currently taught mostly in advanced graduate courses. Although this sit-uation may (and hopefully will) change in the future so that undergraduates willenjoy greater exposure to complexity theory, we believe that it will continue to bethe case that typical readers of the advanced chapters will be more sophisticatedthan typical readers of the basic chapters (i.e., Section 1.2 and Chapter 2). Ac-cordingly, the style of presentation becomes more sophisticated as one progressesfrom Chapter 2 to later chapters.As stated in the preface, this book focuses on the high-level approach to com-plexity theory, whereas the low-level approach (i.e., lower bounds) is only brieyreviewed (in Appendix B). Other appendices contain material that is closely re-lated to complexity theory but is not an integral part of it (e.g., the Foundationsof Cryptography).5 Further details on the contents of the various chapters andappendices are provided in Section 1.1.3.In an attempt to keep the bibliographic list from becoming longer than anaverage chapter, we omitted many relevant references. One trick used towards thisend is referring to lists of references in other texts, especially when the latter arecited anyhow. Indeed, our choices of references were biased in favor of textbooksand survey articles, because we believe that they provide the best way to furtherlearn about a research direction and/or approach. We tried, however, not to omitreferences to key papers in an area. In some cases, when we needed a reference fora result of interest and could not resort to the aforementioned trick, we cited alsoless central papers.As a matter of policy, we tried to avoid references and credits in the main text.The few exceptions are either pointers to texts that provide details that we chose toomit or usage of terms (bearing researchers' names) that are too popular to avoid.In general, in each chapter, references and credits are provided in the chapter'snotes.5As further articulated in Section 7.1, we recommend not including a basic treatment of cryp-tography within a course on complexity theory. Indeed, cryptography may be claimed to bethe most appealing application of complexity theory, but a super�cial treatment of cryptography(from this perspective) is likely to be misleading and cause more harm than good.

1.1. INTRODUCTION 17Teaching note: The text also includes some teaching notes, which are typeset as thisone. Some of these notes express quite opinionated recommendations and/or justifyvarious expositional choices made in the text.1.1.4.5 Additional notesThe author's guess is that the text will be criticized for lengthy discussions of tech-nically trivial issues. Indeed, most researchers dismiss various conceptual clari�ca-tions as being trivial and devote all their attention to the technically challengingparts of the material. The consequence is students that master the technical ma-terial but are confused about its meaning. In contrast, the author recommendsnot being embarrassed of devoting time to conceptual clari�cations, even if somestudents may view them as obvious.The motivational discussions presented in the text do not necessarily representthe original motivation of the researchers that pioneered a speci�c study and/orcontributed greatly to it. Instead, these discussions provide what the author con-siders to be a good motivation and/or a good perspective on the correspondingconcepts.1.1.5 Standard notations and other conventionsFollowing are some notations and conventions that are freely used in this book.Standard asymptotic notation: When referring to integral functions, we usethe standard asymptotic notation; that is, for f; g : N ! N , we write f = O(g)(resp., f =
(g)) if there exists a constant c > 0 such that f(n) � c � g(n) (resp.,f(n) � c � g(n)) holds for all n 2 N . We usually denote by \poly" an unspeci�edpolynomial, and write f(n) = poly(n) instead of \there exists a polynomial p suchthat f(n) � p(n) for all n 2 N ." We also use the notation f = eO(g) that meanf(n) = poly(logn) � g(n), and f = o(g) (resp., f = !(g)) that mean f(n) < c � g(n)(resp., f(n) > c � g(n)) for every constant c > 0 and all su�ciently large n.Integrality issues: Typically, we ignore integrality issues. This means that wemay assume that log2 n is an integer rather than using a more cumbersome form asblog2 nc. Likewise, we may assume that various equalities are satis�ed by integers(e.g., 2n = mm), even when this cannot possibly be the case (e.g., 2n = 3m). Inall these cases, one should consider integers that approximately satisfy the relevantequations (and deal with the problems that emerge by such approximations, whichwill be ignored in the current text).Standard combinatorial and graph theory terms and notation: For anyset S, we denote by 2S the set of all subsets of S (i.e., 2S = fS0 : S0 � Sg). Fora natural number n 2 N , we denote [n] def= f1; :::; ng. Many of the computationalproblems that we mention refer to �nite (undirected) graphs. Such a graph, denotedG = (V;E), consists of a set of vertices, denoted V , and a set of edges, denoted E,

18 CHAPTER 1. INTRODUCTION AND PRELIMINARIESwhich are unordered pairs of vertices. By default, graphs are undirected, whereasdirected graphs consists of vertices and directed edges, where a directed edge isan order pair of vertices. We also refer to other graph theoretic terms such asconnectivity, being acyclic (i.e., having no simple cycles), being a tree (i.e., beingconnected and acyclic), k-colorability, etc. For further background on graphs andcomputational problems regarding graphs, the reader is referred to Appendix G.1.Typographic conventions: We denote formally de�ned complexity classes bycalligraphic letters (e.g., NP), but we do so only after de�ning these classes. Fur-thermore, when we wish to maintain some ambiguity regarding the speci�c formu-lation of a class of problems we use Roman font (e.g., NP may denote either a classof search problems or a class of decision problems). Likewise, we denote formallyde�ned computational problems by typewriter font (e.g., SAT). In contrast, genericproblems and algorithms will be denoted by italic font.1.2 Computational Tasks and ModelsBut, you may say, we asked you to speak aboutwomen and �ction { what, has that got to do with aroom of one's own? I will try to explain.Virginia Woolf, A room of one's ownThis section provides the necessary preliminaries for the rest of the book; that is,we discuss the notion of a computational task and present computational models(for describing methods) for solving such tasks. We start by introducing the generalframework for our discussion of computational tasks (or problems): this frameworkrefers to the representation of instances (as binary sequences) and focuses on twotypes of tasks (i.e., searching for solutions and making decisions). In order tofacilitate a study of methods for solving such tasks, the latter are de�ned withrespect to in�nitely many possible instances (each being a �nite object).6Once computational tasks are de�ned, we turn to methods for solving suchtasks, which are described in terms of some model of computation. The descriptionof such models is the main contents of this section. Speci�cally, we consider twotypes of models of computation: uniform models and non-uniform models. Theuniform models correspond to the intuitive notion of an algorithm, and will pro-vide the stage for the rest of the book (which focuses on e�cient algorithms). Incontrast, non-uniform models (e.g., Boolean circuits) facilitate a closer look at theway a computation progresses, and will be used only sporadically in this book.6The comparison of di�erent methods seems to require the consideration of in�nitely manypossible instances; otherwise, the choice of the language in which the methods are described maytotally dominated and even distort the discussion (cf. the discussion of Kolmogorov Complexityin x1.2.3.4).

1.2. COMPUTATIONAL TASKS AND MODELS 19Organization of Section 1.2. Sections 1.2.1{1.2.3 corresponds to the contentsof a traditional Computability course, except that our presentation emphasizessome aspects and deemphasizes others. In particular, the presentation highlightsthe notion of a universal machine (see x1.2.3.4), justi�es the association of e�cientcomputation with polynomial-time algorithm (x1.2.3.5), and provides a de�nitionof oracle machines (x1.2.3.6). This material (with the exception of KolmogorovComplexity) is taken for granted in the rest of the current book. In contrast,Section 1.2.4 presents basic preliminaries regarding non-uniform models of compu-tation (i.e., various types of Boolean circuits), and these are only used lightly in therest of the book. (We also call the reader's attention to the discussion of genericcomplexity classes in Section 1.2.5.) Thus, whereas Sections 1.2.1{1.2.3 (and 1.2.5)are absolute prerequisites for the rest of this book, Section 1.2.4 is not.Teaching note: The author believes that there is no real need for a semester-longcourse in Computability (i.e., a course that focuses on what can be computed ratherthan on what can be computed e�ciently). Instead, undergraduates should take acourse in Computational Complexity, which should contain the computability aspectsthat serve as a basis for the rest of the course. Speci�cally, the former aspects shouldoccupy at most 25% of the course, and the focus should be on basic complexity issues(captured by P, NP, and NP-completeness) augmented by a selection of some moreadvanced material. Indeed, such a course can be based on Chapters 1 and 2 of thecurrent book (augmented by a selection of some topics from other chapters).1.2.1 RepresentationIn Mathematics and related sciences, it is customary to discuss objects withoutspecifying their representation. This is not possible in the theory of computation,where the representation of objects plays a central role. In a sense, a computationmerely transforms one representation of an object to another representation of thesame object. In particular, a computation designed to solve some problem merelytransforms the problem instance to its solution, where the latter can be thoughof as a (possibly partial) representation of the instance. Indeed, the answer toany fully speci�ed question is implicit in the question itself, and computation isemployed to make this answer explicit.Computational tasks refers to objects that are represented in some canonicalway, where such canonical representation provides an \explicit" and \full" (butnot \overly redundant") description of the corresponding object. We will consideronly �nite objects like numbers, sets, graphs, and functions (and keep distinguish-ing these types of objects although, actually, they are all equivalent). While therepresentation of numbers, sets and functions is quite straightforward, we refer thereader to Appendix G.1 for a discussion of the representation of graphs.Strings. We consider �nite objects, each represented by a �nite binary sequence,called a string. For a natural number n, we denote by f0; 1gn the set of all stringsof length n, hereafter referred to as n-bit (long) strings. The set of all strings isdenoted f0; 1g�; that is, f0; 1g� = [n2Nf0; 1gn. For x2 f0; 1g�, we denote by jxj

20 CHAPTER 1. INTRODUCTION AND PRELIMINARIESthe length of x (i.e., x 2 f0; 1gjxj), and often denote by xi the ith bit of x (i.e.,x = x1x2 � � �xjxj). For x; y 2 f0; 1g�, we denote by xy the string resulting fromconcatenation of the strings x and y.At times, we associate f0; 1g��f0; 1g� with f0; 1g�; the reader should merelyconsider an adequate encoding (e.g., the pair (x1 � � �xm; y1 � � � yn)2f0; 1g��f0; 1g�may be encoded by the string x1x1 � � �xmxm01y1 � � � yn 2 f0; 1g�). Likewise, wemay represent sequences of strings (of �xed or varying length) as single strings.When we wish to emphasize that such a sequence (or some other object) is to beconsidered as a single object we use the notation h�i (e.g., \the pair (x; y) is encodedas the string hx; yi").Numbers. Unless stated di�erently, natural numbers will be encoded by theirbinary expansion; that is, the string bn�1 � � � b1b0 2 f0; 1gn encodes the numberPn�1i=0 bi � 2i, where typically we assume that this representation has no leadingzeros (i.e., bn�1 = 1). Rational numbers will be represented as pairs of naturalnumbers. In the rare cases in which one considers real numbers as part of theinput to a computational problem, one actually mean rational approximations ofthese real numbers.Special symbols. We denote the empty string by � (i.e., � 2 f0; 1g� and j�j = 0),and the empty set by ;. It will be convenient to use some special symbols that arenot in f0; 1g�. One such symbol is ?, which typically denotes an indication (e.g.,produced by some algorithm) that something is wrong.1.2.2 Computational TasksTwo fundamental types of computational tasks are the so-called search problemsand decision problems. In both cases, the key notions are the problem's instancesand the problem's speci�cation.1.2.2.1 Search problemsA search problem consists of a speci�cation of a set of valid solutions (possibly anempty one) for each possible instance. That is, given an instance, one is requiredto �nd a corresponding solution (or to determine that no such solution exists).For example, consider the problem in which one is given a system of equationsand is asked to �nd a valid solution. Needless to say, much of computer scienceis concerned with solving various search problems (e.g., �nding shortest paths ina graph, sorting a list of numbers, �nding an occurrence of a given pattern in agiven string, etc). Furthermore, search problems correspond to the daily notionof \solving a problem" (e.g., �nding one's way between two locations), and thus adiscussion of the possibility and complexity of solving search problems correspondsto the natural concerns of most people.In the following de�nition of solving search problems, the potential solver is afunction (which may be thought of as a solving strategy), and the sets of possible

1.2. COMPUTATIONAL TASKS AND MODELS 21solutions associated with each of the various instances are \packed" into a singlebinary relation.De�nition 1.1 (solving a search problem): Let R � f0; 1g��f0; 1g� and R(x) def=fy : (x; y) 2 Rg denote the set of solutions for the instance x. A function f :f0; 1g� ! f0; 1g� [f?g solves the search problem of R if for every x the followingholds: if R(x) 6= ; then f(x) 2 R(x) and otherwise f(x) = ?.Indeed, R = f(x; y)2f0; 1g� � f0; 1g� : y2R(x)g, and the solver f is required to�nd a solution (i.e., given x output y 2 R(x)) whenever one exists (i.e., the setR(x) is not empty). It is also required that the solver f never outputs a wrongsolution (i.e., if R(x) 6= ; then f(x) 2 R(x) and if R(x) = ; then f(x) = ?), whichin turn means that f indicates whether x has any solution.A special case of interest is the case of search problems having a unique solution(for each possible instance); that is, the case that jR(x)j = 1 for every x. In thiscase, R is essentially a (total) function, and solving the search problem of R meanscomputing (or evaluating) the function R (or rather the function R0 de�ned byR0(x) def= y if and only if R(x) = fyg). Popular examples include sorting a sequenceof numbers, multiplying integers, �nding the prime factorization of a compositenumber, etc.1.2.2.2 Decision problemsA decision problem consists of a speci�cation of a subset of the possible instances.Given an instance, one is required to determine whether the instance is in thespeci�ed set (e.g., the set of prime numbers, the set of connected graphs, or theset of sorted sequences). For example, consider the problem where one is given anatural number, and is asked to determine whether or not the number is a prime.One important case, which corresponds to the aforementioned search problems, isthe case of the set of instances having a solution; that is, for any binary relationR � f0; 1g� � f0; 1g� we consider the set fx : R(x) 6= ;g. Indeed, being ableto determine whether or not a solution exists is a prerequisite to being able tosolve the corresponding search problem (as per De�nition 1.1). In general, decisionproblems refer to the natural task of making binary decision, a task that is notuncommon in daily life (e.g., determining whether a tra�c light is red). In anycase, in the following de�nition of solving decision problems, the potential solveris again a function; that is, in this case the solver is a Boolean function, which issupposed to indicate membership in a predetermined set.De�nition 1.2 (solving a decision problem): Let S � f0; 1g�. A function f :f0; 1g� ! f0; 1g solves the decision problem of S (or decides membership in S) if forevery x it holds that f(x) = 1 if and only if x 2 S.We often identify the decision problem of S with S itself, and identify S with itscharacteristic function (i.e., with the function �S : f0; 1g� ! f0; 1g de�ned suchthat �S(x) = 1 if and only if x 2 S). Note that if f solves the search problem of R

22 CHAPTER 1. INTRODUCTION AND PRELIMINARIESthen the Boolean function f 0 : f0; 1g� ! f0; 1g de�ned by f 0(x) def= 1 if and only iff(x) 6= ? solves the decision problem of fx : R(x) 6= ;g.Reection: Most people would consider search problems to be more naturalthan decision problems: typically, people seeks solutions more than they stop towonder whether or not solutions exist. De�nitely, search problems are not lessimportant than decision problems, it is merely that their study tends to requiremore cumbersome formulations. This is the main reason that most expositionschoose to focus on decision problems. The current book attempts to devote atleast a signi�cant amount of attention also to search problems.1.2.2.3 Promise problems (an advanced comment)Many natural search and decision problems are captured more naturally by theterminology of promise problems, in which the domain of possible instances is asubset of f0; 1g� rather than f0; 1g� itself. In particular, note that the naturalformulation of many search and decision problems refers to instances of a certaintypes (e.g., a system of equations, a pair of numbers, a graph), whereas the naturalrepresentation of these objects uses only a strict subset of f0; 1g�. For the timebeing, we ignore this issue, but we shall re-visit it in Section 2.4.1. Here we justnote that, in typical cases, the issue can be ignored by postulating that everystring represents some legitimate object (e.g., each string that is not used in thenatural representation of these objects is postulated as a representation of some�xed object).1.2.3 Uniform Models (Algorithms) Science is One.Laci Lov�asz (according to Silvio Micali, ca. 1990).We �nally reach the heart of the current section (Section 1.2), which is the de�nitionof uniform models of computation. We are all familiar with computers and withthe ability of computer programs to manipulate data. This familiarity seems tobe rooted in the positive side of computing; that is, we have some experienceregarding some things that computers can do. In contrast, complexity theory isfocused at what computers cannot do, or rather with drawing the line betweenwhat can be done and what cannot be done. Drawing such a line requires a preciseformulation of all possible computational processes; that is, we should have a clearmodel of all possible computational processes (rather than some familiarity withsome computational processes).1.2.3.1 Overview and general principlesBefore being formal, let we o�er a general and abstract description, which is aimedat capturing any arti�cial as well as natural process. Indeed, arti�cial processes will

1.2. COMPUTATIONAL TASKS AND MODELS 23be associated with computers, whereas by natural processes we mean (attempts tomodel) the \mechanical" aspects the natural reality (be it physical, biological, oreven social).A computation is a process that modi�es an environment via repeated applica-tions of a predetermined rule. The key restriction is that this rule is simple: in eachapplication it depends and a�ects only a (small) portion of the environment, calledthe active zone. We contrast the a-priori bounded size of the active zone (and ofthe modi�cation rule) with the a-priori unbounded size of the entire environment.We note that, although each application of the rule has a very limited e�ect, thee�ect of many applications of the rule may be very complex. Put in other words, acomputation may modify the relevant environment in a very complex way, althoughit is merely a process of repeatedly applying a simple rule.As hinted, the notion of computation can be used to model the \mechanical"aspects of the natural reality; that is, the rules that determine the evolution ofthe reality (rather than the speci�c state of the reality at a speci�c time). In thiscase, the starting point of the study is the actual evolution process that takes placein the natural reality, and the goal of the study is �nding the (computation) rulethat underlies this natural process. In a sense, the goal of Science at large can bephrased as �nding (simple) rules that govern various aspects of reality (or ratherone's abstraction of these aspects of reality).Our focus, however, is on arti�cial computation rules designed by humans inorder to achieve speci�c desired e�ects on a corresponding arti�cial environment.Thus, our starting point is a desired functionality, and our aim is to design compu-tation rules that e�ect it. Such a computation rule is referred to as an algorithm.Loosely speaking, an algorithm corresponds to a computer program written in ahigh-level (abstract) programming language. Let us elaborate.We are interested in the transformation of the environment as a�ected by thecomputational process (or the algorithm). Throughout (most of) this book, wewill assume that, when invoked on any �nite initial environment, the computationhalts after a �nite number of steps. Typically, the initial environment to whichthe computation is applied encodes an input string, and the end environment (i.e.,at termination of the computation) encodes an output string. We consider themapping from inputs to outputs induced by the computation; that is, for eachpossible input x, we consider the output y obtained at the end of a computationinitiated with input x, and say that the computation maps input x to output y.Thus, a computation rule (or an algorithm) determines a function (computed byit): this function is exactly the aforementioned mapping of inputs to outputs.In the rest of this book (i.e., outside the current chapter), we will also considerthe number of steps (i.e., applications of the rule) taken by the computation oneach possible input. The latter function is called the time complexity of the com-putational process (or algorithm). While time complexity is de�ned per input, wewill often considers it per input length, taking the maximum over all inputs of thesame length.In order to de�ne computation (and computation time) rigorously, one needsto specify some model of computation; that is, provide a concrete de�nition of

24 CHAPTER 1. INTRODUCTION AND PRELIMINARIESenvironments and a class of rules that may be applied to them. Such a modelcorresponds to an abstraction of a real computer (be it a PC, mainframe or net-work of computers). One simple abstract model that is commonly used is that ofTuring machines (see, x1.2.3.2). Thus, speci�c algorithms are typically formalizedby corresponding Turing machines (and their time complexity is represented by thetime complexity of the corresponding Turing machines). We stress, however, thatmost results in the Theory of Computation hold regardless of the speci�c compu-tational model used, as long as it is \reasonable" (i.e., satis�es the aforementionedsimplicity condition and can perform some apparently simple computations).What is being computed? The forgoing discussion has implicitly referred toalgorithms (i.e., computational processes) as means of computing functions. Specif-ically, an algorithm A computes the function fA : f0; 1g� ! f0; 1g� de�ned byfA(x)=y if, when invoked on input x, algorithm A halts with output y. However,algorithms can also serve as means of \solving search problems" or \making de-cisions" (as in De�nitions 1.1 and 1.2). Speci�cally, we will say that algorithm Asolves the search problem of R (resp., decides membership in S) if fA solves thesearch problem of R (resp., decides membership in S). In the rest of this expositionwe associate the algorithm A with the function fA computed by it; that is, we writeA(x) instead of fA(x). For sake of future reference, we summarize the foregoingdiscussion.De�nition 1.3 (algorithms as problem-solvers): We denote by A(x) the outputof algorithm A on input x. Algorithm A solves the search problem R (resp., thedecision problem S) if A, viewed as a function, solves R (resp., S).Organization of the rest of Section 1.2.3. In x1.2.3.2 we provide a roughdescription of the model of Turing machines. This is done merely for sake of pro-viding a concrete model that supports the study of computation and its complexity,whereas most of the material in this book will not depend on the speci�cs of thismodel. In x1.2.3.3 and x1.2.3.4 we discuss two fundamental properties of any rea-sonable model of computation: the existence of uncomputable functions and theexistence of universal computations. The time (and space) complexity of compu-tation is de�ned in x1.2.3.5. We also discuss oracle machines and restricted modelsof computation (in x1.2.3.6 and x1.2.3.7, respectively).1.2.3.2 A concrete model: Turing machinesThe model of Turing machines o�er a relatively simple formulation of the notionof an algorithm. The fact that the model is very simple complicates the design ofmachines that solve problems of interest, but makes the analysis of such machinessimpler. Since the focus of complexity theory is on the analysis of machines and noton their design, the trade-o� o�ers by this model is suitable for our purposes. Westress again that the model is merely used as a concrete formulation of the intuitivenotion of an algorithm, whereas we actually care about the intuitive notion and

1.2. COMPUTATIONAL TASKS AND MODELS 25not about its formulation. In particular, all results mentioned in this book hold forany other \reasonable" formulation of the notion of an algorithm.The model of Turing machines is not meant to provide an accurate (or \tight")model of real-life computers, but rather to capture their inherent limitations andabilities (i.e., a computational task can be solved by a real-life computer if and onlyif it can be solved by a Turing machine). In comparison to real-life computers, themodel of Turing machines is extremely over-simpli�ed and abstract away manyissues that are of great concern to computer practice. However, these issues areirrelevant to the higher-level questions addressed by complexity theory. Indeed, asusual, good practice requires more re�ned understanding than the one provided bya good theory, but one should �rst provide the latter.Historically, the model of Turing machines was invented before modern com-puters were even built, and was meant to provide a concrete model of computationand a de�nition of computable functions.7 Indeed, this concrete model clari�edfundamental properties of computable functions and plays a key role in de�ningthe complexity of computable functions.The model of Turing machines was envisioned as an abstraction of the processof an algebraic computation carried out by a human using a sheet of paper. Insuch a process, at each time, the human looks at some location on the paper, anddepending on what he/she sees and what he/she has in mind (which is little...),he/she modi�es the contents of this location and shifts his/her look to an adjacentlocation.The actual model. Following is a high-level description of the model of Turingmachines; the interested reader is referred to standard textbooks (e.g., [200]) forfurther details. Recall that we need to specify the set of possible environments, theset of machines (or computation rules), and the e�ect of applying such a rule onan environment.� The main component in the environment of a Turing machine is an in�nitesequence of cells, each capable of holding a single symbol (i.e., member of a�nite set � � f0; 1g). This sequence is envisioned as starting at a left-mostcell, and extending in�nitely to the right (cf., Figure 1.2). In addition, theenvironment contains the current location of the machine on this sequence,and the internal state of the machine (which is a member of a �nite setQ). Theaforementioned sequence of cells is called the tape, and its contents combinedwith the machine's location and its internal state is called the instantaneouscon�guration of the machine.� The main component in the Turing machine itself is a �nite rule (i.e., a �nitefunction), called the transition function, which is de�ned over the set of allpossible symbol-state pairs. Speci�cally, the transition function is a mapping7In contrast, the abstract de�nition of \recursive functions" yields a class of \computable"functions without referring to any model of computation (but rather based on the intuition thatany such model should support functional composition).

26 CHAPTER 1. INTRODUCTION AND PRELIMINARIES
3 32 2 2 0

3 32 2 2 1 0

b

3

b

5

5

- - - - - - - -

----- - - -Figure 1.2: A single step by a Turing machine.from ��Q to ��Q�f�1; 0;+1g, where f�1;+1; 0g correspond to a move-ment instruction (which is either \left" or \right" or \stay", respectively).In addition, the machine's description speci�es an initial state and a haltingstate, and the computation of the machine halts when the machine enters itshalting state.8We stress that, in contrast to the �nite description of the machine, the tapehas an a priori unbounded length (and is considered, for simplicity, as beingin�nite).� A single computation step of such a Turing machine depends on its currentlocation on the tape, on the contents of the corresponding cell, and on the in-ternal state of the machine. Based on the latter two elements, the transitionfunction determines a new symbol-state pair as well as a movement instruc-tion (i.e., \left" or \right" or \stay"). The machine modi�es the contents ofthe said cell and its internal state accordingly, and moves as directed. Thatis, suppose that the machine is in state q and resides in a cell containing thesymbol �, and suppose that the transition function maps (�; q) to (�0; q0; D).Then, the machine modi�es the contents of the said cell to �0, modi�es itsinternal state to q0, and moves one cell in direction D. Figure 1.2 shows asingle step of a Turing machine that, when in state `b' and seeing a binarysymbol �, replaces � with the symbol �+2, maintains its internal state, andmoves one position to the right.9Formally, we de�ne the successive con�guration function which maps eachinstantaneous con�guration to the one resulting by letting the machine takea single step. This function modi�es its argument in a very minor manner,as described in the foregoing; that is, the contents of at most one cell (i.e., at8Envisioning the tape as in Figure 1.2, we also use the convention by which if the machinetries to move left of the end of the tape then it is considered to have halted.9Figure 1.2 corresponds to a machine that, when in the initial state (i.e., `a'), replaces thesymbol � by �+4, modi�es its internal state to `b', and moves one position to the right. Indeed,\marking" the leftmost cell (in order to allow for recognizing it in the future), is a commonpractice in the design of Turing machines.

1.2. COMPUTATIONAL TASKS AND MODELS 27which the machine currently resides) is changed, and in addition the internalstate of the machine and its location may change too.The initial environment (or con�guration) of a Turing machine consists of themachine residing in the �rst (i.e., left-most) cell and being in its initial state.Typically, one also mandates that, in the initial con�guration, a pre�x of the tape'scells hold bit values, which concatenated together are considered the input, and therest of the tape's cells hold a special symbol (which in Figure 1.2 is denoted by `-').Once the machine halts, the output is de�ned as the contents of the cells that areto the left of its location (at termination time).10 Thus, each machine de�nes afunction mapping inputs to outputs, called the function computed by the machine.Multi-tape Turing machines. We comment that in most expositions, onerefers to the location of the \head of the machine" on the tape (rather than tothe \location of the machine on the tape"). The standard terminology is moreintuitive when extending the basic model, which refers to a single tape, to a modelthat supports a constant number of tapes. In the corresponding model of so-calledmulti-tape machines, the machine maintains a single head on each such tape, andeach step of the machine depends and e�ects the cells that are at the machine'shead location on each tape. As we shall see in Chapter 5 (and in x1.2.3.5), theextension of the model to multi-tape Turing machines is crucial to the de�nition ofspace complexity. A less fundamental advantage of the model of multi-tape Turingmachines is that it facilitates the design of machines that compute functions ofinterest.Teaching note: We strongly recommend avoiding the standard practice of teachingthe student to program with Turing machines. These exercises seem very painful andpointless. Instead, one should prove that the Turing machine model is exactly as pow-erful as a model that is closer to a real-life computer (see the following \sanity check");that is, a function can be computed by a Turing machine if and only if it is computableby a machine of the latter model. For starters, one may prove that a function can becomputed by a single-tape Turing machine if and only if it is computable by a multi-tape(e.g., two-tape) Turing machine.The Church-Turing Thesis: The entire point of the model of Turing machinesis its simplicity. That is, in comparison to more \realistic" models of computation,it is simpler to formulate the model of Turing machines and to analyze machines inthis model. The Church-Turing Thesis asserts that nothing is lost by consideringthe Turing machine model: A function can be computed by some Turing machineif and only if it can be computed by some machine of any other \reasonable andgeneral" model of computation.This is a thesis, rather than a theorem, because it refers to an intuitive notion(i.e., the notion of a reasonable and general model of computation) that is left unde-�ned on purpose. The model should be reasonable in the sense that it should allow10By an alternative convention, the machine halts while residing in the left-most cell, and theoutput is de�ned as the maximal pre�x of the tape contents that contains only bit values.

28 CHAPTER 1. INTRODUCTION AND PRELIMINARIESonly computation rules that are \simple" in some intuitive sense. For example,we should be able to envision a mechanical implementation of these computationrules. On the other hand, the model should allow to compute \simple" functionsthat are de�nitely computable according to our intuition. At the very least themodel should allow to emulate Turing machines (i.e., compute the function that,given a description of a Turing machine and an instantaneous con�guration, returnsthe successive con�guration).A philosophical comment. The fact that a thesis is used to link an intuitiveconcept to a formal de�nition is common practice in any science (or, more broadly,in any attempt to reason rigorously about intuitive concepts). Any attempt torigorously de�ne an intuitive concept yields a formal de�nition that necessarilydi�ers from the original intuition, and the question of correspondence betweenthese two objects arises. This question can never be rigorously treated, becauseit relates to two objects, where one of them is unde�ned. That is, the questionof correspondence between the intuition and the de�nition always transcends arigorous treatment (i.e., it always belongs to the domain of the intuition).A sanity check: Turing machines can emulate an abstract RAM. To gaincon�dence in the Church-Turing Thesis, one may attempt to de�ne an abstractRandom-Access Machine (RAM), and verify that it can be emulated by a Turingmachine. An abstract RAM consists of an in�nite number of memory cells, eachcapable of holding an integer, a �nite number of similar registers, one designatedas program counter, and a program consisting of instructions selected from a �niteset. The set of possible instructions includes the following instructions:� reset(r), where r is an index of a register, results in setting the value ofregister r to zero.� inc(r), where r is an index of a register, results in incrementing the contentof register r. Similarly dec(r) causes a decrement.� load(r1; r2), where r1 and r2 are indices of registers, results in loading toregister r1 the contents of the memory location m, where m is the currentcontents of register r2.� store(r1; r2), stores the contents of register r1 in the memory, analogouslyto load.� cond-goto(r; `), where r is an index of a register and ` does not exceed theprogram length, results in setting the program counter to `� 1 if the contentof register r is non-negative.The program counter is incremented after the execution of each instruction, andthe next instruction to be executed by the machine is the one to which the programcounter points (and the machine halts if the program counter exceeds the program'slength). The input to the machine may be de�ned as the contents of the �rst nmemory cells, where n is placed in a special input register.We note that, as stated, the abstract RAM model is as powerful as the Tur-ing machine model (see following details). However, in order to make the RAM

1.2. COMPUTATIONAL TASKS AND MODELS 29model closer to real-life computers, we may augment it with additional instruc-tions that are available on real-life computers like the instruction add(r1; r2) (resp.,mult(r1; r2)) that results in adding (resp., multiplying) the contents of registers r1and r2 (and placing the result in register r1). We suggest proving that this abstractRAM can be emulated by a Turing machine.11 (Hint: note that during the emula-tion, we only need to hold the input, the contents of all registers, and the contentsof the memory cells that were accessed during the computation.)12Reections: Observe that the abstract RAM model is signi�cantly more cum-bersome than the Turing machine model. Furthermore, seeking a sound choiceof the instruction set (i.e., the instructions to be allowed in the model) createsa vicious cycle (because the sound guideline for such a choice should have beenallowing only instructions that correspond to \simple" operations, whereas the lat-ter correspond to easily computable functions...). This vicious cycle was avoided inthe foregoing paragraph by trusting the reader to include only instructions that areavailable in some real-life computer. (We comment that this empirical considera-tion is justi�able in the current context, because our current goal is merely linkingthe Turing machine model with the reader's experience of real-life computers.)1.2.3.3 Uncomputable functionsStrictly speaking, the current subsection is not necessary for the rest of this book,but we feel that it provides a useful perspective.In contrast to what every layman would think, we know that not all functionsare computable. Indeed, an important message to be communicated to the world isthat not every well-de�ned task can be solved by applying a \reasonable" automatedprocedure (i.e., a procedure that has a simple description that can be applied toany instance of the problem at hand). Furthermore, not only is it the case thatthere exist uncomputable functions, but it is rather the case that most functionsare uncomputable. In fact, only relatively few functions are computable.Theorem 1.4 (on the scarcity of computable functions): The set of computablefunctions is countable, whereas the set of all functions (from strings to string) hascardinality @.We stress that the theorem holds for any reasonable model of computation. Infact, it only relies on the postulate that each machine in the model has a �nitedescription (i.e., can be described by a string).11We emphasize this direction of the equivalence of the two models, because the RAM model isintroduced in order to convince the reader that Turing machines are not too weak (as a model ofgeneral computation). The fact that they are not too strong seems self-evident. Thus, it seemspointless to prove that the RAM model can emulate Turing machines. Still, note that this isindeed the case, by using the RAM's memory cells to store the contents of the cells of the Turingmachine's tape.12Thus, at each time, the Turning machine's tape contains a list of the RAM's memory cellsthat were accessed so far as well as their current contents. When we emulate a RAM instruction,we �rst check whether the relevant RAM cell appears on this list, and augment the list by acorresponding entry or modify this entry as needed.

30 CHAPTER 1. INTRODUCTION AND PRELIMINARIESProof: Since each computable function is computable by a machine that hasa �nite description, there is a 1-1 correspondence between the set of computablefunctions and the set of strings (which in turn is in 1-1 correspondence to thenatural numbers). On the other hand, there is a 1-1 correspondence between theset of Boolean functions (i.e., functions from strings to a single bit) and the setof real number in [0; 1). This correspondence associates each real r 2 [0; 1) to thefunction f : N ! f0; 1g such that f(i) is the ith bit in the in�nite binary expansionof r.The Halting Problem: In contrast to the discussion in x1.2.3.1, at this pointwe consider also machines that may not halt on some inputs. (The functionscomputed by such machines are partial functions that are de�ned only on inputson which the machine halts.) Again, we rely on the postulate that each machinein the model has a �nite description, and denote the description of machine M byhMi 2 f0; 1g�. The halting function, h : f0; 1g� � f0; 1g� ! f0; 1g, is de�ned suchthat h(hMi; x) def= 1 if and only if M halts on input x. The following result goesbeyond Theorem 1.4 by pointing to an explicit function (of natural interest) thatis not computable.Theorem 1.5 (undecidability of the halting problem): The halting function is notcomputable.The term undecidability means that the corresponding decision problem cannot besolved by an algorithm. That is, Theorem 1.5 asserts that the decision problemassociated with the set h�1(1) = f(hMi; x) : h(hMi; x) = 1g is not solvable byan algorithm (i.e., there exists no algorithm that, given a pair (hMi; x), decideswhether or notM halts on input x). Actually, the following proof shows that thereexists no algorithm that, given hMi, decides whether or notM halts on input hMi.Proof: We will show that even the restriction of h to its \diagonal" (i.e., the func-tion d(hMi) def= h(hMi; hMi)) is not computable. Note that the value of d(hMi)refers to the question of what happens when we feed M with its own description,which is indeed a \nasty" (but legitimate) thing to do. We will actually do some-thing \worse": towards the contradiction, we will consider the value of d whenevaluated at a (machine that is related to a) hypothetical machine that supposedlycomputes d.We start by considering a related function, d0, and showing that this functionis uncomputable. The function d0 is de�ned on purpose so to foil any attempt tocompute it; that is, for every machine M , the value d0(hMi) is de�ned to di�erfrom M(hMi). Speci�cally, the function d0 : f0; 1g� ! f0; 1g is de�ned suchthat d0(hMi) def= 1 if and only if M halts on input hMi with output 0. (That is,d0(hMi) = 0 if either M does not halt on input hMi or its output does not equalthe value 0.) Now, suppose, towards the contradiction, that d0 is computable bysome machine, denoted Md0 . Note that machine Md0 is supposed to halt on everyinput, and so Md0 halts on input hMd0i. But, by de�nition of d0, it holds that

1.2. COMPUTATIONAL TASKS AND MODELS 31d0(hMd0i) = 1 if and only if Md0 halts on input hMd0i with output 0 (i.e., if andonly if Md0(hMd0i) = 0). Thus, Md0(hMd0i) 6= d0(hMd0i) in contradiction to thehypothesis that Md0 computes d0.We next prove that d is uncomputable, and thus h is uncomputable (becaused(z) = h(z; z) for every z). To prove that d is uncomputable, we show that if dis computable then so is d0 (which we already know not to be the case). Indeed,suppose towards the contradiction that A is an algorithm for computing d (i.e.,A(hMi) = d(hMi) for every machine M). Then we construct an algorithm forcomputing d0, which given hM 0i, invokes A on hM 00i, where M 00 is de�ned tooperate as follows:1. On input x, machine M 00 emulates M 0 on input x.2. If M 0 halts on input x with output 0 then M 00 halts.3. If M 0 halts on input x with an output di�erent from 0 then M 00 enters anin�nite loop (and thus does not halt).4. Otherwise (i.e., M 0 does not halt on input x), then machine M 00 does nothalt (because it just stays stuck in Step 1 forever).Note that the mapping from hM 0i to hM 00i is easily computable (by augmentingM 0 with instructions to test its output and enter an in�nite loop if necessary), andthat d(hM 00i) = d0(hM 0i), because M 00 halts on x if and only if M 00 halts on x withoutput 0. We thus derived an algorithm for computing d0 (i.e., transform the inputhM 0i into hM 00i and output A(hM 00i)), which contradicts the already establishedfact by which d0 is uncomputable.Turing-reductions. The core of the second part of the proof of Theorem 1.5 isan algorithm that solves one problem (i.e., computes d0) by using as a subroutinean algorithm that solves another problem (i.e., computes d (or h)). In fact, the�rst algorithm is actually an algorithmic scheme that refers to a \functionally spec-i�ed" subroutine rather than to an actual (implementation of such a) subroutine,which may not exist. Such an algorithmic scheme is called a Turing-reduction (seeformulation in x1.2.3.6). Hence, we have Turing-reduced the computation of d0 tothe computation of d, which in turn Turing-reduces to h. The \natural" (\posi-tive") meaning of a Turing-reduction of f 0 to f is that, when given an algorithmfor computing f , we obtain an algorithm for computing f 0. In contrast, the proofof Theorem 1.5 uses the \unnatural" (\negative") counter-positive: if (as we know)there exists no algorithm for computing f 0 = d0 then there exists no algorithm forcomputing f = d (which is what we wanted to prove). Jumping ahead, we mentionthat resource-bounded Turing-reductions (e.g., polynomial-time reductions) play acentral role in complexity theory itself, and again they are used mostly in a \nega-tive" way. We will de�ne such reductions and extensively use them in subsequentchapters.Rice's Theorem. The undecidability of the halting problem (or rather the factthat the function d is uncomputable) is a special case of a more general phe-nomenon: Every non-trivial decision problem regarding the function computed by

32 CHAPTER 1. INTRODUCTION AND PRELIMINARIESa given Turing machine has no algorithmic solution. We state this fact next, clar-ifying the de�nition of the aforementioned class of problems. (Again, we refer toTuring machines that may not halt on all inputs.)Theorem 1.6 (Rice's Theorem): Let F be any non-trivial subset13 of the set of allcomputable partial functions, and let SF be the set of strings that describe machinesthat compute functions in F . Then deciding membership in SF cannot be solved byan algorithm.Theorem 1.6 can be proved by a Turing-reduction from d. We do not providea proof because this is too remote from the main subject matter of the book.We stress that Theorems 1.5 and 1.6 hold for any reasonable model of computation(referring both to the potential solvers and to the machines the description of whichis given as input to these solvers). Thus, Theorem 1.6 means that no algorithm candetermine any non-trivial property of the function computed by a given computerprogram (written in any programming language). For example, no algorithm candetermine whether or not a given computer program halts on each possible input.The relevance of this assertion to the project of program veri�cation is obvious.The Post Correspondence Problem. We mention that undecidability arisesalso outside of the domain of questions regarding computing devices (given asinput). Speci�cally, we consider the Post Correspondence Problem in which theinput consists of two sequences of strings, (�1; :::; �k) and (�1; :::; �k), and thequestion is whether or not there exists a sequence of indices i1; :::; i` 2 f1; :::; kgsuch that �i1 � � ��i` = �i1 � � ��i` . (We stress that the length of this sequence is nota priori bounded.)14Theorem 1.7 The Post Correspondence Problem is undecidable.Again, the omitted proof is by a Turing-reduction from d (or h).151.2.3.4 Universal algorithmsSo far we have used the postulate that, in any reasonable model of computation,each machine (or computation rule) has a �nite description. Furthermore, wealso used the fact that such model should allow for the easy modi�cation of suchdescriptions such that the resulting machine computes an easily related function(see the proof of Theorem 1.5). Here we go one step further and postulate that thedescription of machines (in this model) is \e�ective" in the following natural sense:there exists an algorithm that, given a description of a machine (resp., computation13The set S is called a non-trivial subset of U if both S and U n S are non-empty. Clearly, if Fis a trivial set of computable functions then the corresponding decision problem can be solved bya \trivial" algorithm that outputs the corresponding constant bit.14In contrast, the existence of an adequate sequence of a speci�ed length can be determined intime that is exponential in this length.15We mention that the reduction maps an instance (hMi; x) of h to a pair of sequences((�1; :::; �k); (�1; :::; �k)) such that only �1 and �1 depend on x, whereas k as well as the otherstrings depend only on M .

1.2. COMPUTATIONAL TASKS AND MODELS 33rule) and a corresponding environment, determines the environment that resultsfrom performing a single step of this machine on this environment (resp. the e�ectof a single application of the computation rule). This algorithm can, in turn, beimplemented in the said model of computation (assuming this model is general; seethe Church-Turing Thesis). Successive applications of this algorithm leads to thenotion of a universal machine, which (for concreteness) is formulated next in termsof Turing machines.De�nition 1.8 (universal machines): A universal Turing machine is a Turing ma-chine that on input a description of a machine M and an input x returns the valueof M(x) if M halts on x and otherwise does not halt.That is, a universal Turing machine computes the partial function u on pairs(hMi; x) such that M halts on input x, in which case it holds that u(hMi; x) =M(x). That is, u(hMi; x) = M(x) if M halts on input x and u is unde�ned on(hMi; x) otherwise. We note that if M halts on all possible inputs then u(hMi; x)is de�ned for every x.We stress that the mere fact that we have de�ned something (i.e., a universalTuring machine) does not mean that it exists. Yet, as hinted in the foregoing dis-cussion and obvious to anyone who has written a computer program (and thoughtabout what he/she was doing), universal Turing machines do exist.Theorem 1.9 There exists a universal Turing machine.Theorem 1.9 asserts that the partial function u is computable. In contrast, it canbe shown that any extension of u to a total function is uncomputable. That is, forany total function û that agrees with the partial function u on all the inputs onwhich the latter is de�ned, it holds that û is uncomputable.16Proof: Given a pair (hMi; x), we just emulate the computation of machine Mon input x. This emulation is straightforward, because (by the e�ectiveness of thedescription ofM) we can iteratively determine the next instantaneous con�gurationof the computation of M on input x. If the said computation halts then we willobtain its output and can output it (and so, on input (hMi; x), our algorithmreturns M(x)). Otherwise, we turn out emulating an in�nite computation, whichmeans that our algorithm does not halt on input (hMi; x). Thus, the foregoingemulation procedure constitutes a universal machine (i.e., yields an algorithm forcomputing u).As hinted already, the existence of universal machines is the fundamental factunderlying the paradigm of general-purpose computers. Indeed, a speci�c Turingmachine (or algorithm) is a device that solves a speci�c problem. A priori, solving16The claim is easy to prove for the total function û that extends u and assigns the specialsymbol ? to inputs on which u is unde�ned (i.e., û(hMi; x) def= ? if u is not de�ned on (hMi; x)and û(hMi; x) def= u(hMi; x) otherwise). In this case h(hMi; x) = 1 if and only if û(hMi; x) 6= ?,and so the halting function h is Turing-reducible to û. In the general case, we may adapt theproof of Theorem 1.5 by using the fact that, for a machine M that halts on every input, it holdsthat û(hMi; x) = u(hMi; x) for every x (and in particular for x = hMi).

34 CHAPTER 1. INTRODUCTION AND PRELIMINARIESeach problem would have required building a new physical device that allows forthis problem to be solved in the physical world (rather than as a thought exper-iment). The existence of a universal machine asserts that it is enough to buildone physical device; that is, a general purpose computer. Any speci�c problemcan then be solved by writing a corresponding program to be executed (or emu-lated) by the general-purpose computer. Thus, universal machines correspond togeneral-purpose computers, and provide the basis for separating hardware fromsoftware. In other words, the existence of universal machines says that softwarecan be viewed as (part of the) input.In addition to their practical importance, the existence of universal machines(and their variants) has important consequences in the theories of computabilityand computational complexity. Here we merely note that Theorem 1.9 implies thatmany questions about the behavior of a universal machine on certain input types areundecidable. For example, it follows that, for some �xed machines (i.e., universalones), there is no algorithm that determines whether or not the (�xed) machinehalts on a given input. Revisiting the proof of Theorem 1.7 (see Footnote 15),it follows that the Post Correspondence Problem remains undecidable even if theinput sequences are restricted to have a speci�c length (i.e., k is �xed). A moreimportant application of universal machines to the theory of computability follows.A detour: Kolmogorov Complexity. The existence of universal machines,which may be viewed as universal languages for writing e�ective and succinctdescriptions of objects, plays a central role in Kolmogorov Complexity. Looselyspeaking, the latter theory is concerned with the length of (e�ective) descriptionsof objects, and views the minimum such length as the inherent \complexity" of theobject; that is, \simple" objects (or phenomena) are those having short description(resp., short explanation), whereas \complex" objects have no short description.Needless to say, these (e�ective) descriptions have to refer to some �xed \language"(i.e., to a �xed machine that, given a succinct description of an object, producesits explicit description). Fixing any machine M , a string x is called a descriptionof s with respect to M if M(x) = s. The complexity of s with respect to M , de-noted KM (s), is the length of the shortest description of s with respect to M .Certainly, we want to �x M such that every string has a description with respectto M , and furthermore such that this description is not \signi�cantly" longer thanthe description with respect to a di�erent machine M 0. The following theoremmake it natural to use a universal machine as the \point of reference" (i.e., as theaforementioned M).Theorem 1.10 (complexity w.r.t a universal machine): Let U be a universal ma-chine. Then, for every machine M 0, there exists a constant c such that KU (s) �KM 0(s) + c for every string s.The theorem follows by (setting c = O(jhM 0ij) and) observing that if x is a de-scription of s with respect to M 0 then (hM 0i; x) is a description of s with respectto U . Here it is important to use an adequate encoding of pairs of strings (e.g.,

1.2. COMPUTATIONAL TASKS AND MODELS 35the pair (�1 � � ��k ; �1 � � � �`) is encoded by the string �1�1 � � ��k�k01�1 � � � �`). Fix-ing any universal machine U , we de�ne the Kolmogorov Complexity of a string s asK(s) def= KU (s). The reader may easily verify the following facts:1. K(s) � jsj+O(1), for every s.(Hint: apply Theorem 1.10 to a machine that computes the identity map-ping.)2. There exist in�nitely many strings s such that K(s)� jsj.(Hint: consider s = 1n. Alternatively, consider any machine M such thatjM(x)j � jxj for every x.)3. Some strings of length n have complexity at least n. Furthermore, for everyn and i, jfs 2 f0; 1gn : K(s) � n� igj < 2n�i+1(Hint: di�erent strings must have di�erent descriptions with respect to U .)It can be shown that the function K is uncomputable. The proof is related to theparadox captured by the following \description" of a natural number: the largestnatural number that can be described by an English sentence of up-to athousand letters. (The paradox amounts to observing that if the above num-ber is well-de�ned then so is the integer-successor of the largest naturalnumber that can be described by an English sentence of up-to a thousandletters.) Needless to say, the foregoing sentences presuppose that any English sen-tence is a legitimate description in some adequate sense (e.g., in the sense capturedby Kolmogorov Complexity). Speci�cally, the foregoing sentences presuppose thatwe can determine the Kolmogorov Complexity of each natural number, and fur-thermore that we can e�ectively produce the largest number that has KolmogorovComplexity not exceeding some threshold. Indeed, the paradox suggests a proofto the fact that the latter task cannot be performed; that is, there exists no algo-rithm that given t produces the lexicographically last string s such that K(s) � t,because if such an algorithm A would have existed then K(s) � O(jhAij) + log tand K(s0) < K(s) +O(1) < t in contradiction to the de�nition of s.1.2.3.5 Time and space complexityFixing a model of computation (e.g., Turing machines) and focusing on algorithmsthat halt on each input, we consider the number of steps (i.e., applications ofthe computation rule) taken by the algorithm on each possible input. The lat-ter function is called the time complexity of the algorithm (or machine); that is,tA : f0; 1g� ! N is called the time complexity of algorithm A if, for every x, oninput x algorithm A halts after exactly tA(x) steps.We will be mostly interested in the dependence of the time complexity on theinput length, when taking the maximum over all inputs of the relevant length. Thatis, for tA as in the forgoing, we will consider TA : N ! N de�ned by TA(n) def=maxx2f0;1gnftA(x)g. Abusing terminology, we sometimes refer to TA as the timecomplexity of A.

36 CHAPTER 1. INTRODUCTION AND PRELIMINARIESThe time complexity of a problem. As stated in the preface and in the intro-duction, typically complexity theory is not concerned with the (time) complexityof a speci�c algorithm. It is rather concerned with the (time) complexity of aproblem, assuming that this problem is solvable at all (by some algorithm). Intu-itively, the time complexity of such a problem is de�ned as the time complexityof the fastest algorithm that solves this problem (assuming that the latter term iswell-de�ned).17 Actually, we shall be interested in upper- and lower-bounds on the(time) complexity of algorithms that solve the problem. Thus, when we say that acertain problem � has complexity T , we actually mean that � has complexity atmost T . Likewise, when we say that � requires time T , we actually mean that �has time-complexity at least T .Recall that the foregoing discussion refers to some �xed model of computa-tion. Indeed, the complexity of a problem � may depend on the speci�c modelof computation in which algorithms that solve � are implemented. The followingCobham-Edmonds Thesis asserts that the variation (in the time complexity) is nottoo big, and in particular is irrelevant to much of the current focus of complexitytheory (e.g., for the P-vs-NP Question).The Cobham-Edmonds Thesis. As just stated, the time complexity of a prob-lem may depend on the model of computation. For example, deciding membershipin the set fxx : x 2 f0; 1g�g can be done in linear-time on a two-tape Turing ma-chine, but requires quadratic-time on a single-tape Turing machine.18 On the otherhand, any problem that has time complexity t in the model of multi-tape Turingmachines, has complexity O(t2) in the model of single-tape Turing machines. TheCobham-Edmonds Thesis asserts that the time-complexities in any two \reasonableand general" models of computation are polynomially related. That is, a problemhas time-complexity t in some \reasonable and general" model of computation ifand only if it has time complexity poly(t) in the model of (single-tape) Turingmachines.Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis.It asserts not only that the class of solvable problems is invariant as far as \rea-sonable and general" models of computation are concerned, but also that the timecomplexity (of the solvable problems) in such models is polynomially related.17Advanced comment: As we shall see in Section 4.2.2 (cf. Theorem 4.8), the naive assump-tion that a \fastest algorithm" for solving a problem exists is not always justi�ed. On the otherhand, the assumption is essentially justi�ed in some important cases (see, e.g., Theorem 2.33).But even in these cases the said algorithm is \fastest" (or \optimal") only up to a constant factor.18Proving the latter fact is quite non-trivial. One proof is by a \reduction" from a communica-tion complexity problem [142, Sec. 12.2]. Intuitively, a single-tape Turing machine that decidesmembership in the aforementioned set can be viewed as a channel of communication between thetwo parts of the input. Focusing our attention on inputs of the form y0nz0n, for y; z 2 f0; 1gn,each time the machine passes from the �rst part to the second part it carries O(1) bits of infor-mation (in its internal state) while making at least n steps. The proof is completed by invokingthe linear lower-bound on the communication complexity of the (two-argument) identity function(i.e, id(y; z) = 1 if y = z and id(y; z) = 0 otherwise, cf. [142, Chap. 1]).

1.2. COMPUTATIONAL TASKS AND MODELS 37E�cient algorithms. As hinted in the foregoing discussions, much of complexitytheory is concerned with e�cient algorithms. The latter are de�ned as polynomial-time algorithms (i.e., algorithms that have time-complexity that is upper-boundedby a polynomial in the length of the input). By the Cobham-Edmonds Thesis, thede�nition of this class is invariant under the choice of a \reasonable and general"model of computation. The association of e�cient algorithms with polynomial-timecomputation is grounded in the following two considerations:� Philosophical consideration: Intuitively, e�cient algorithms are those thatcan be implemented within a number of steps that is a moderately growingfunction of the input length. To allow for reading the entire input, at leastlinear time should be allowed. On the other hand, apparently slow algorithmsand in particular \exhaustive search" algorithms, which take exponentialtime, must be avoided. Furthermore, a good de�nition of the class of e�cientalgorithms should be closed under natural composition of algorithms (as wellas be robust with respect to reasonable models of computation and withrespect to simple changes in the encoding of problems' instances).Choosing polynomials as the set of time-bounds for e�cient algorithms sat-isfy all the foregoing requirements: polynomials constitute a \closed" set ofmoderately growing functions, where \closure" means closure under addition,multiplication and functional composition. These closure properties guaran-tee the closure of the class of e�cient algorithm under natural compositionof algorithms (as well as its robustness with respect to any reasonable andgeneral model of computation). Furthermore, polynomial-time algorithmscan conduct computations that are apparently simple (although not neces-sarily trivial), and on the other hand they do not include algorithms that areapparently ine�cient (like exhaustive search).� Empirical consideration: It is clear that algorithms that are considered e�-cient in practice have running-time that is bounded by a small polynomial(at least on the inputs that occur in practice). The question is whether anypolynomial-time algorithm can be considered e�cient in an intuitive sense.The belief, which is supported by past experience, is that every natural prob-lem that can be solved in polynomial-time also has a \reasonably e�cient"algorithm.We stress that the association of e�cient algorithms with polynomial-time compu-tation is not essential to most of the notions, results and questions of complexitytheory. Any other class of algorithms that supports the aforementioned closureproperties and allows to conduct some simple computations but not overly com-plex ones gives rise to a similar theory, albeit the formulation of such a theorymay be more complicated. Speci�cally, all results and questions treated in thisbook are concerned with the relation among the complexities of di�erent computa-tional tasks (rather than with providing absolute assertions about the complexityof some computational tasks). These relations can be stated explicitly, by statinghow any upper-bound on the time complexity of one task gets translated to an

38 CHAPTER 1. INTRODUCTION AND PRELIMINARIESupper-bound on the time complexity of another task.19 Such cumbersome state-ments will maintain the contents of the standard statements; they will merely bemuch more complicated. Thus, we follow the tradition of focusing on polynomial-time computations, while stressing that this focus is both natural and provides thesimplest way of addressing the fundamental issues underlying the nature of e�cientcomputation.Universal machines, revisited. The notion of time complexity gives rise to atime-bounded version of the universal function u (presented in x1.2.3.4). Speci�-cally, we de�ne u0(hMi; x; t) def= y if on input x machine M halts within t steps andoutputs the string y, and u0(hMi; x; t) def= ? if on input x machine M makes morethan t steps. Unlike u, the function u0 is a total function. Furthermore, unlikeany extension of u to a total function, the function u0 is computable. Moreover, u0is computable by a machine U 0 that on input X = (hMi; x; t) halts after poly(t)steps. Indeed, machine U 0 is a variant of a universal machine (i.e., on input X , ma-chine U 0 merely emulates M for t steps rather than emulating M till it halts (andpotentially inde�nitely)). Note that the number of steps taken by U 0 depends onthe speci�c model of computation (and that some overhead is unavoidable becauseemulating each step of M requires reading the relevant portion of the descriptionof M).Space complexity. Another natural measure of the \complexity" of an algo-rithm (or a task) is the amount of memory consumed by the computation. Werefer to the memory used for storing some intermediate results of the computation.Since much of our focus will be on using memory that is sub-linear in the inputlength, it is important to use a model in which one can di�erentiate memory usedfor computation from memory used for storing the initial input or the �nal output.In the context of Turing machines, this is done by considering multi-tape Turingmachines such that the input is presented on a special read-only tape (called theinput tape), the output is written on a special write-only tape (called the outputtape), and intermediate results are stored on a work-tape. Thus, the input andoutput tapes cannot be used for storing intermediate results. The space complexityof such a machine M is de�ned as a function sM such that sM (x) is the number ofcells of the work-tape that are scanned by M on input x. As in the case of timecomplexity, we will usually refer to SA(n) def= maxx2f0;1gnfsA(x)g.1.2.3.6 Oracle machinesThe notion of Turing-reductions, which was discussed in x1.2.3.3, is captured bythe following de�nition of so-called oracle machines. Loosely speaking, an oracle19For example, the NP-completeness of SAT (cf. Theorem 2.22) implies that any algorithmsolving SAT in time T yields an algorithm that factors composite numbers in time T 0 such thatT 0(n) = poly(n) � (1 + T (poly(n))). (More generally, if the correctness of solutions for n-bitinstances of some search problem R can be veri�ed in time t(n) then the hypothesis regardingSAT implies that solutions (for n-bit instances of R) can be found in time T 0 such that T 0(n) =t(n) � (1 + T (O(t(n))2)).)

1.2. COMPUTATIONAL TASKS AND MODELS 39machine is a machine that is augmented such that it may pose questions to theoutside. We consider the case in which these questions, called queries, are answeredconsistently by some function f : f0; 1g� ! f0; 1g�, called the oracle. That is, ifthe machine makes a query q then the answer it obtains is f(q). In such a case, wesay that the oracle machine is given access to the oracle f . For an oracle machineM , a string x and a function f , we denote by Mf (x) the output of M on inputx when given access to the oracle f . (Re-examining the second part of the proofof Theorem 1.5, observe that we have actually described an oracle machine thatcomputes d0 when given access to the oracle d.)The notion of an oracle machine extends the notion of a standard computingdevice (machine), and thus a rigorous formulation of the former extends a formalmodel of the latter. Speci�cally, extending the model of Turing machines, we derivethe following model of oracle Turing machines.De�nition 1.11 (using an oracle):� An oracle machine is a Turing machine with a special additional tape, calledthe oracle tape, and two special states, called oracle invocation and oracle spoke.� The computation of the oracle machine M on input x and access to the oraclef : f0; 1g� ! f0; 1g� is de�ned based on the successive con�guration function.For con�gurations with state di�erent from oracle invocation the next con�g-uration is de�ned as usual. Let be a con�guration in which the machine'sstate is oracle invocation and suppose that the actual contents of the oracletape is q (i.e., q is the contents of the maximal pre�x of the tape that holds bitvalues).20 Then, the con�guration following is identical to , except thatthe state is oracle spoke, and the actual contents of the oracle tape is f(q).The string q is called M 's query and f(q) is called the oracle's reply.� The output of the oracle machine M on input x when given oracle access tof is denote Mf (x).We stress that the running time of an oracle machine is the number of steps madeduring its (own) computation, and that the oracle's reply on each query is obtainedin a single step.1.2.3.7 Restricted modelsWe mention that restricted models of computation are often mentioned in thecontext of a course on computability, but they will play no role in the current book.One such model is the model of �nite automata, which in some variant coincideswith Turing machines that have space-complexity zero (equiv., constant).20This �ts the de�nition of the actual initial contents of a tape of a Turing machine (cf.x1.2.3.2). A common convention is that the oracle can be invoked only when the machine'shead resides at the left-most cell of the oracle tape. We comment that, in the context of spacecomplexity, one uses two oracle tapes: a write-only tape for the query and a read-only tape forthe answer.

40 CHAPTER 1. INTRODUCTION AND PRELIMINARIESIn our opinion, the most important motivation for the study of these restrictedmodels of computation is that they provide simple models for some natural (orarti�cial) phenomena. This motivation, however, seems only remotely related tothe study of the complexity of various computational tasks, which calls for theconsideration of general models of computation and the evaluation of complexityof computation with respect to such models.Teaching note: Indeed, we reject the common coupling of computability theory withthe theory of automata and formal languages. Although the historical links betweenthese two theories (at least in the West) can not be denied, this fact cannot justifycoupling two fundamentally di�erent theories (especially when such a coupling promotesa wrong perspective on computability theory). Thus, in our opinion, the study of anyof the lower levels of Chomsky's Hierarchy [119, Chap. 9] should be decoupled from thestudy of computability theory (let alone the study of complexity theory).1.2.4 Non-uniform Models (Circuits and Advice)The main use of non-uniform models of computation, in this book, will be as asource of some natural computational problems (cf. x2.3.3.1 and Theorem 5.4). Inaddition, these models will be briey studied in Sections 3.1 and 4.1.By a non-uniform model of computation we mean a model in which for eachpossible input length a di�erent computing device is considered, while there isno \uniformity" requirement relating devices that correspond to di�erent inputlengths. Furthermore, this collection of devices is in�nite by nature, and (in absenceof a uniformity requirement) this collection may not even have a �nite description.Nevertheless, each device in the collection has a �nite description. In fact, therelationship between the size of the device (resp., the length of its description) andthe length of the input that it handles will be of major concern.Non-uniform models of computation are studied either towards the develop-ment of lower-bound techniques or as simpli�ed limits on the ability of e�cientalgorithms.21 In both cases, the uniformity condition is eliminated in the interestof simplicity and with the hope (and belief) that nothing substantial is lost as faras the issues at hand are concerned. In the context of developing lower-bound, thehope is that the �niteness of all parameters (i.e., the input length and the device'sdescription) will allow for the application of combinatorial techniques to analyzethe limitations of certain settings of parameters.We will focus on two related models of non-uniform computing devices: Booleancircuits (x1.2.4.1) and \machines that take advice" (x1.2.4.2). The former model ismore adequate for the study of the evolution of computation (i.e., development oflower-bound techniques), whereas the latter is more adequate for modeling purposes(e.g., limiting the ability of e�cient algorithms).21The second case refers mainly to e�cient algorithms that are given a pair of inputs (of(polynomially) related length) such that these algorithms are analyzed with respect to �xingone input (arbitrarily) and varying the other input (typically, at random). Typical examplesinclude the context of de-randomization (cf. Section 8.3) and the setting of zero-knowledge (cf.Section 9.2).

1.2. COMPUTATIONAL TASKS AND MODELS 411.2.4.1 Boolean CircuitsThe most popular model of non-uniform computation is the one of Boolean circuits.Historically, this model was introduced for the purpose of describing the \logicoperation" of real-life electronic circuits. Ironically, nowadays this model providesthe stage for some of the most practically removed studies in complexity theory(which aim at developing methods that may eventually lead to an understandingof the inherent limitations of e�cient algorithms).A Boolean circuit is a directed acyclic graph22 with labels on the vertices, to bediscussed shortly. For sake of simplicity, we disallow isolated vertices (i.e., verticeswith no in-going or out-going edges), and thus the graph's vertices are of threetypes: sources, sinks, and internal vertices.1. Internal vertices are vertices having in-coming and out-going edges (i.e., theyhave in-degree and out-degree at least 1). In the context of Boolean cir-cuits, internal vertices are called gates. Each gate is labeled by a Booleanoperation, where the operations that are typically considered are ^, _ and :(corresponding to and, or and neg). In addition, we require that gates la-beled : have in-degree 1. The in-coming degree of ^-gates and _-gates maybe any number greater than zero, and the same holds for the out-degree ofany gate.2. The graph sources (i.e., vertices with no in-going edges) are called input ter-minals. Each input terminal is labeled by a natural number (which is to bethought of the index of an input variable). (For sake of de�ning formulae(see x1.2.4.3), we allow di�erent input terminals to be labeled by the samenumber.)233. The graph sinks (i.e., vertices with no out-going edges) are called output ter-minals, and we require that they have in-degree 1. Each output terminal islabeled by a natural number such that if the circuit has m output terminalsthen they are labeled 1; 2; :::;m. That is, we disallow di�erent output ter-minals to be labeled by the same number, and insist that the labels of theoutput terminals are consecutive numbers. (Indeed, the labels of the outputterminals will correspond to the indices of locations in the circuit's output.)For sake of simplicity, we also mandate that the labels of the input terminals areconsecutive numbers.2422See Appendix G.1.23This is not needed in case of general circuits, because we can just feed out-going edges of thesame input terminal to many gates. Note, however, that this is not allowed in case of formulae,where all non-sinks are required to have out-degree exactly 1.24This convention slightly complicates the construction of circuits that ignore some of the inputvalues. Speci�cally, we use arti�cial gadgets that have in-coming edges from the correspondinginput terminals, and compute an adequate constant. To avoid having this constant as an outputterminal, we feed it into an auxiliary gate such that the value of the latter is determined by theother in-going edge (e.g., a constant 0 fed into an _-gate). See example of dealing with x3 inFigure 1.3.

42 CHAPTER 1. INTRODUCTION AND PRELIMINARIES
1 2

1 2

0

4 3

and and

and

and

or
or

negneg neg

Figure 1.3: A circuit computing f(x1; x2; x3; x4) = (x1 � x2; x1 ^ :x2 ^ x4).A Boolean circuit with n di�erent input labels and m output terminals induces(and indeed computes) a function from f0; 1gn to f0; 1gm de�ned as follows. Forany �xed string x 2 f0; 1gn, we iteratively de�ne the value of vertices in the circuitsuch that the input terminals are assigned the corresponding bits in x = x1 � � �xnand the values of other vertices are determined in the natural manner. That is:� An input terminal with label i 2 f1; :::; ng is assigned the ith bit of x (i.e.,the value xi).� If the children of a gate (of in-degree d) that is labeled ^ have values v1; v2; :::; vd,then the gate is assigned the value ^di=1vi. The value of a gate labeled _ (or :)is determined analogously.Indeed, the hypothesis that the circuit is acyclic implies that the followingnatural process of determining values for the circuit's vertices is well-de�ned:As long as the value of some vertex is undetermined, there exists a vertexsuch that its value is undetermined but the values of all its children aredetermined. Thus, the process can make progress, and terminates when thevalues of all vertices (including the output terminals) are determined.The value of the circuit on input x (i.e., the output computed by the circuit oninput x) is y = y1 � � � ym, where yi is the value assigned by the foregoing processto the output terminal labeled i. We note that there exists a polynomial-timealgorithm that, given a circuit C and a corresponding input x, outputs the value ofC on input x. This algorithm determines the values of the circuit's vertices, goingfrom the circuit's input terminals to its output terminals.We say that a family of circuits (Cn)n2N computes a function f : f0; 1g� ! f0; 1g�if for every n the circuit Cn computes the restriction of f to strings of length n. Inother words, for every x 2 f0; 1g�, it must hold that Cjxj(x) = f(x).

1.2. COMPUTATIONAL TASKS AND MODELS 43Bounded and unbounded fan-in. We will be most interested in circuits inwhich each gate has at most two in-coming edges. In this case, the types of (two-argument) Boolean operations that we allow is immaterial (as long as we considera \full basis" of such operations; i.e., a set of operations that can implement anyother two-argument Boolean operation). Such circuits are called circuits of boundedfan-in. In contrast, other studies are concerned with circuits of unbounded fan-in,where each gate may have an arbitrary number of in-going edges. Needless to say,in the case of circuits of unbounded fan-in, the choice of allowed Boolean operationsis important and one focuses on operations that are \uniform" (across the numberof operants; e.g., ^ and _).Circuit size as a complexity measure. The size of a circuit is the number ofits edges. When considering a family of circuits (Cn)n2N that computes a functionf : f0; 1g� ! f0; 1g�, we are interested in the size of Cn as a function of n.Speci�cally, we say that this family has size complexity s : N ! N if for every n thesize of Cn is s(n). The circuit complexity of a function f , denoted sf , is the in�mumof the size complexity of all families of circuits that compute f . Alternatively, foreach n we may consider the size of the smallest circuit that computes the restrictionof f to n-bit strings (denoted fn), and set sf (n) accordingly. We stress that non-uniformity is implicit in this de�nition, because no conditions are made regardingthe relation between the various circuits used to compute the function on di�erentinput lengths.25On the circuit complexity of functions. We highlight some simple facts aboutthe circuit complexity of functions. (These facts are in clear correspondence to factsregarding Kolmogorov Complexity mentioned in x1.2.3.4.)1. Most importantly, any Boolean function can be computed by some familyof circuits, and thus the circuit complexity of any function is well-de�ned.Furthermore, each function has at most exponential circuit complexity.(Hint: fn : f0; 1gn ! f0; 1g can be computed by a circuit of size O(n2n) thatimplements a look-up table.)2. Some functions have polynomial circuit complexity. In particular, any func-tion that has time complexity t (i.e., is computed by an algorithm of timecomplexity t) has circuit complexity poly(t). Furthermore, the correspond-ing circuit family is uniform (in a natural sense to be discussed in the nextparagraph).(Hint: consider a Turing machine that computes the function, and considerits computation on a generic n-bit long input. The corresponding compu-tation can be emulated by a circuit that consists of t(n) layers such thateach layer represents an instantaneous con�guration of the machine, and the25Advanced comment: We also note that, in contrast to Footnote 17, the circuit modeland the (circuit size) complexity measure support the notion of an optimal computing device:each function f has a unique size complexity sf (and not merely upper- and lower-bounds on itscomplexity).

44 CHAPTER 1. INTRODUCTION AND PRELIMINARIESrelation between consecutive con�gurations is captured by (\uniform") localgadgets in the circuit. For further details see the proof of Theorem 2.21,which presents a similar emulation.)3. Almost all Boolean functions have exponential circuit complexity. Speci�-cally, the number of functions mapping f0; 1gn to f0; 1g that can be computedby some circuit of size s is smaller than s2s.(Hint: the number of circuits having v vertices and s edges is at most�2 � �v2�+ v�s.)Note that the �rst fact implies that families of circuits can compute functions thatare uncomputable by algorithms. Furthermore, this phenomenon occurs also whenrestricting attention to families of polynomial-size circuits. See further discussionin x1.2.4.2.Uniform families. A family of polynomial-size circuits (Cn)n2N is called uniformif given n one can construct the circuit Cn in poly(n)-time. Note that if a functionis computable by a uniform family of polynomial-size circuits then it is computableby a polynomial-time algorithm. This algorithm �rst constructs the adequate cir-cuit (which can be done in polynomial-time by the uniformity hypothesis), andthen evaluate this circuit on the given input (which can be done in time that ispolynomial in the size of the circuit).Note that limitations on the computing power of arbitrary families of polynomial-size circuits certainly hold for uniform families (of polynomial-size), which in turnyield limitations on the computing power of polynomial-time algorithms. Thus,lower-bounds on the circuit-complexity of functions yield analogous lower-boundson their time-complexity. Furthermore, as is often the case in mathematics andScience, disposing of an auxiliary condition that is not well-understood (i.e., uni-formity) may turn out fruitful. Indeed, this has occured in the study of classes ofrestricted circuits, which is reviewed in x1.2.4.3 (and Appendix B.2).1.2.4.2 Machines that take adviceGeneral (non-uniform) circuit families and uniform circuit families are two extremeswith respect to the \amounts of non-uniformity" in the computing device. Intu-itively, in the former, non-uniformity is only bounded by the size of the device,whereas in the latter the amounts of non-uniformity is zero. Here we consider amodel that allows to decouple the size of the computing device from the amountof non-uniformity, which may range from zero to the device's size. Speci�cally, weconsider algorithms that \take a non-uniform advice" that depends only on theinput length. The amount of non-uniformity will be de�ned to equal the length ofthe corresponding advice (as a function of the input length).De�nition 1.12 (taking advice): We say that algorithm A computes the functionf using advice of length ` : N ! N if there exists an in�nite sequence (an)n2N suchthat1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).

1.2. COMPUTATIONAL TASKS AND MODELS 452. For every n 2 N , it holds that janj = `(n).The sequence (an)n2N is called the advice sequence.Note that any function having circuit complexity s can be computed using adviceof length O(s log s), where the log factor is due to the fact that a graph with vvertices and e edges can be described by a string of length 2e log2 v. Note that themodel of machines that use advice allows for some sharper bounds than the onesstated in x1.2.4.1: every function can be computed using advice of length ` suchthat `(n) = 2n, and some uncomputable functions can be computed using adviceof length 1.Theorem 1.13 (the power of advice): There exist functions that can be computedusing one-bit advice but cannot be computed without advice.Proof: Starting with any uncomputable Boolean function f : N ! f0; 1g, considerthe function f 0 de�ned as f 0(x) = f(jxj). Note that f is Turing-reducible to f 0 (e.g.,on input nmake any n-bit query to f 0, and return the answer).26 Thus, f 0 cannot becomputed without advice. On the other hand, f 0 can be easily computed by usingthe advice sequence (an)n2N such that an = f(n); that is, the algorithm merelyoutputs the advice bit (and indeed ajxj = f(jxj) = f 0(x), for every x 2 f0; 1g�).1.2.4.3 Restricted modelsThe model of Boolean circuits (cf. x1.2.4.1) allows for the introduction of manynatural subclasses of computing devices. Following is a laconic review of a few ofthese subclasses. For further detail regarding the study of these subclasses, theinterested reader is referred to Appendix B.2. Since we shall refer to various typesof Boolean formulae in the rest of this book, we suggest not to skip the followingtwo paragraphs.Boolean formulae. In (general) Boolean circuits the non-sink vertices are al-lowed arbitrary out-degree. This means that the same intermediate value can bere-used without being re-computed (and while increasing the size complexity byonly one unit). Such \free" re-usage of intermediate values is disallowed in Booleanformulae, which are formally de�ned as Boolean circuits in which all non-sink ver-tices have out-degree 1. This means that the underlying graph of a Boolean formulais a tree (see xG.2), and it can be written as a Boolean expression over Booleanvariables by traversing this tree (and registering the vertices' labels in the order tra-versed). Indeed, we have allowed di�erent input terminals to be assigned the samelabel in order to allow formulae in which the same variable occurs multiple times.As in case of general circuits, one is interested in the size of these restricted circuits(i.e., the size of families of formulae computing various functions). We mention that26Indeed, this Turing-reduction is not e�cient (i.e., it runs in exponential time in jnj = log2 n),but this is immaterial in the current context.

46 CHAPTER 1. INTRODUCTION AND PRELIMINARIESquadratic lower bounds are known for the formula size of simple functions (e.g.,parity), whereas these functions have linear circuit complexity. This discrepancyis depicted in Figure 1.4.
1 n

of x x
1 n

of x x
1 n

of x x
2n

of x ...x
n+1 2n

of x ...x
n+12n

of x ...x
n+1

PARITY PARITY PARITY PARITY PARITY PARITY

and

or
or

and
and and

neg neg neg neg

Figure 1.4: Recursive construction of parity circuits and formulae.Formulae in CNF and DNF. A restricted type of Boolean formulae consistsof formulae that are in conjunctive normal form (CNF). Such a formula consists ofa conjunction of clauses, where each clause is a disjunction of literals each beingeither a variable or its negation. That is, such formulae are represented by layeredcircuits of unbounded fan-in in which the �rst layer consists of neg-gates thatcompute the negation of input variables, the second layer consist of or-gates thatcompute the logical-or of subsets of inputs and negated inputs, and the third layerconsists of a single and-gate that computes the logical-and of the values computedin the second layer. Note that each Boolean function can be computed by a familyof CNF formulae of exponential size, and that the size of CNF formulae may beexponentially larger than the size of ordinary formulae computing the same function(e.g., parity). For a constant k, a formula is said to be in k-CNF if its CNF hasdisjunctions of size at most k. An analogous restricted type of Boolean formulaerefers to formulae that are in disjunctive normal form (DNF). Such a formula consistsof a disjunction of a conjunctions of literals, and when each conjunction has at mostk literals we say that the formula is in k-DNF.Constant-depth circuits. Circuits have a \natural structure" (i.e., their struc-ture as graphs). One natural parameter regarding this structure is the depth of acircuit, which is de�ned as the longest directed path from any source to any sink. Ofspecial interest are constant-depth circuits of unbounded fan-in. We mention thatsub-exponential lower bounds are known for the size of such circuits that computea simple function (e.g., parity).Monotone circuits. The circuit model also allows for the consideration of mono-tone computing devices: a monotone circuit is one having only monotone gates

1.2. COMPUTATIONAL TASKS AND MODELS 47(e.g., gates computing ^ and _, but no negation gates (i.e., :-gates)). Needlessto say, monotone circuits can only compute monotone functions, where a functionf : f0; 1gn ! f0; 1g is called monotone if for any x � y it holds that f(x) � f(y)(where x1 � � �xn � y1 � � � yn if and only if for every bit position i it holds thatxi � yi). One natural question is whether, as far as monotone functions are con-cerned, there is a substantial loss in using only monotone circuits. The answer isyes: there exist monotone functions that have polynomial circuit complexity butrequire sub-exponential size monotone circuits.1.2.5 Complexity ClassesComplexity classes are sets of computational problems. Typically, such classes arede�ned by �xing three parameters:1. A type of computational problems (see Section 1.2.2). Indeed, most classesrefer to decision problems, but classes of search problems, promise problems,and other types of problems will also be considered.2. A model of computation, which may be either uniform (see Section 1.2.3) ornon-uniform (see Section 1.2.4).3. A complexity measure and a limiting function (or a set of functions), whichput together limit the class of computations of the previous item; that is,we refer to the class of computations that have complexity not exceeding thespeci�ed function (or set of functions). For example, in x1.2.3.5, we mentionedtime-complexity and space-complexity, which apply to any uniform model ofcomputation. We also mentioned polynomial-time computations, which arecomputations in which the time-complexity (as a function) does not exceedsome polynomial (i.e., a member of the set of polynomial functions).The most common complexity classes refer to decision problems, and are sometimesde�ned as classes of sets rather than classes of the corresponding decision problems.That is, one often says that a set S � f0; 1g� is in the class C rather than sayingthat the problem of deciding membership in S is in the class C. Likewise, one talksof classes of relations rather than classes of the corresponding search problems (i.e.,saying that R � f0; 1g��f0; 1g� is in the class C means that the search problem ofR is in the class C).Chapter NotesIt is quite remarkable that the theories of uniform and non-uniform computationaldevices have emerged in two single papers. We refer to Turing's paper [216], whichintroduced the model of Turing machines, and to Shannon's paper [194], whichintroduced Boolean circuits.In addition to introducing the Turing machine model and arguing that it cor-responds to the intuitive notion of computability, Turing's paper [216] introduces

48 CHAPTER 1. INTRODUCTION AND PRELIMINARIESuniversal machines and contains proofs of undecidability (e.g., of the Halting Prob-lem).The Church-Turing Thesis is attributed to the works of Church [52] and Tur-ing [216]. In both works, this thesis is invoked for claiming that the fact thatTuring machines cannot solve some problem implies that this problem cannot besolved in any \reasonable" model of computation. The RAM model is attributedto von Neumann's report [223].The association of e�cient computation with polynomial-time algorithms isattributed to the papers of Cobham [54] and Edmonds [66]. It is interesting tonote that Cobham's starting point was his desire to present a philosophically soundconcept of e�cient algorithms, whereas Edmonds's starting point was his desire toarticulate why certain algorithms are \good" in practice.Rice's Theorem is proven in [185], and the undecidability of the Post Correspon-dence Problem is proven in [174]. The formulation of machines that take advice(as well as the equivalence to the circuit model) originates in [132].

Chapter 2P, NP andNP-CompletenessForasmuch as many have taken in hand to set forth in order adeclaration of those things which are most surely believed amongus; Even as they delivered them unto us, who from the beginningwere eyewitnesses, and ministers of the word; It seems good tome also, having had perfect understanding of all things from thevery �rst, to write unto thee in order, most excellent Theophilus;That thou mightest know the certainty of those things, whereinthou hast been instructed. Luke, 1:1{4The main focus of this chapter is the P-vs-NP Question and the theory of NP-completeness. Additional topics covered in this chapter include the general notionof a polynomial-time reduction (with a special emphasis on self-reducibility), theexistence of problems in NP that are neither NP-complete nor in P, the class coNP,optimal search algorithms, and promise problems.Summary: Loosely speaking, the P-vs-NP Question refers to searchproblems for which the correctness of solutions can be e�ciently checked(i.e., there is an e�cient algorithm that given a solution to a giveninstance determines whether or not the solution is correct). Such searchproblems correspond to the class NP, and the question is whether ornot all these search problems can be solved e�ciently (i.e., is therean e�cient algorithm that given an instance �nds a correct solution).Thus, the P-vs-NP Question can be phrased as asking whether or not�nding solutions is harder than checking the correctness of solutions.An alternative formulation, in terms of decision problems, refers to as-sertions that have e�ciently veri�able proofs (of relatively short length).Such sets of assertions correspond to the class NP, and the question is49

50 CHAPTER 2. P, NP AND NP-COMPLETENESSwhether or not proofs for such assertions can be found e�ciently (i.e.,is there an e�cient algorithm that given an assertion determines its va-lidity and/or �nds a proof for its validity). Thus, the P-vs-NP Questioncan be phrased as asking whether or not discovering proofs is harderthan verifying their correctness; that is, is proving harder than verifying(or are proofs valuable at all).Indeed, it is widely believed that the answer to the two equivalentformulations is that �nding (resp., discovering) is harder than checking(resp., verifying); that is, that P is di�erent than NP. The fact thatthis natural conjecture is unsettled seems to be one of the big sourcesof frustration of complexity theory. The author's opinion, however, isthat this feeling of frustration is out of place. In any case, at present,when faced with a hard problem in NP, we cannot expect to prove thatthe problem is not in P (unconditionally). The best we can expectis a conditional proof that the said problem is not in P, based on theassumption that NP is di�erent from P. The contrapositive is provingthat if the said problem is in P, then so is any problem in NP (i.e., NPequals P). This is where the theory of NP-completeness comes into thepicture.The theory of NP-completeness is based on the notion of a reduction,which is a relation between computational problems. Loosely speaking,one computational problem is reducible to another problem if it is pos-sible to e�ciently solve the former when provided with an (e�cient)algorithm for solving the latter. Thus, the �rst problem is not harderto solve than the second one. A problem (in NP) is NP-complete if anyproblem in NP is reducible to it. Thus, the fate of the entire class NP(with respect to inclusion in P) rests with each individual NP-completeproblem. In particular, showing that a problem is NP-complete impliesthat this problem is not in P unless NP equals P. Amazingly enough,NP-complete problems exist, and furthermore hundreds of natural com-putational problems arising in many di�erent areas of mathematics andscience are NP-complete.We stress that NP-complete problems are not the only hard problemsin NP (i.e., if P is di�erent than NP then NP contains problems thatare neither NP-complete nor in P). We also note that the P-vs-NPQuestion is not about inventing sophisticated algorithms or ruling outtheir existence, but rather boils down to the analysis of a single knownalgorithm; that is, we will present an optimal search algorithm for anyproblem in NP, while having not clue about its time-complexity.Teaching note: Indeed, we suggest presenting the P-vs-NP Question both in termsof search problems and in terms of decision problems. Furthermore, in the latter case,we suggest introducing NP by explicitly referring to the terminology of proof systems.As for the theory of NP-completeness, we suggest emphasizing the mere existence ofNP-complete problems.

2.1. THE P VERSUS NP QUESTION 51Prerequisites: We assume familiarity with the notions of search and decisionproblems (see Section 1.2.2), algorithms (see Section 1.2.3) and their time com-plexity (see x1.2.3.5). We will also refer to the notion of an oracle machine (seex1.2.3.6).Organization: In Section 2.1 we present the two formulations of the P-vs-NPQuestion. The general notion of a reduction is presented in Section 2.2, where wehighlight its applicability outside the domain of NP-completeness. Section 2.3is devoted to the theory of NP-completeness, whereas Section 2.4 treats threerelatively advanced topics (i.e., the framework of promise problems, the existenceof optimal search algorithms for NP, and the class coNP).Teaching note: This chapter has more teaching notes than any other chapter in thebook. This reects the author's concern regarding the way in which this fundamentalmaterial is often taught. Speci�cally, it is the author's impression that the materialcovered in this chapter is often taught in wrong ways, which fail to communicate itsfundamental nature.2.1 The P versus NP QuestionOur daily experience is that it is harder to solve a problem than it is to check thecorrectness of a solution. Is this experience merely a coincidence or does it representa fundamental fact of life (or a property of the world)? This is the essence of the Pversus NP Question, where P represents search problems that are e�ciently solvableand NP represents search problems for which solutions can be e�ciently checked.Another natural question captured by the P versus NP Question is whetherproving theorems is harder that verifying the validity of these proofs. In otherwords, the question is whether deciding membership in a set is harder than beingconvinced of this membership by an adequate proof. In this case, P representsdecision problems that are e�ciently solvable, whereas NP represents sets that havee�ciently checkable proofs of membership.These two meanings of the P versus NP Question are rigorously presented anddiscussed in Sections 2.1.1 and 2.1.2, respectively. The equivalence of the twoformulations is shown in Section 2.1.3, and the common belief that P is di�erentfrom NP is further discussed in Section 2.1.5. We start by recalling the notion ofe�cient computation.Teaching note: Most students have heard of P and NP before, but we suspect thatmany of them have not obtained a good explanation of what the P-vs-NP Question actu-ally represents. This unfortunate situation is due to using the standard technical de�ni-tion of NP (which refers to the �ctitious and confusing device called a non-deterministicpolynomial-time machine). Instead, we advocate the use of the more cumbersome de�-nitions, sketched in the forgoing paragraphs (and elaborated in Sections 2.1.1 and 2.1.2),which clearly capture the fundamental nature of NP.

52 CHAPTER 2. P, NP AND NP-COMPLETENESSThe notion of e�cient computation. Recall that we associate e�cient com-putation with polynomial-time algorithms.1 This association is justi�ed by the factthat polynomials are a class of moderately growing functions that is closed underoperations that correspond to natural composition of algorithms. Furthermore, theclass of polynomial-time algorithms is independent of the speci�c model of com-putation, as long as the latter is \reasonable" (cf. the Cobham-Edmonds Thesis).Both issues are discussed in x1.2.3.5.Advanced note on the representation of problem instances. As noted inx1.2.2.3, many natural (search and decision) problems are captured more naturallyby the terminology of promise problems (cf. Section 2.4.1), where the domain ofpossible instances is a subset of f0; 1g� rather than f0; 1g� itself. For example, com-putational problems in graph theory presume some simple encoding of graphs asstrings, but this encoding is typically not onto (i.e., not all strings encode graphs),and thus not all strings are legitimate instances. However, in these cases, the setof legitimate instances (e.g., encodings of graphs) is e�ciently recognizable (i.e.,membership in it can be decided in polynomial-time). Thus, arti�cially extendingthe set of instances to the set of all possible strings (and allowing trivial solutionsfor the corresponding dummy instances) does not change the complexity of theoriginal problem. We further discuss this issue in Section 2.4.1.2.1.1 The search version: �nding versus checkingTeaching note: Complexity theorists are so accustomed to focus on decision problemthat they seem to forget that search problems are at least as natural as decision prob-lems. Furthermore, to many non-experts, search problems may seem even more naturalthan decision problems: Typically, people seeks solutions more than they pause to won-der whether or not solutions exist. Thus, we recommend starting with a formulationof the P-vs-NP Question in terms of search problems. Admittingly, the cost is morecumbersome formulations, but it is more than worthwhile.Much of computer science is concerned with solving various search problems (as inDe�nition 1.1). Examples of such problems include �nding a solution to a system oflinear (or polynomial) equations, �nding a prime factor of a given integer, �nding aspanning tree in a graph, �nding a short traveling salesman tour in a metric space,and �nding a scheduling of jobs to machines such that various constraints aresatis�ed. Furthermore, search problems correspond to the daily notion of \solvingproblems" and thus are of natural general interest. In the current section, we willconsider the question of which search problems can be solved e�ciently.One type of search problems that cannot be solved e�ciently consists of searchproblems for which the solutions are too long in terms of the problem's instances.1Advanced comment: In this chapter, we consider deterministic (polynomial-time) algo-rithms as the basic model of e�cient computation. A more liberal view, which includes alsoprobabilistic (polynomial-time) algorithms is presented in Chapter 6. We stress that the mostimportant facts and questions that are addressed in the current chapter hold also with respect toprobabilistic polynomial-time algorithms.

2.1. THE P VERSUS NP QUESTION 53In such a case, merely typing the solution amounts to an activity that is deemedine�cient. Thus, we focus our attention on search problems that are not in thisclass. That is, we consider only search problems in which the length of the solutionis bounded by a polynomial in the length of the instance. Recalling that searchproblems are associated with binary relations (see De�nition 1.1), we focus ourattention on polynomially bounded relations.De�nition 2.1 (polynomially bounded relations): We say that R � f0; 1g� �f0; 1g� is polynomially-bounded if there exists a polynomial p such that for every(x; y) 2 R it holds that jyj � p(jxj).Recall that (x; y) 2 R means that y is a solution to the problem instance x, whereR represents the problem itself. For example, in the case of �nding a prime factorof a given integer, we refer to a relation R such that (x; y) 2 R if the integer y is aprime factor of the integer x.For a polynomially bounded relation R it makes sense to ask whether or not,given a problem instance x, one can e�ciently �nd an adequate solution y (i.e.,�nd y such that (x; y) 2 R). The polynomial bound on the length of the solution(i.e., y) guarantees that a negative answer is not merely due to the length of therequired solution.2.1.1.1 The class P as a natural class of search problemsRecall that we are interested in the class of search problems that can be solvede�ciently; that is, problems for which solutions (whenever they exist) can be founde�ciently. Restricting our attention to polynomially bounded relations, we identifythe corresponding fundamental class of search problem (or binary relation), denotedPF (standing for \Polynomial-time Find"). (The relationship between PF andthe standard de�nition of P will be discussed in Sections 2.1.3 and 2.2.3.) Thefollowing de�nition refers to the formulation of solving search problems providedin De�nition 1.1.De�nition 2.2 (e�ciently solvable search problems):� The search problem of a polynomially bounded relation R � f0; 1g� � f0; 1g�is e�ciently solvable if there exists a polynomial time algorithm A such that,for every x, it holds that A(x) 2 R(x) def= fy : (x; y) 2 Rg if and only if R(x)is not empty. Furthermore, if R(x) = ; then A(x) = ?, indicating that x hasno solution.� We denote by PF the class of search problems that are e�ciently solvable(and correspond to polynomially bounded relations). That is, R 2 PF ifR is polynomially bounded and there exists a polynomial time algorithm thatgiven x �nds y such that (x; y) 2 R (or asserts that no such y exists).Note that R(x) denotes the set of valid solutions for the problem instance x. Thus,the solver A is required to �nd a valid solution (i.e., satisfy A(x) 2 R(x)) whenever

54 CHAPTER 2. P, NP AND NP-COMPLETENESSsuch a solution exists (i.e., R(x) is not empty). On the other hand, if the instancex has no solution (i.e., R(x) = ;) then clearly A(x) 62 R(x). The extra condition(also made in De�nition 1.1) requires that in this case A(x) = ?. Thus, algorithmA always outputs a correct answer, which is a valid solution in the case that sucha solution exists and otherwise provides an indication that no solution exists.We have de�ned a fundamental class of problems, and we do know of manynatural problems in this class (e.g., solving linear equations over the rationals,�nding a perfect matching in a graph, etc). However, we must admit that we donot have a good understanding regarding the actual contents of this class (i.e., weare unable to characterize many natural problems with respect to membership inthis class). This situation is quite common in complexity theory, and seems tobe a consequence of the fact that complexity classes are de�ned in terms of the\external behavior" (of potential algorithms) rather than in terms of the \internalstructure" (of the problem). Turning back to PF , we note that, while it containsmany natural search problems, there are also many natural search problems thatare not known to be in PF . A natural class containing a host of such problems ispresented next.2.1.1.2 The class NP as another natural class of search problemsNatural search problems have the property that valid solutions can be e�cientlyrecognized. That is, given an instance x of the problem R and a candidate solutiony, one can e�ciently determine whether or not y is a valid solution for x (withrespect to the problem R; i.e., whether or not y 2 R(x)). The class of all suchsearch problems is a natural class per se, because it is not clear why one should careabout a solution unless one can recognize a valid solution once given. Furthermore,this class is a natural domain of candidates for PF , because the ability to e�cientlyrecognize a valid solution seems to be a natural (albeit not absolute) prerequisitefor a discussion regarding the complexity of �nding such solutions.We restrict our attention again to polynomially bounded relations, and considerthe class of relations for which membership of pairs in the relation can be decidede�ciently. We stress that we consider deciding membership of given pairs of theform (x; y) in a �xed relation R, and not deciding membership of x in the setSR def= fx : R(x) 6= ;g. (The relationship between the following de�nition and thestandard de�nition of NP will be discussed in Sections 2.1.3{2.1.4 and 2.2.3.)De�nition 2.3 (search problems with e�ciently checkable solutions):� The search problem of a polynomially bounded relation R � f0; 1g� � f0; 1g�has e�ciently checkable solutions if there exists a polynomial time algorithm Asuch that, for every x and y, it holds that A(x; y) = 1 if and only if (x; y) 2 R.� We denote by PC (standing for \Polynomial-time Check") the class of searchproblems that correspond to polynomially-bounded binary relations that havee�ciently checkable solutions. That is, R 2 PC if the following two conditionshold:

2.1. THE P VERSUS NP QUESTION 551. For some polynomial p, if (x; y) 2 R then jyj � p(jxj).2. There exists a polynomial-time algorithm that given (x; y) determineswhether or not (x; y) 2 R.The class PC contains thousands of natural problems (e.g., �nding a travelingsalesman tour of length that does not exceed a given threshold, �nding the primefactorization of a given composite, etc). In each of these natural problems, thecorrectness of solutions can be checked e�ciently (e.g., given a traveling salesmantour it is easy to compute its length and check whether or not it exceeds the giventhreshold).2The class PC is the natural domain for the study of which problems are in PF ,because the ability to e�ciently recognize a valid solution is a natural prerequisitefor a discussion regarding the complexity of �nding such solutions. We warn, how-ever, that PF contains (unnatural) problems that are not in PC (see Exercise 2.1).2.1.1.3 The P versus NP question in terms of search problemsIs it the case that every search problem in PC is in PF? That is, if one cane�ciently check the correctness of solutions with respect to some (polynomially-bounded) relation R, then is it necessarily the case that the search problem of Rcan be solved e�ciently? In other words, if it is easy to check whether or not agiven solution for a given instance is correct, then is it also easy to �nd a solutionto a given instance?If PC � PF then this would mean that whenever solutions to given instancescan be e�ciently checked (for correctness) it is also the case that such solutionscan be e�ciently found (when given only the instance). This would mean that allreasonable search problems (i.e., all problems in PC) are easy to solve. Needless tosay, such a situation would contradict the intuitive feeling (and the daily experience)that some reasonable search problems are hard to solve. Furthermore, in such acase, the notion of \solving a problem" would lose its meaning (because �nding asolution will not be signi�cantly more di�cult than checking its validity).On the other hand, if PC nPF 6= ; then there exist reasonable search problems(i.e., some problems in PC) that are hard to solve. This conforms with our basicintuition by which some reasonable problems are easy to solve whereas others arehard to solve. Furthermore, it recon�rms the intuitive gap between the notions ofsolving and checking (asserting that in some cases \solving" is signi�cantly harderthan \checking").2.1.2 The decision version: proving versus verifyingAs we shall see in the sequel, the study of search problems (e.g., the PC-vs-PFQuestion) can be \reduced" to the study of decision problems. Since the latter2In the traveling salesman problem (TSP), the instance is a matrix of distances between citiesand a threshold, and the task is to �nd a tour that passes all cities and covers a total distancethat does not exceed the threshold.

56 CHAPTER 2. P, NP AND NP-COMPLETENESSproblems have a less cumbersome terminology, complexity theory tends to focuson them (and maintains its relevance to the study of search problems via the afore-mentioned reduction). Thus, the study of decision problems provides a convenientway for studying search problems. For example, the study of the complexity of de-ciding the satis�ability of Boolean formulae provides a convenient way for studyingthe complexity of �nding satisfying assignments for such formulae.We wish to stress, however, that decision problems are interesting and naturalper se (i.e., beyond their role in the study of search problems). After all, somepeople do care about the truth, and so determining whether certain claims are trueis a natural computational problem. Speci�cally, determining whether a given ob-ject (e.g., a Boolean formula) has some predetermined property (e.g., is satis�able)constitutes an appealing computational problem. The P-vs-NP Question refers tothe complexity of solving such problems for a wide and natural class of propertiesassociated with the class NP. The latter class refers to properties that have \e�-cient proof systems" allowing for the veri�cation of the claim that a given objecthas a predetermined property (i.e., is a member of a predetermined set). Jumpingahead, we mention that the P-vs-NP Question refers to the question of whetherproperties that have e�cient proof systems can also be decided e�ciently (withoutproofs). Let us clarify all these notions.Properties of objects are modeled as subsets of the set of all possible objects (i.e.,a property is associated with the set of objects having this property). For example,the property of being a prime is associated with the set of prime numbers, andthe property of being connected (resp., having a Hamiltonian path) is associatedwith the set of connected (resp., Hamiltonian) graphs. Thus, we focus on decidingmembership in sets (as in De�nition 1.2). The standard formulation of the P-vs-NP Question refers to the questionable equality of two natural classes of decisionproblems, denoted P and NP (and de�ned in x2.1.2.1 and x2.1.2.2, respectively).2.1.2.1 The class P as a natural class of decision problemsNeedless to say, we are interested in the class of decision problems that are e�cientlysolvable. This class is traditionally denoted P (standing for Polynomial-time). Thefollowing de�nition refers to the formulation of solving decision problems (providedin De�nition 1.2).De�nition 2.4 (e�ciently solvable decision problems):� A decision problem S � f0; 1g� is e�ciently solvable if there exists a polyno-mial time algorithm A such that, for every x, it holds that A(x) = 1 if andonly if x 2 S.� We denote by P the class of decision problems that are e�ciently solvable.As in De�nition 2.2, we have de�ned a fundamental class of problems, which con-tains many natural problems (e.g., determining whether or not a given graph isconnected), but we do not have a good understanding regarding its actual contents(i.e., we are unable to characterize many natural problems with respect to mem-bership in this class). In fact, there are many natural decision problems that are

2.1. THE P VERSUS NP QUESTION 57not known to reside in P , and a natural class containing a host of such problemsis presented next. This class of decision problems is denoted NP (for reasons thatwill become evident in Section 2.1.4).2.1.2.2 The class NP and NP-proof systemsWe view NP as the class of decision problems that have e�ciently veri�able proofsystems. Loosely speaking, we say that a set S has a proof system if instancesin S have valid proofs of membership (i.e., proofs accepted as valid by the sys-tem), whereas instances not in S have no valid proofs. Indeed, proofs are de�nedas strings that (when accompanying the instance) are accepted by the (e�cient)veri�cation procedure. We say that V is a veri�cation procedure for membershipin S if it satis�es the following two conditions:1. Completeness: True assertions have valid proofs; that is, proofs accepted asvalid by V . Bearing in mind that assertions refer to membership in S, thismeans that for every x 2 S there exists a string y such that V (x; y) = 1 (i.e.,V accepts y as a valid proof for the membership of x in S).2. Soundness: False assertions have no valid proofs. That is, for every x 62 Sand every string y it holds that V (x; y) = 0, which means that V rejects y asa proof for the membership of x in S.We note that the soundness condition captures the \security" of the veri�cationprocedure; that is, its ability not to be fooled (by anything) into proclaiming awrong assertion. The completeness condition captures the \viability" of the veri-�cation procedure; that is, its ability to be convinced of any valid assertion, whenpresented with an adequate proof. (We stress that, in general, proof systems arede�ned in terms of their veri�cation procedures, which must satisfy adequate com-pleteness and soundness conditions.) Our focus here is on e�cient veri�cationprocedures that utilize relatively short proofs (i.e., proofs that are of length thatis polynomially bounded by the length of the corresponding assertion).3Let us consider a couple of examples before turning to the actual de�nition.Starting with the set of Hamiltonian graphs, we note that this set has a veri�cationprocedure that, given a pair (G; �), accepts if and only if � is a Hamiltonian path inthe graph G. In this case � serves as a proof that G is Hamiltonian. Note that suchproofs are relatively short (i.e., the path is actually shorter than the descriptionof the graph) and are easy to verify. Needless to say, this proof system satis�es3Advanced comment: In continuation to Footnote 1, we note that in this chapter we considerdeterministic (polynomial-time) veri�cation procedures, and consequently the completeness andsoundness conditions that we state here are error-less. In contrast, in Chapter 9, we will considervarious types of probabilistic (polynomial-time) veri�cation procedures as well as probabilisticcompleteness and soundness conditions. A common theme that underlies both treatments isthat e�cient veri�cation is interpreted as meaning veri�cation by a process that runs in timethat is polynomial in the length of the assertion. In the current chapter, we use the equivalentformulation that considers the running time as a function of the total length of the assertion andthe proof, but require that the latter has length that is polynomially bounded by the length ofthe assertion.

58 CHAPTER 2. P, NP AND NP-COMPLETENESSthe aforementioned completeness and soundness conditions. Turning to the caseof satis�able Boolean formulae, given a formula � and a truth assignment � , theveri�cation procedure instantiates � (according to �), and accepts if and only ifsimplifying the resulting Boolean expression yields the value true. In this case �serves as a proof that � is satis�able, and the alleged proofs are indeed relativelyshort and easy to verify.De�nition 2.5 (e�ciently veri�able proof systems):� A decision problem S � f0; 1g� has an e�ciently veri�able proof system ifthere exists a polynomial p and a polynomial-time (veri�cation) algorithm Vsuch that the following two conditions hold:1. Completeness: For every x 2 S, there exists y of length at most p(jxj)such that V (x; y) = 1.(Such a string y is called an NP-witness for x 2 S.)2. Soundness: For every x 62 S and every y, it holds that V (x; y) = 0.Thus, x 2 S if and only if there exists y of length at most p(jxj) such thatV (x; y) = 1.In such a case, we say that S has an NP-proof system, and refer to V as itsveri�cation procedure (or as the proof system itself).� We denote by NP the class of decision problems that have e�ciently veri�ableproof systems.We note that the term NP-witness is commonly used.4 In some cases, V (or theset of pairs accepted by V) is called a witness relation of S. We stress that the sameset S may have many di�erent NP-proof systems (see Exercise 2.2), and that insome cases the di�erence is not arti�cial (see Exercise 2.3).Teaching note: Using De�nition 2.5, it is typically easy to show that natural decisionproblems are in NP. All that is needed is designing adequate NP-proofs of membership,which is typically quite straightforward and natural, because natural decision problemsare typically phrased as asking about the existence of a structure (or object) that canbe easily veri�ed as valid. For example, SAT is de�ned as the set of satis�able Booleanformulae, which means asking about the existence of satisfying assignments. Indeed, wecan e�ciently check whether a given assignment satis�es a given formula, which meansthat we have (a veri�cation procedure for) an NP-proof system for SAT.Note that for any search problem R in PC, the set of instances that have a so-lution with respect to R (i.e., the set SR def= fx : R(x) 6= ;g) is in NP . Speci�cally,for any R 2 PC, consider the veri�cation procedure V such that V (x; y) def= 1 if and4In most cases this is done without explicitly de�ning V , which is understood from the contextand/or by common practice. In many texts, V is not called a proof system (nor a veri�cationprocedure of such a system), although this term is most adequate.

2.1. THE P VERSUS NP QUESTION 59only if (x; y) 2R, and note that the latter condition can be decided in poly(jxj)-time. Thus, any search problem in PC can be viewed as a problem of searchingfor (e�ciently veri�able) proofs (i.e., NP-witnesses for membership in the set ofinstances having solutions). On the other hand, any NP-proof system gives rise toa natural search problem in PC; that is, the problem of searching for a valid proof(i.e., an NP-witness) for the given instance (i.e, the veri�cation procedure V yieldsthe search problem that corresponds to R = f(x; y) : V (x; y)=1g). Thus, S 2 NPif and only if there exists R 2 PC such that S = fx : R(x) 6= ;g.Teaching note: The last paragraph suggests another easy way of showing that naturaldecision problems are inNP: just thinking of the corresponding natural search problem.The point is that natural decision problems (in NP) are phrased as referring to whethera solution exists for the corresponding natural search problem. For example, in the caseof SAT, the question is whether there exists a satisfying assignment to given Booleanformula, and the corresponding search problem is �nding such an assignment. But inall these cases, it is easy to check the correctness of solutions; that is, the correspondingsearch problem is in PC, which implies that the decision problem is in NP.Observe that P � NP holds: A veri�cation procedure for claims of member-ship in a set S 2 P may just ignore the alleged NP-witness and run the decisionprocedure that is guaranteed by the hypothesis S 2 P ; that is, V (x; y) = A(x),where A is the aforementioned decision procedure. Indeed, the latter veri�cationprocedure is quite an abuse of the term (because it makes no use of the proof);however, it is a legitimate one. As we shall shortly see, the P-vs-NP Question refersto the question of whether such proof-oblivious veri�cation procedures can be usedfor every set that has some e�ciently veri�able proof system. (Indeed, given thatP � NP , the P-vs-NP Question is whether NP � P .)2.1.2.3 The P versus NP question in terms of decision problemsIs it the case that NP-proofs are useless? That is, is it the case that for every ef-�ciently veri�able proof system one can easily determine the validity of assertionswithout looking at the proof? If that were the case, then proofs would be meaning-less, because they would o�er no fundamental advantage over directly determiningthe validity of the assertion. The conjecture P 6= NP asserts that proofs are useful:there exists sets in NP that cannot be decided by a polynomial-time algorithm,and so for these sets obtaining a proof of membership (for some instances) is useful(because we cannot e�ciently determine membership by ourselves).In the foregoing paragraph we viewed P 6= NP as asserting the advantage ofobtaining proofs over deciding the truth by ourselves. That is, P 6= NP asserts that(in some cases) verifying is easier than deciding. A slightly di�erent perspectiveis that P 6= NP asserts that �nding proofs is harder than verifying their validity.This is the case because, for any set S that has an NP-proof system, the ability toe�ciently �nd proofs of membership with respect to this system (i.e., �nding anNP-witness of membership in S for any given x 2 S), yields the ability to decidemembership in S. Thus, for S 2 NP n P , it must be harder to �nd proofs of

60 CHAPTER 2. P, NP AND NP-COMPLETENESSmembership in S than to verify the validity of such proofs (which can be done inpolynomial-time).2.1.3 Equivalence of the two formulationsAs hinted several times, the two formulations of the P-vs-NP Questions are equiva-lent. That is, every search problem having e�ciently checkable solutions is solvablein polynomial time (i.e., PC � PF) if and only if membership in any set that hasan NP-proof system can be decided in polynomial time (i.e., NP � P). Recallingthat P � NP (whereas PF is not contained in PC (Exercise 2.1)), we prove thefollowing.Theorem 2.6 PC � PF if and only if P = NP.Proof: Suppose, on the one hand, that the inclusion holds for the search version(i.e., PC � PF). We will show that this implies the existence of an e�cient algo-rithm for �nding NP-witnesses for any set in NP , which in turn implies that thisset is in P . Speci�cally, let S be an arbitrary set in NP , and V be the correspond-ing veri�cation procedure (i.e., satisfying the conditions in De�nition 2.5). ThenR def= f(x; y) : V (x; y) = 1g is a polynomially bounded relation in PC, and by thehypothesis its search problem is solvable in polynomial time (i.e., R 2 PC � PF).Denoting by A the polynomial-time algorithm solving the search problem of R, wedecide membership in S in the obvious way. That is, on input x, we output 1 ifand only if A(x) 6= ?, where the latter event holds if and only if A(x) 2 R(x),which in turn occurs if and only if R(x) 6= ; (equiv., x 2 S). Thus, NP � P (andNP = P) follows.Suppose, on the other hand, that NP = P . We will show that this impliesan e�cient algorithm for determining whether a given string y0 is a pre�x of somesolution to a given instance x of a search problem in PC, which in turn yields ane�cient algorithm for �nding solutions. Speci�cally, let R be an arbitrary searchproblem in PC. Then the set S0R def= fhx; y0i : 9y00 s.t. (x; y0y00) 2 Rg is in NP(because R 2 PC), and hence S0R is in P (by the hypothesis NP = P). This yieldsa polynomial-time algorithm for solving the search problem of R, by extendinga pre�x of a potential solution bit-by-bit (while using the decision procedure todetermine whether or not the current pre�x is valid). That is, on input x, we�rst check whether or not (x; �) 2 S0R and output ? (indicating R(x) = ;) incase (x; �) 62 S0R. Next, we proceed in iterations, maintaining the invariant that(x; y0) 2 S0R. In each iteration, we set y0 y00 if (x; y00) 2 S0R and y0 y01if (x; y01) 2 S0R. If none of these conditions hold (which happens after at mostpolynomially many iterations) then the current y0 satis�es (x; y0) 2 R. Thus, foran arbitrary R 2 PC we obtain that R 2 PF , and PC � PF follows.Reection: The �rst part of the proof of Theorem 2.6 associates with each setS in NP a natural relation R (in PC). Speci�cally, R consists of all pairs (x; y)such that y is an NP-witness for membership of x in S. Thus, the search problem

2.1. THE P VERSUS NP QUESTION 61of R consists of �nding such an NP-witness, when given x as input. Indeed, Ris called the witness relation of S, and solving the search problem of R allows todecide membership in S. Thus, R 2 PC � PF implies S 2 P . In the second partof the proof, we associate with each R 2 PC a set S0R (in NP), but S0R is more\expressive" than the set SR def= fx : 9y s.t. (x; y)2Rg (which gives rise to R as itswitness relation). Speci�cally, S0R consists of strings that encode pairs (x; y0) suchthat y0 is a pre�x of some string in R(x) = fy : (x; y) 2 Rg. The key observationis that deciding membership in S0R allows to solve the search problem of R; thatis, S0R 2 P implies R 2 PF .Conclusion: Theorem 2.6 justi�es the traditional focus on the decision versionof the P-vs-NP Question. Indeed, given that both formulations of the question areequivalent, we may just study the less cumbersome one.2.1.4 The traditional de�nition of NPUnfortunately, De�nition 2.5 is not the commonly used de�nition of NP . Instead,traditionally, NP is de�ned as the class of sets that can be decided by a �cti-tious device called a non-deterministic polynomial-time machine (which explainsthe source of the notation NP). The reason that this class of �ctitious devices is in-teresting is due to the fact that it captures (indirectly) the de�nition of NP-proofs.Since the reader may come across the traditional de�nition of NP when studyingdi�erent works, the author feels obliged to provide the traditional de�nition as wellas a proof of its equivalence to De�nition 2.5.De�nition 2.7 (non-deterministic polynomial-time Turing machines):� A non-deterministic Turing machine is de�ne as in x1.2.3.2, except that thetransition function maps symbol-state pairs to subsets of triples (rather thanto a single triple) in � � Q � f�1; 0;+1g. Accordingly, the con�gurationfollowing a speci�c instantaneous con�guration may be one of several possi-bilities, each determine by a di�erent possible triple. Thus, the computationsof a non-deterministic machine on a �xed input may result in di�erent outputs.In the context of decision problems one typically considers the question ofwhether or not there exists a computation that starting with a �xed inputhalts with output 1. We say that the non-deterministic machine M accept x ifthere exists a computation of M , on input x, that halts with output 1. The setaccepted by a non-deterministic machine is the set of inputs that are acceptedby the machine.� A non-deterministic polynomial-time Turing machine is de�ned as one thatmakes a number of steps that is polynomial in the length of the input. Tra-ditionally, NP is de�ned as the class of sets that are each accepted by somenon-deterministic polynomial-time Turing machine.We stress that De�nition 2.7 refers to a �ctitious model of computation. Specif-ically, De�nition 2.7 makes no reference to the number (or fraction) of possible

62 CHAPTER 2. P, NP AND NP-COMPLETENESScomputations of the machine (on a speci�c input) that yield a speci�c output.5De�nition 2.7 only refers to whether or not computations leading to a certain out-put exist (for a speci�c input). The question of what does the mere existence ofsuch possible computations mean (in terms of real-life) is not addressed, becausethe model of a non-deterministic machine is not meant to provide a reasonablemodel of a (real-life) computer. The model is meant to capture something com-pletely di�erent (i.e., it is meant to provide an elegant de�nition of the class NP ,while relying on the fact that De�nition 2.7 is equivalent to De�nition 2.5).Teaching note: Whether or not De�nition 2.7 is elegant is a matter of taste. For sure,many students �nd De�nition 2.7 quite confusing, possibly because they assume that itrepresents some natural model of computation and consequently they allow themselvesto be fooled by their intuition regarding such models. (Needless to say, the students'intuition regarding computation is irrelevant when applied to a �ctitious model.)Note that, unlike other de�nitions in this chapter, De�nition 2.7 makes explicitreference to a speci�c model of computation. Still, a similar extension can beapplied to other models of computation by considering adequate non-deterministiccomputation rules. Also note that, without loss of generality, we may assume thatthe transition function maps each possible symbol-state pair to exactly two triples(cf. Exercise 2.4).Theorem 2.8 De�nition 2.5 is equivalent to De�nition 2.7. That is, a set S hasan NP-proof system if and only if there exists a non-deterministic polynomial-timemachine that accepts S.Proof Sketch: Suppose, on one hand, that the set S has an NP-proof system,and let us denote the corresponding veri�cation procedure by V . Consider thefollowing non-deterministic polynomial-time machine, denoted M . On input x,machine M makes an adequate m = poly(jxj) number of non-deterministic steps,producing (non-deterministically) a string y 2 f0; 1gm, and then emulates V (x; y).We stress that these non-deterministic steps may result in producing any m-bitstring y. Recall that x 2 S if and only if there exists y of length at most poly(jxj)such that V (x; y) = 1. This implies that the set accepted by M equals S.Suppose, on the other hand, that there exists a non-deterministic polynomial-time machine M that accepts the set S. Consider a deterministic machineM 0 thaton input (x; y), where y has adequate length, emulates a computation of M oninput x while using y to determine the non-deterministic steps of M . That is, theith step of M on input x is determined by the ith bit of y (which indicates whichof the two possible moves to make at the current step). Note that x 2 S if andonly if there exists y of length at most poly(jxj) such that M 0(x; y) = 1. Thus, M 0gives rise to an NP-proof system for S.5Advanced comment: In contrast, the de�nition of a probabilistic machine refers to thisnumber (or, equivalently, to the probability that the machine produces a speci�c output, when theprobability is essentially taken uniformly over all possible computations). Thus, a probabilisticmachine refers to a natural model of computation that can be realized provided we can equip themachine with a source of randomness. For details, see Section 6.1.

2.1. THE P VERSUS NP QUESTION 632.1.5 In support of P di�erent from NPIntuition and concepts constitute... the elements of all our knowl-edge, so that neither concepts without an intuition in some waycorresponding to them, nor intuition without concepts, can yieldknowledge. Immanuel Kant (1724{1804)Kant speaks of the importance of both philosophical considerations (referred toas \concepts") and empirical considerations (referred to as \intuition") to science(referred to as (sound) \knowledge").It is widely believed that P is di�erent than NP; that is, that PC containssearch problems that are not e�ciently solvable, and that there are NP-proof sys-tems for sets that cannot be decided e�ciently. This belief is supported by bothphilosophical and empirical considerations.� Philosophical considerations: Both formulations of the P-vs-NP Question re-fer to natural questions about which we have strong conceptions. The notionof solving a (search) problem seems to presume that, at least in some cases(if not in general), �nding a solution is signi�cantly harder than checkingwhether a presented solution is correct. This translates to PC n PF 6= ;.Likewise, the notion of a proof seems to presume that, at least in some cases(if not in general), the proof is useful in determining the validity of the asser-tion; that is, that verifying the validity of an assertion may be made signi�-cantly easier when provided with a proof. This translates to P 6= NP , whichalso implies that it is signi�cantly harder to �nd proofs than to verify theircorrectness, which again coincides with the daily experience of researchersand students.� Empirical considerations: The class NP (or rather PC) contains thousands ofdi�erent problems for which no e�cient solving procedure is known. Manyof these problems have arisen in vastly di�erent disciplines, and were thesubject of extensive research of numerous di�erent communities of scientistsand engineers. These essentially independent studies have all failed to providee�cient algorithms for solving these problems, a failure that is extremely hardto attribute to sheer coincidence or a stroke of bad luck.Throughout the rest of this book, we will adopt the common belief that P isdi�erent from NP. At some places, we will explicitly use this conjecture (or evenstronger assumptions), whereas in other places we will present results that areinteresting (if and) only if P 6= NP (e.g., the entire theory of NP-completenessbecomes uninteresting if P = NP).The P 6= NP conjecture is indeed very appealing and intuitive. The fact thatthis natural conjecture is unsettled seems to be one of the sources of frustration ofcomplexity theory. The author's opinion, however, is that this feeling of frustrationis not in place. In contrast, the fact that complexity theory evolves around naturaland simply-stated questions that are so di�cult to resolve makes its study veryexciting.

64 CHAPTER 2. P, NP AND NP-COMPLETENESS2.1.6 Two technical comments regarding NPRecall that when de�ning PC (resp., NP) we have explicitly con�ned our atten-tion to search problems of polynomially bounded relations (resp., NP-witnesses ofpolynomial length). An alternative formulation may allow a binary relation R tobe in PC (resp., S 2 NP) if membership of (x; y) in R can be decided in timethat is polynomial in the length of x (resp., the veri�cation of a candidate NP-witness y for membership of x in S is required to be performed in poly(jxj)-time).Indeed, this mean that the validity of y can be determined without reading all of it(which means that some substring of y can be used as the e�ective y in the originalde�nitions).We comment that problems in PC (resp., NP) can be solved in exponential-time (i.e., time exp(poly(jxj)) for input x). This can be done by an exhaustivesearch among all possible candidate solutions (resp., all possible candidate NP-witnesses). Thus, NP � EXP , where EXP denote the class of decision problemsthat can be solved in exponential-time (i.e., time exp(poly(jxj)) for input x).2.2 Polynomial-time ReductionsWe present a general notion of (polynomial-time) reductions among computationalproblems, and view the notion of a \Karp-reduction" as an important special casethat su�ces (and is more convenient) in many cases. Reductions play a key rolein the theory of NP-completeness, which is the topic of Section 2.3. In the currentsection, we stress the fundamental nature of the notion of a reduction per se andhighlight two speci�c applications (i.e., reducing search and optimization problemsto decision problems). Furthermore, in the latter applications, it will be importantto use the general notion of a reduction (i.e., \Cook-reduction" rather than \Karp-reduction").Teaching note: We assume that many students have heard of reductions, but we fearthat most have obtained a conceptually poor view of their fundamental nature. Inparticular, we fear that reductions are identi�ed with the theory of NP-completeness,while reductions have numerous other important applications that have little to do withNP-completeness (or completeness with respect to some other class). Furthermore, webelieve that it is important to show that natural search and optimization problems canbe reduced to decision problems.2.2.1 The general notion of a reductionReductions are procedures that use \functionally speci�ed" subroutines. That is,the functionality of the subroutine is speci�ed, but its operation remains unspeci�edand its running-time is counted at unit cost. Analogously to algorithms, whichare modeled by Turing machines, reductions can be modeled as oracle (Turing)machines. A reduction solves one computational problem (which may be eithera search or a decision problem) by using oracle (or subroutine) calls to anothercomputational problem (which again may be either a search or a decision problem).

2.2. POLYNOMIAL-TIME REDUCTIONS 652.2.1.1 The actual formulationThe notion of a general algorithmic reduction was discussed in x1.2.3.3 and x1.2.3.6.These reductions, called Turing-reductions (cf. x1.2.3.3) and modeled by oraclemachines (cf. x1.2.3.6), made no reference to the time complexity of the mainalgorithm (i.e., the oracle machine). Here, we focus on e�cient (i.e., polynomial-time) reductions, which are often called Cook reductions. That is, we consideroracle machines (as in De�nition 1.11) that run in time polynomial in the lengthof their input. We stress that the running time of an oracle machine is the numberof steps made during its (own) computation, and that the oracle's reply on eachquery is obtained in a single step.The key property of e�cient reductions is that they allow for the transformationof e�cient implementations of the subroutine into e�cient implementations of thetask reduced to it. That is, as we shall see, if one problem is Cook-reducible toanother problem and the latter is polynomial-time solvable then so is the former.The most popular case is that of reducing decision problems to decision prob-lems, but we will also consider reducing search problems to search problems andreducing search problems to decision problems. Note that when reducing to a de-cision problem, the oracle is determined as the single valid solver of the decisionproblem (i.e., the function f : f0; 1g� ! f0; 1g solves the decision problem of mem-bership in S if, for every x, it holds that f(x) = 1 if x 2 S and f(x) = 0 otherwise).In contrast, when reducing to a search problem, there may be many di�erent validsolvers (i.e., the function f : f0; 1g� ! f0; 1g� [f?g solves the search problem ofR if, for every x, it holds that f(x) 2 R(x) if x 2 SR and f(x) = ? otherwise). Wecapture both cases in the following de�nition.De�nition 2.9 (Cook reduction): A problem � is Cook-reducible to a problem �0if there exists a polynomial-time oracle machine M such that for every function fthat solves �0 it holds that Mf solves �, where Mf (x) denotes the output of M oninput x when given oracle access to f .Note that � (resp., �0) may be either a search problem or a decision problem (oreven a yet unde�ned type of a problem). At this point the reader should verifythat if � is Cook-reducible to �0 and �0 is solvable in polynomial-time then so is�. (See Exercise 2.5 for other properties of Cook-reductions.)Observe that the second part of the proof of Theorem 2.6 is actually a Cook-reduction of the search problem of any R in PC to a decision problem regarding arelated set S0R = f(x; y0) : 9y00 s.t. (x; y0y00)2Rg, which in NP . Thus, that proofestablishes the following result.Theorem 2.10 Every search problem in PC is Cook-reducible to some decisionproblem in NP.We shall see a tighter relation between search and decision problems in Section 2.2.3;that is, in some cases, R will be reduced to SR = fx : 9y s.t. (x; y) 2Rg ratherthan to S0R.

66 CHAPTER 2. P, NP AND NP-COMPLETENESS2.2.1.2 Special casesA Karp-reduction is a special case of a reduction (from a decision problem to adecision problem). Speci�cally, for decision problems S and S0, we say that S isKarp-reducible to S0 if there is a reduction of S to S0 that operates as follows: Oninput x (an instance for S), the reduction computes x0, makes query x0 to the oracleS0 (i.e., invokes the subroutine for S0 on input x0), and answers whatever the latterreturns. This reduction is often represented by the polynomial-time computablemapping of x to x0; that is, the standard de�nition of a Karp-reduction is actuallyas follows.De�nition 2.11 (Karp reduction): A polynomial-time computable function f iscalled a Karp-reduction of S to S0 if, for every x, it holds that x 2 S if and only iff(x) 2 S0.Thus, syntactically speaking, a Karp-reduction is not a Cook-reduction, but ittrivially gives rise to one (i.e., on input x, the oracle machine makes query f(x),and returns the oracle answer). Being slightly inaccurate but essentially correct,we shall say that Karp-reductions are special cases of Cook-reductions. Needlessto say, Karp-reductions constitute a very restricted case of Cook-reductions. Still,this restricted case su�ces for many applications (e.g., most importantly for thetheory of NP-completeness (when developed for decision problems)), but not forreducing a search problem to a decision problem. Furthermore, whereas each deci-sion problem is Cook-reducible to its complement, some decision problems are notKarp-reducible to their complement (see Exercises 2.7 and 2.33).We comment that Karp-reductions may (and should) be augmented in orderto handle reductions of search problems to search problems. Such an augmentedKarp-reduction of the search problem of R to the search problem of R0 operates asfollows: On input x (an instance for R), the reduction computes x0, makes query x0to the oracle R0 (i.e., invokes the subroutine for searching R0 on input x0) obtainingy0 such that (x0; y0) 2 R0, and uses y0 to compute a solution y to x (i.e., y 2 R(x)).Thus, such a reduction can be represented by two polynomial-time computablemappings, f and g, such that (x; g(x; y0)) 2 R for any y0 that is a solution off(x) (i.e., for y0 that satis�es (f(x); y0) 2 R0). (Indeed, in general, unlike in thecase of decision problems, the reduction cannot just return y0 as an answer to x.)This augmentation is called a Levin-reduction and, analogously to the case of aKarp-reduction, it is often represented by the two aforementioned polynomial-timecomputable mappings (i.e., of x to x0, and of (x; y0) to y).De�nition 2.12 (Levin reduction): A pair of polynomial-time computable func-tions, f and g, is called a Levin-reduction of R to R0 if f is a Karp reduction ofSR = fx : 9y s.t. (x; y) 2 Rg to SR0 = fx0 : 9y0 s.t. (x0; y0) 2 R0g and for everyx 2 SR and y0 2 R0(f(x)) it holds that (x; g(x; y0)) 2 R, where R0(x0) = fy0 :(x0; y0)2R0g.Indeed, the function f preserves the existence of solutions; that is, for any x, itholds that R(x) 6= ; if and only if R0(f(x)) 6= ;. As for the second function (i.e., g),

2.2. POLYNOMIAL-TIME REDUCTIONS 67it maps any solution y0 for the reduced instance f(x) to a solution for the originalinstance x (where this mapping may also depend on x). We note that it is naturalto consider also a third function that maps solutions for R to solutions for R0 (seeExercise 2.28).2.2.1.3 Terminology and a brief discussionIn the sequel, whenever we neglect to mention the type of a reduction, we refer toa Cook-reduction. Two additional terms, which will be particularly useful in theadvanced chapters, are presented next.� We say that two problems are computationally equivalent if they are reducibleto one another. This means that the two problems are essentially as hard (oras easy). Note that computationally equivalent problems need not reside inthe same complexity class.For example, as we shall see in Section 2.2.3, there exist many naturalR 2 PC such that the search problem of R and the decision problem ofSR = fx : 9y s.t. (x; y)2Rg are computationally equivalent, although (evensyntactically) the two problems do not belong to the same class (i.e., R 2 PCwhereas SR 2 NP). Also, each decision problem is computationally equiv-alent to its complement, although the two problems may not belong to thesame class (see Section 2.4.3).� We say that a class of problems, C, is reducible to a problem �0 if everyproblem in C, is reducible to �0. We say that the class C is reducible to theclass C0 if for every � 2 C there exists �0 2 C0 such that � is reducible to �0.For example, Theorem 2.10 asserts that PC is reducible to NP .The fact that we allow Cook-reductions is essential to various important connec-tions between decision problems and other computational problems. For exam-ple, as will be shown in Section 2.2.2, a natural class of optimization problemsis reducible to NP . Also recall that PC is reducible to NP (cf. Theorem 2.10).Furthermore, as will be shown in Section 2.2.3, many natural search problems inPC are reducible to a corresponding natural decision problem in NP (rather thanmerely to some problem in NP). In all these results, the reductions in use are (andmust be) Cook-reductions.2.2.2 Reducing optimization problems to search problemsMany search problems refer to a set of potential solutions, associated with eachproblem instance, such that di�erent solutions are assigned di�erent \values" (resp.,\costs"). In such a case, one may be interested in �nding a solution that has valueexceeding some threshold (resp., cost below some threshold). Alternatively, onemay seek a solution of maximum value (resp., minimum cost). For simplicity, letus focus on the case of a value that we wish to maximize. Still, there are twodi�erent objectives (i.e., exceeding a threshold and optimizing), giving rise to twodi�erent (auxiliary) search problems related to the same relation R. Speci�cally,

68 CHAPTER 2. P, NP AND NP-COMPLETENESSfor a binary relation R and a value function f : f0; 1g��f0; 1g� ! R, we considertwo search problems.1. Exceeding a threshold: Given a pair (x; v) the task is to �nd y 2 R(x) suchthat f(x; y) � v, where R(x) = fy : (x; y) 2 Rg. That is, we are actuallyreferring to the search problem of the relationRf def= f(hx; vi; y) : (x; y)2R ^ f(x; y) � vg; (2.1)where hx; vi denotes a string that encodes the pair (x; v).2. Maximization: Given x the task is to �nd y 2 R(x) such that f(x; y) = vx,where vx is the maximum value of f(x; y0) over all y0 2 R(x). That is, we areactually referring to the search problem of the relationR0f def= f(x; y)2R : f(x; y) = maxy02R(x)ff(x; y0)gg: (2.2)Examples of value functions include the size of a clique in a graph, the amount ofow in a network (with link capacities), etc. The task may be to �nd a clique ofsize exceeding a given threshold in a given graph or to �nd a maximum-size cliquein a given graph. Note that, in these examples, the \base" search problem (i.e.,the relation R) is quite easy to solve, and the di�culty arises from the auxiliarycondition on the value of a solution (presented in Rf and R0f). Indeed, one maytrivialize R (i.e., let R(x) = f0; 1gpoly(jxj) for every x), and impose all necessarystructure by the function f (see Exercise 2.8).We con�ne ourselves to the case that f is polynomial-time computable, whichin particular means that f(x; y) can be represented by a rational number of lengthpolynomial in jxj+jyj. We will show next that, in this case, the two aforementionedsearch problems (i.e., of Rf and R0f) are computationally equivalent.Theorem 2.13 For any polynomial-time computable f : f0; 1g��f0; 1g�!R anda polynomially bounded binary relation R, let Rf and R0f be as in Eq. (2.1) andEq. (2.2), respectively. Then the search problems of Rf and R0f are computationallyequivalent.Note that, for R 2 PC and polynomial-time computable f , it holds that Rf 2 PC.Combining Theorems 2.10 and 2.13, it follows that in this case both Rf and R0f arereducible to NP . We note, however, that even in this case it does not necessarilyhold that R0f 2 PC. See further discussion following the proof.Proof: The search problem of Rf is reduced to the search problem of R0f by�nding an optimal solution (for the given instance) and comparing its value to thegiven threshold value. That is, we construct an oracle machine that solves Rf bymaking a single query to R0f . Speci�cally, on input (x; v), the machine issues thequery x (to a solver for R0f), obtaining the optimal solution y (or an indication ?that R(x) = ;), computes f(x; y), and returns y if f(x; y) � v. Otherwise (i.e.,either y = ? or f(x; y) < v), the machine returns an indication that Rf (x; v) = ;.

2.2. POLYNOMIAL-TIME REDUCTIONS 69Turning to the opposite direction, we reduce the search problem of R0f to thesearch problem of Rf by �rst �nding the optimal value vx = maxy2R(x)ff(x; y)g(by binary search on its possible values), and next �nding a solution of value vx.In both steps, we use oracle calls to Rf . For simplicity, we assume that f assignspositive integer values, and let ` = poly(jxj) be such that f(x; y) � 2`� 1 for everyy 2 R(x). Then, on input x, we �rst �nd vx = maxff(x; y) : y2R(x)g, by makingoracle calls of the form hx; vi. The point is that vx < v if any only if Rf (hx; vi) = ;,which in turn is indicated by the oracle answer ? (to the query hx; vi). Making `queries, we determine vx (see Exercise 2.9). Note that in case R(x) = ;, all answerswill indicate that Rf (hx; vi) = ;, which we treat as if vx = 0. Finally, we make thequery (x; vx), and halt returning the oracle's answer (which is y 2 R(x) such thatf(x; y) = vx if vx > 0 and an indication that R(x) = ; otherwise).Proof's digest. Note that the �rst direction uses the hypothesis that f is polynomial-time computable, whereas the opposite direction only used the fact that the optimalvalue lies in a �nite space of exponential size that can be \e�ciently searched".While the �rst direction can be proved using a Levin-reduction, this seems impos-sible for the opposite direction (in general).On the complexity of Rf and R0f . We focus on the natural case in whichR 2 PC and f is polynomial-time computable. In this case, Theorem 2.13 assertsthat Rf and R0f are computationally equivalent. A closer look reveals, however,that Rf 2 PC always holds, whereas R0f 2 PC does not necessarily hold. Thatis, the problem of �nding a solution (for a given instance) that exceeds a giventhreshold is in the class PC, whereas the problem of �nding an optimal solutionis not necessarily in the class PC. For example, the problem of �nding a cliqueof a given size K in a given graph G is in PC, whereas the problem of �nding amaximum size clique in a given graph G is not known (and is quite unlikely) to bein PC (although it is Cook-reducible to PC). Indeed, the class of problems thatare reducible to PC is a natural and interesting class (see further discussion atthe end of Section 3.2.1). Needless to say, for every R 2 PC and polynomial-timecomputable f , the former class contains R0f .2.2.3 Self-reducibility of search problemsThe results to be presented in this section further justify the focus on decisionproblems. Loosely speaking, these results show that for many natural relations R,the question of whether or not the search problem of R is e�ciently solvable (i.e.,is in PF) is equivalent to the question of whether or not the \decision problemimplicit in R" (i.e., SR = fx : 9y s.t. (x; y) 2 Rg) is e�ciently solvable (i.e.,is in P). In fact, we will show that these two computational problems (i.e., Rand SR) are computationally equivalent. Note that the decision problem of SRis easily reducible to the search problem of R, and so our focus is on the otherdirection. That is, we are interested in relations R for which the search problem

70 CHAPTER 2. P, NP AND NP-COMPLETENESSof R is reducible to the decision problem of SR. In such a case, we say that R isself-reducible.Teaching note: Our usage of the term self-reducibility di�ers from the traditionalone. Traditionally, a decision problem is called (downwards) self-reducible if it is Cook-reducible to itself via a reduction that on input x only makes queries that are smallerthan x (according to some appropriate measure on the size of strings). Under somenatural restrictions (i.e., the reduction takes the disjunction of the oracle answers) suchreductions yield reductions of search to decision (as discussed in the main text). Forfurther details, see Exercise 2.13.De�nition 2.14 (the decision implicit in a search and self-reducibility): The de-cision problem implicit the search problem of R is deciding membership in the setSR = fx : R(x) 6= ;g, where R(x) = fy : (x; y) 2 Rg. The search problem of R iscalled self-reducible if it can be reduced to the decision problem of SR.Note that the search problem of R and the problem of deciding membership inSR refer to the same instances: The search problem requires �nding an adequatesolution (i.e., given x �nd y 2 R(x)), whereas the decision problem refers to thequestion of whether such solutions exist (i.e., given x determine whether or notR(x) is non-empty). Thus, SR is really the \decision problem implicit in R,"because it is a decision problem that one implicitly solves when solving the searchproblem of R. Indeed, for any R, the decision problem of SR is easily reducible tothe search problem for R (and if R is in PC then SR is in NP).6 It follows thatif a search problem R is self-reducible then it is computationally equivalent to thedecision problem SR.Note that the general notion of a reduction (i.e., Cook-reduction) seems inher-ent to the notion of self-reducibility. This is the case not only due to syntacticconsiderations, but rather due to the following inherent reason. An oracle to anydecision problem returns a single bit per invocation, while the intractability of asearch problem in PC must be due to lacking more than a \single bit of information"(see Exercise 2.10).We shall see that self-reducibility is a property of many natural search problems(including all NP-complete search problems). This justi�es the relevance of decisionproblems to search problems in a stronger sense than established in Section 2.1.3:Recall that in Section 2.1.3 we showed that the fate of the search problem class PC(w.r.t PF) is determined by the fate of the decision problem class NP (w.r.t P).Here we show that, for many natural search problems in PC (i.e., self-reducibleones), the fate of such a problem R (w.r.t PF) is determined by the fate of thedecision problem SR (w.r.t P), where SR is the decision problem implicit in R.2.2.3.1 ExamplesWe now present a few search problems that are self-reducible. We start with SAT(see Section G.2), the set of satis�able Boolean formulae (in CNF), and consider6For example, the reduction invokes the search oracle and answer 1 if and only if the oraclereturns some string (rather than the \no solution" symbol).

2.2. POLYNOMIAL-TIME REDUCTIONS 71the search problem in which given a formula one should provide a truth assignmentthat satis�es it. The corresponding relation is denoted RSAT; that is, (�; �) 2 RSATif � is a satisfying assignment to the formula �. The decision problem implicit inRSAT is indeed SAT. Note that RSAT is in PC (i.e., it is polynomially-boundedand membership of (�; �) in RSAT is easy to decide (by evaluating a Booleanexpression)).Proposition 2.15 (RSAT is self-reducible): The search problem of RSAT is re-ducible to SAT.Thus, the search problem of RSAT is computationally equivalent to deciding mem-bership in SAT. Hence, in studying the complexity of SAT, we also address thecomplexity of the search problem of RSAT.Proof: We present an oracle machine that solves the search problem of RSAT bymaking oracle calls to SAT. Given a formula �, we �nd a satisfying assignment to �(in case such an assignment exists) as follows. First, we query SAT on � itself, andreturn an indication that there is no solution if the oracle answer is 0 (indicating� 62 SAT). Otherwise, we let � , initiated to the empty string, denote a pre�x of asatisfying assignment of �. We proceed in iterations, where in each iteration weextend � by one bit. This is done as follows: First we derive a formula, denoted �0,by setting the �rst j� j+1 variables of � according to the values �0. We then querySAT on �0 (which means that we ask whether or not �0 is a pre�x of a satisfyingassignment of �). If the answer is positive then we set � �0 else we set � �1.This procedure relies on the fact that if � is a pre�x of a satisfying assignment of� and �0 is not a pre�x of a satisfying assignment of � then �1 must be a pre�x ofa satisfying assignment of �.We wish to highlight a key point that has been blurred in the foregoing de-scription. Recall that the formula �0 is obtained by replacing some variables byconstants, which means that �0 per se contains Boolean variables as well as Booleanconstants. However, the standard de�nition of SAT disallows Boolean constants inits instances.7 Nevertheless, �0 can be simpli�ed such that the resulting formulacontains no Boolean constants. This simpli�cation is performed according to thestraightforward Boolean rules: That is, the constant false can be omitted fromany clause, but if a clause contains only occurrences of the constant false thenthe entire formula simpli�es to false. Likewise, if the constant true appears ina clause then the entire clause can be omitted, and if all clauses are omitted thenthe entire formula simpli�es to true. Needless to say, if the simpli�cation processyields a Boolean constant then we may skip the query, and otherwise we just usethe simpli�ed form of �0 as our query.Other examples: Reductions analogous to the one used in the proof of Propo-sition 2.15 can be presented also for other search problems (and not only for NP-complete ones). Two such examples are searching for a 3-coloring of a given graph7While the problem seems rather technical at the current setting (as it merely amounts towhether or not the de�nition of SAT allows Boolean constants in its instances), it is far from beingso technical in other cases (see Exercises 2.11 and 2.12).

72 CHAPTER 2. P, NP AND NP-COMPLETENESSand searching for an isomorphism between a given pair of graphs (where the �rstproblem is known to be NP-complete and the second problem is believed not tobe NP-complete). In both cases, the reduction of the search problem to the cor-responding decision problem consists of iteratively extending a pre�x of a validsolution, by making suitable queries in order to decide which extension to use.Note, however, that in these two cases the process of getting rid of constants (rep-resenting partial solutions) is more involved. Speci�cally, in the case of Graph3-Colorability (resp., Graph Isomorphism) we need to enforce a partial coloring ofa given graph (resp., a partial isomorphism between a given pair of graphs); seeExercises 2.11 and 2.12, respectively.Reection: The proof of Proposition 2.15 (as well as the proofs of similar results)consists of two observations.1. For every relation R in PC, it holds that the search problem of R is reducibleto the decision problem of S0R = f(x; y0) : 9y00 s.t. (x; y0y00) 2 Rg. Such areduction is explicit in the proof of Theorem 2.6 and is implicit in the proofof Proposition 2.15.2. For speci�c R 2 PC (e.g., SSAT), deciding membership in S0R is reducible todeciding membership in SR = fx : 9y s.t. (x; y) 2 Rg. This is where thespeci�c structure of SAT was used, allowing for a direct and natural transfor-mation of instances of S0R to instances of SR.(We comment that if SR is NP-complete then S0R, which is always in NP , isreducible to SR by the mere fact that SR is NP-complete; this comment isrelated to the following advanced comment.)For an arbitrary R 2 PC, deciding membership in S0R is not necessarily reducible todeciding membership in SR. Furthermore, deciding membership in S0R is not nec-essarily reducible to the search problem of R. (See Exercises 2.14, 2.15, and 2.16.)In general, self-reducibility is a property of the search problem and not of thedecision problem implicit in it. Furthermore, under plausible assumptions (e.g.,the intractability of factoring), there exists relations R1; R2 2 PC having the sameimplicit-decision problem (i.e., fx : R1(x) 6= ;g = fx : R2(x) 6= ;g) such that R1 isself-reducible but R2 is not (see Exercise 2.17). However, for many natural decisionproblems this phenomenon does not arise; that is, for many natural NP-decisionproblems S, any NP-witness relation associated with S (i.e., R 2 PC such thatfx : R(x) 6= ;g = S) is self-reducible. Indeed, see the other examples following theproof of Proposition 2.15 as well as the advanced discussion in x2.2.3.2.2.2.3.2 Self-reducibility of NP-complete problemsTeaching note: In this advanced subsection, we assume that the students have heardof NP-completeness. Actually, we only need the students to know the de�nition of NP-completeness (i.e., a set S is NP-complete if S 2 NP and every set in NP is reducibleto S). Yet, the teacher may prefer postponing the presentation of the following advanceddiscussion to Section 2.3.1 (or even to a later stage).

2.3. NP-COMPLETENESS 73Recall that, in general, self-reducibility is a property of the search problem R andnot of the decision problem implicit in it (i.e., SR = fx : R(x) 6= ;g). In contrast,in the special case of NP-complete problems, self-reducibility holds for any witnessrelation associated with the (NP-complete) decision problem. That is, all searchproblems that refer to �nding NP-witnesses for any NP-complete decision problemare self-reducible.Theorem 2.16 For every R in PC such that SR is NP-complete, the search prob-lem of R is reducible to deciding membership in SR.In many cases, as in the proof of Proposition 2.15, the reduction of the searchproblem to the corresponding decision problem is quite natural. The followingproof presents a generic reduction (which may be \unnatural" in some cases).Proof: In order to reduce the search problem of R to deciding SR, we composethe following two reductions:1. A reduction of the search problem of R to deciding membership in S0R =f(x; y0) : 9y00 s.t. (x; y0y00)2Rg.As stated in the foregoing paragraph (titled \reection"), such a reductionis implicit in the proof of Proposition 2.15 (as well as being explicit in theproof of Theorem 2.6).2. A reduction of S0R to SR.This reduction exists by the hypothesis that SR is NP-complete and thefact that S0R 2 NP . (Note that we do not assume that this reduction is aKarp-reduction, and furthermore it may be a \unnatural" reduction).The theorem follows.2.3 NP-CompletenessIn light of the di�culty of settling the P-vs-NP Question, when faced with a hardproblem H in NP, we cannot expect to prove that H is not in P (unconditionally).The best we can expect is a conditional proof that H is not in P, based on theassumption that NP is di�erent from P. The contrapositive is proving that if H isin P, then so is any problem in NP (i.e., NP equals P). One possible way of provingsuch an assertion is showing that any problem in NP is polynomial-time reducibleto H. This is the essence of the theory of NP-completeness.Teaching note: Some students heard of NP-completeness before, but we suspect thatmany have missed important conceptual points. Speci�cally, we fear that they missedthe point that the mere existence of NP-complete problems is amazing (let alone thatthese problems include natural ones such as SAT). We believe that this situation is aconsequence of presenting the detailed proof of Cook's Theorem as the very �rst thingright after de�ning NP-completeness.

74 CHAPTER 2. P, NP AND NP-COMPLETENESS2.3.1 De�nitionsThe standard de�nition of NP-completeness refers to decision problems. Belowwe will also present a de�nition of NP-complete (or rather PC-complete) searchproblems. In both cases, NP-completeness of a problem � combines two conditions:1. � is in the class (i.e., � being in NP or PC, depending on whether � is adecision or a search problem).2. Each problem in the class is reducible to �. This condition is called NP-hardness.Although a perfectly good de�nition of NP-hardness could have allowed arbitraryCook-reductions, it turns out that Karp-reductions (resp., Levin-reductions) su�cefor establishing the NP-hardness of all natural NP-complete decision (resp., search)problems. Consequently, NP-completeness is usually de�ned using this restrictednotion of a polynomial-time reduction.De�nition 2.17 (NP-completeness of decision problems, restricted notion): A setS is NP-complete if it is in NP and every set in NP is Karp-reducible to S.A set is NP-hard if every set in NP is Karp-reducible to it. Indeed, there is noreason to insist on Karp-reductions (rather than using arbitrary Cook-reductions),except that the restricted notion su�ces for all known demonstrations of NP-completeness and is easier to work with. An analogous de�nition applies to searchproblems.De�nition 2.18 (NP-completeness of search problems, restricted notion): A bi-nary relation R is PC-complete if it is in PC and every relation in PC is Levin-reducible to R.In the sequel, we will sometimes abuse the terminology and refer to search problemsas NP-complete (rather than PC-complete). Likewise, we will say that a searchproblem is NP-hard (rather than PC-hard) if every relation in PC is Levin-reducibleto it.We stress that the mere fact that we have de�ned a property (i.e., NP-completeness)does not mean that there exist objects that satisfy this property. It is indeed re-markable that NP-complete problems do exist. Such problems are \universal" inthe sense that solving them allows to solve any other (reasonable) problem (i.e.,problems in NP).2.3.2 The existence of NP-complete problemsWe suggest not to confuse the mere existence of NP-complete problems, whichis remarkable by itself, with the even more remarkable existence of \natural" NP-complete problems. The following proof delivers the �rst message as well as focuseson the essence of NP-completeness, rather than on more complicated technicaldetails. The essence of NP-completeness is that a single computational problemmay \e�ectively encode" a wide class of seemingly unrelated problems.

2.3. NP-COMPLETENESS 75Theorem 2.19 There exist NP-complete relations and sets.Proof: The proof (as well as any other NP-completeness proofs) is based on theobservation that some decision problems in NP (resp., search problems in PC) are\rich enough" to encode all decision problems in NP (resp., all search problemsin PC). This fact is most obvious for the \generic" decision and search problems,denoted Su and Ru (and de�ned next), which are used to derive the simplest proofof the current theorem.We consider the following relation Ru and the decision problem Su implicit inRu (i.e., Su = fx : 9y s.t. (x; y)2Rug). Both problems refer to the same type ofinstances, which in turn have the form x = hM;x; 1ti, where M is a descriptionof a (deterministic) Turing machine, x is a string, and t is a natural number.The number t is given in unary (rather than in binary) in order to allow variouscomplexity measures, which depend on the instance length, to be polynomial in t(rather than poly-logarithmic in t).De�nition: The relation Ru consists of pairs (hM;x; 1ti; y) such that M accepts theinput pair (x; y) within t steps, where jyj � t.8 The corresponding set Su def= fx :9y s.t. (x; y) 2 Rug consists of triples hM;x; 1ti such that machine M acceptssome input of the form (x; �) within t steps.It is easy to see that Ru is in PC and that Su is in NP . Indeed, Ru isrecognizable by a universal Turing machine, which on input (hM;x; 1ti; y) emulates(t steps of) the computation of M on (x; y). (The fact that Su 2 NP followssimilarly.) We comment that u indeed stands for universal (i.e., universal machine),and the proof extends to any reasonable model of computation (which has adequateuniversal machines).We now turn to show that Ru and Su are NP-hard in the adequate sense (i.e.,Ru is PC-hard and Su is NP-hard). We �rst show that any set in NP is Karp-reducible to Su. Let S be a set in NP and let us denote its witness relation byR; that is, R is in PC and x 2 S if and only if there exists y such that (x; y) 2 R.Let pR be a polynomial bounding the length of solutions in R (i.e., jyj � pR(jxj)for every (x; y) 2 R), let MR be a polynomial-time machine deciding membership(of alleged (x; y) pairs) in R, and let tR be a polynomial bounding its running-time. Then, the desired Karp-reduction maps an instance x (for S) to the instancehMR; x; 1tR(jxj+pR(jxj))i (for Su); that is,x 7! f(x) def= hMR; x; 1tR(jxj+pR(jxj))i: (2.3)Note that this mapping can be computed in polynomial-time, and that x 2 S ifand only if f(x) = hMR; x; 1tR(jxj+pR(jxj))i 2 Su. Details follow.First, note that the mapping f does depend (of course) on S, and so it maydepend on the �xed objectsMR, pR and TR (which depend on S). Thus, computingf on input x calls for printing the �xed stringMR, copying x, and printing a numberof 1's that is a �xed polynomial in the length of x. Hence, f is polynomial-time8Instead of requiring that jyj � t, one may require that M is \canonical" in the sense that itreads its entire input before halting.

76 CHAPTER 2. P, NP AND NP-COMPLETENESScomputable. Second, recall that x 2 S if and only if there exists y such thatjyj � pR(jxj) and (x; y) 2 R. Since MR accepts (x; y) 2 R within tR(jxj + jyj)steps, it follows that x 2 S if and only if there exists y such that jyj � pR(jxj) andMR accepts (x; y) within tR(jxj + jyj) steps. It follows that x 2 S if and only iff(x) 2 Su.We now turn to the search version. For reducing the search problem of anyR 2 PC to the search problem of Ru, we use essentially the same reduction. Oninput an instance x (for R), we make the query hMR; x; 1tR(jxj+pR(jxj))i to thesearch problem of Ru and return whatever the latter returns. Note that if x 62 Sthen the answer will be \no solution", whereas for every x and y it holds that(x; y) 2 R if and only if (hMR; x; 1tR(jxj+pR(jxj))i; y) 2 Ru. Thus, a Levin-reductionof R to Ru consists of the pair of functions (f; g), where f is the foregoing Karp-reduction and g(x; y) = y. Note that indeed, for every (f(x); y) 2 Ru, it holds that(x; g(x; y)) = (x; y) 2 R.Advanced comment. Note that the role of 1t in the de�nition of Ru is toallow placing Ru in PC. In contrast, consider the relation R0u that consists ofpairs (hM;x; ti; y) such that M accepts xy within t steps. Indeed, the di�erence isthat in Ru the time-bound t appears in unary notation, whereas in R0u it appearsin binary. Then, as will become obvious in x4.2.1.2, membership in R0u cannot bedecided in polynomial time. Going even further, we note that omitting t altogetherfrom the problem instance yields a search problem that is not solvable at all. Thatis, consider the relation RH def= f(hM;xi; y) : M(xy) = 1g (which is related to thehalting problem). Indeed, the search problem of any relation (an in particular ofany relation in PC) is Karp-reducible to the search problem of RH , but the latteris not solvable at all (i.e., there exists no algorithm that halts on every input andon input x = hM;xi outputs y such that (x; y) 2 RH if and only such a y exists).Bounded Halting and Non-HaltingWe note that the problem shown to be NP-complete in the proof of Theorem 2.19is related to the following two problems, called Bounded Halting and BoundedNon-Halting. Fixing any programming language, the instance to each of theseproblems consists of a program � and a time bound t (presented in unary). Thedecision version of Bounded Halting (resp., Bounded Non-Halting) consists ofdetermining whether or not there exists an input (of length at most t) on whichthe program � halts in t steps (resp., does not halt in t steps), whereas the searchproblem consists of �nding such an input.The decision version of Bounded Non-Halting refers to a fundamental compu-tational problem in the area of program veri�cation; speci�cally, the problem ofdetermining whether a given program halts within a given time-bound on all inputsof a given length.9 We have mentioned Bounded Halting because it is often re-9The length parameter need not equal the time-bound. Indeed, a more general version of theproblem refers to two bounds, ` and t, and to whether the given program halts within t steps oneach possible `-bit input. It is easy to prove that the problem remains NP-complete also in the

2.3. NP-COMPLETENESS 77ferred to in the literature, but we believe that Bounded Non-Halting is much morerelevant to the project of program veri�cation (because one seeks programs thathalt on all inputs rather than programs that halt on some input).It is easy to prove that both problems are NP-complete (see Exercise 2.19).Note that the two (decision) problems are not complementary (i.e., (M; 1t) may bea yes-instance of both decision problems).10The fact that Bounded Non-Halting is probably intractable (i.e., is intractableprovided that P 6= NP) is even more relevant to the project of program veri�cationthan the fact that the Halting Problem is undecidable. The reason being that thelatter problem (as well as other related undecidable problems) refers to arbitrarilylong computations, whereas the former problem refers to an explicitly boundednumber of computational steps. Speci�cally, Bounded Non-Halting is concernedwith the existence of an input that causes the program to violate a certain condition(i.e., halting) within a given time-bound.In light of the foregoing, the common practice of bashing Bounded (Non-)Halting as an \unnatural" problem seems very odd at an age in which computerprograms plays such a central role. (Nevertheless, we will use the term \natu-ral" in this traditionally and odd sense in the next title, which refers to naturalcomputational problems that seem unrelated to computation.)2.3.3 Some natural NP-complete problemsHaving established the mere existence of NP-complete problems, we now turn toprove the existence of NP-complete problems that do not (explicitly) refer to com-putation in the problem's de�nition. We stress that thousands of such problemsare known (and a list of several hundreds can be found in [81]).We will prove that deciding the satis�ability of propositional formulae is NP-complete (i.e., Cook's Theorem), and also present some combinatorial problemsthat are NP-complete. This presentation is aimed at providing a (small) sampleof natural NP-completeness results as well as some tools towards proving NP-completeness of new problems of interest. We start by making a comment regardingthe latter issue.The reduction presented in the proof of Theorem 2.19 is called \generic" becauseit (explicitly) refers to any (generic) NP-problem. That is, we actually presenteda scheme for the design of reductions from any desired NP-problem to the singleproblem proved to be NP-complete. Indeed, in doing so, we have followed the def-inition of NP-completeness. However, once we know some NP-complete problems,case that the instances are restricted to have parameters ` and t such that t = p(`), for any �xedpolynomial p (e.g., p(n) = n2, rather than p(n) = n as used in the main text).10Indeed, (M; 1t) can not be a no-instance of both decision problems, but this does not makethe problems complementary. In fact, the two decision problems yield a three-way partition ofthe instances (M; 1t): (1) pairs (M; 1t) such that for every input x (of length at most t) thecomputation of M(x) halts within t steps, (2) pairs (M; 1t) for which such halting occurs on someinputs but not on all inputs, and (3) pairs (M; 1t) such that there exists no input (of length atmost t) on which M halts in t steps. Note that instances of type (1) are exactly the no-instancesof Bounded Non-Halting, whereas instances of type (3) are exactly the no-instances of BoundedHalting.

78 CHAPTER 2. P, NP AND NP-COMPLETENESSa di�erent route is open to us. We may establish the NP-completeness of a newproblem by reducing a known NP-complete problem to the new problem. Thisalternative route is indeed a common practice, and it is based on the followingsimple proposition.Proposition 2.20 If an NP-complete problem � is reducible to some problem �0 inNP then �0 is NP-complete. Furthermore, reducibility via Karp-reductions (resp.,Levin-reductions) is preserved.Proof: The proof boils down to asserting the transitivity of reductions. Specif-ically, the NP-hardness of � means that every problem in NP is reducible to �,which in turn is reducible to �0. Thus, by transitivity of reduction (see Exer-cise 2.6), every problem in NP is reducible to �0, which means that �0 is NP-hardand the proposition follows.2.3.3.1 Circuit and formula satis�ability: CSAT and SATWe consider two related computational problems, CSAT and SAT, which refer (inthe decision version) to the satis�ability of Boolean circuits and formulae, respec-tively. (We refer the reader to the de�nition of Boolean circuits, formulae and CNFformulae that appear in x1.2.4.1.)Teaching note: We suggest establishing the NP-completeness of SAT by a reductionfrom the circuit satisfaction problem (CSAT), after establishing the NP-completenessof the latter. Doing so allows to decouple two important parts of the proof of the NP-completeness of SAT: the emulation of Turing machines by circuits, and the emulationof circuits by formulae with auxiliary variables.CSAT. Recall that Boolean circuits are directed acyclic graphs with internalvertices, called gates, labeled by Boolean operations (of arity either 2 or 1), andexternal vertices called terminals that are associated with either inputs or outputs.When setting the inputs of such a circuit, all internal nodes are assigned values inthe natural way, and this yields a value to the output(s), called an evaluation of thecircuit on the given input. The evaluation of circuit C on input z is denoted C(z).We focus on circuits with a single output, and let CSAT denote the set of satis�ableBoolean circuits (i.e., a circuit C is in CSAT if there exists an input z such thatC(z) = 1). We also consider the related relation RCSAT = f(C; z) : C(z) = 1g.Theorem 2.21 (NP-completeness of CSAT): The set (resp., relation) CSAT (resp.,RCSAT) is NP-complete (resp., PC-complete).Proof: It is easy to see that CSAT 2 NP (resp., RCSAT 2 PC). Thus, we turn toshowing that these problems are NP-hard. We will focus on the decision version(but also discuss the search version).We will present (again, but for the last time in this book) a generic reduction,this time of any NP-problem to CSAT. The reduction is based on the observation,

2.3. NP-COMPLETENESS 79mentioned in x1.2.4.1, that the computation of polynomial-time algorithms can beemulated by polynomial-size circuits. In the current context, we wish to emulatethe computation of a �xed machine M on input (x; y), where x is �xed and yvaries (but jyj = poly(jxj) and the total number of steps of M(x; y) is polynomialin jxj+ jyj). Thus, x will be \hard-wired" into the circuit, whereas y will serve asthe input to the circuit. The circuit itself, denoted Cx, will consists of \layers" suchthat each layer will represent an instantaneous con�guration of the machineM , andthe relation between consecutive con�gurations in a computation of this machinewill be captured by (\uniform") local gadgets in the circuit. The number of layerswill depend on (x and on) the polynomial that upper-bounds the running-time ofM , and an additional gadget will be used to detect whether the last con�gurationis accepting. Thus, only the �rst layer of the circuit Cx (which will represent aninitial con�guration with input pre�xed by x) will depend on x. The punch-lineis that determining whether, for a given x, there exists a y (jyj = poly(jxj)) suchthat M(x; y) = 1 (in a given number of steps) will be reduced to whether thereexists a y such that Cx(y) = 1. Performing this reduction for any machine MRthat corresponds to any R 2 PC (as in the proof of Theorem 2.19), we establishthe fact that CSAT is NP-complete. Details follow.Recall that we wish to reduce an arbitrary set S 2 NP to CSAT. Let R, pR,MR and tR be as in the proof of Theorem 2.19 (i.e., R is the witness relation ofS, whereas pR bounds the length of the NP-witnesses, MR is the machine decidingmembership in R, and tR is its polynomial time-bound). Without loss of generality(and for simplicity), suppose that MR is a one-tape Turing machine. We willconstruct a Karp-reduction that maps an instance x (for S) to a circuit, denotedf(x) def= Cx, such that Cx(y) = 1 if and only if MR accepts the input (x; y) withintR(jxj + pR(jxj)) steps. Thus, it will follow that x 2 S if and only if there existsy 2 f0; 1gpR(jxj) such that Cx(y) = 1 (i.e., if and only if Cx 2 CSAT). The circuitCx will depend on x as well as on MR; pR and tR. (We stress that MR; pR and tRare �xed, whereas x varies and is thus explicit in our notation.)Before describing the circuit Cx, let us consider a possible computation of MRon input (x; y), where x is �xed and y represents a generic string of length atmost pR(jxj). Such a computation proceeds for t = tR(jxj + pR(jxj)) steps, andcorresponds to a sequence of t + 1 instantaneous con�gurations, each of lengtht. Each such con�guration can be encoded by t pairs of symbols, where the �rstsymbol in each pair indicates the contents of a cell and the second symbol indicateseither a state of the machine or the fact that the machine is not located in thiscell. Thus, each pair is a member of � � (Q [f?g), where � is the �nite \workalphabet" of MR, Q is its �nite set of internal states, and ? is an indicationthat the machine is not present at a cell. The initial con�guration includes xy asinput, and the decision of MR(x; y) can be read from (the leftmost cell of) the lastcon�guration.11 With the exception of the �rst row, the values of the entries in eachrow are determined by the entries of the row just above it, where this determinationreects the transition function of MR. Furthermore, the value of each entry in the11We refer to the output convention presented in x1.2.3.2, by which the output is written inthe leftmost cells and the machine halts at the cell to its right.

80 CHAPTER 2. P, NP AND NP-COMPLETENESSsaid array is determined by the values of (up to) three entries that reside in the rowabove it (see Exercise 2.20). Thus, the aforementioned computation is representedby a (t + 1) � t array, where each entry encodes one out of a constant number ofpossibilities, which in turn can be encoded by a constant-length bit string. SeeFigure 2.1.

last configuration

initial configuration (1,a) (1,-) (0,-) (-,-) (-,-) (-,-)(-,-) (-,-)

(0,-) (-,-) (-,-) (-,-)(-,-) (-,-)

(-,-) (-,-) (-,-)(-,-) (-,-)

(1,b)

(0,b)(1,-)

(3,-)

(3,-)

(0,-)(1,c)(3,-)

(0,-)

(0,-)

(1,-)(3,c)

(y ,-)1

(y ,-)1

(y ,-)1 (y ,-)2

(y ,-)2

(y ,-)2

(with input 110 2 y 1) y

(1,-) (1,f)

Blank characters as well as the indication that the machine is not present in thecell are marked by a hyphen (-). The three arrows represent the determinationof an entry by the three entries that reside above it. The machine underlyingthis example accepts the input if and only if the input contains a zero.Figure 2.1: An array representing ten computation steps on input 110y1y2.The circuit Cx has a structure that corresponds to the aforementioned array.Each entry in the array is represented by a constant number of gates such that whenCx is evaluated at y these gates will be assigned values that encode the contentsof the said entry (in the computation of MR(x; y)). In particular, the entries ofthe �rst row of the array are \encoded" by hard-wiring the reduction's input (i.e.,x), and feeding the circuit's input (i.e., y) to the adequate input terminals. Thatis, the circuit has pR(jxj) (\real") input terminals (corresponding to y), and thehard-wiring of constants to the other O(t � pR(jxj)) gates that represent the �rstrow is done by simple gadgets (as in Figure 1.3). Indeed, the additional hard-wiringin the �rst row corresponds to the other �xed elements of the initial con�guration(i.e., the blank symbols, and the encoding of the initial state and of the initiallocation; cf. Figure 2.1). The entries of subsequent rows will be \encoded" (orrather computed at evaluation time) by using constant-size circuits that determine

2.3. NP-COMPLETENESS 81the value of an entry based on the three relevant entries in the row above it. Recallthat each entry is encoded by a constant number of gates, and thus these constant-size circuits merely compute the constant-size function described in Exercise 2.20.In addition, the circuit Cx has a few extra gates that check the values of theentries of the last row in order to determine whether or not it encodes an acceptingcon�guration.12 Note that the circuit Cx can be constructed in polynomial timefrom the string x, because we just need to encode x in an appropriate manner aswell as generate a \highly uniform" grid-like circuit of size O(tR(jxj+ pR(jxj))2).13Although the foregoing construction of Cx capitalizes on various speci�c detailsof the (one-tape) Turing machine model, it can be adapted to any other \rea-sonable" model of e�cient computation.14 Alternatively, we recall the Cobham-Edmonds Thesis asserting that any problem that is solvable in polynomial-time(on some \reasonable" model) can be solved in polynomial-time by a (one-tape)Turing machine.Turning back to the circuit Cx, we observe that indeed Cx(y) = 1 if and onlyif MR accepts the input (x; y) while making at most t = tR(jxj + pR(jxj)) steps.Recalling that S = fx : 9y s.t. jyj � pR(jxj) ^ (x; y) 2 Rg and that MR decidesmembership in R in time tR, we infer that x 2 S if and only if f(x) = Cx 2 CSAT.Furthermore, (x; y) 2 R if and only if (f(x); y) 2 RCSAT. It follows that f is aKarp-reduction of S to CSAT, and, for g(x; y) def= y, it holds that (f; g) is a Levin-reduction of R to RCSAT. The theorem follows.SAT. Recall that Boolean formulae are special types of Boolean circuits (i.e.,circuits having a tree structure).15 We further restrict our attention to formulaegiven in conjunctive normal form (CNF). We denote by SAT the set of satis�ableCNF formulae (i.e., a CNF formula � is in SAT if there exists an truth assignment �such that �(�) = 1). We also consider the related relation RSAT = f(�; �) : �(�) =1g.Theorem 2.22 (NP-completeness of SAT): The set (resp., relation) SAT (resp.,RSAT) is NP-complete (resp., PC-complete).Proof: Since the set of possible instances of SAT is a subset of the set of instancesof CSAT, it is clear that SAT 2 NP (resp., RSAT 2 PC). To prove that SAT12In continuation to Footnote 11, we note that it su�ces to check the values of the two leftmostentries of the last row. We assumed here that the circuit propagates a halting con�guration tothe last row. Alternatively, we may check for the existence of an accepting/halting con�gurationin the entire array, since this condition is quite simple.13Advanced comment: A more e�cient construction, which generate almost-linear sizedcircuits (i.e., circuits of size eO(tR(jxj+ pR(jxj)))) is known; see [173].14Advanced comment: Note that it is actually inessential that each entry in each con-�guration is determined by a constant number of entries in the previous con�guration. Anypolynomial-time computable transformation of con�gurations will do, since we can emulate sucha transformation by a polynomial-size circuit. Indeed, this emulation will be based on presentingthe said transformation in some concrete model of computation, which brings us to the nextcomment (invoking the Cobham-Edmonds Thesis).15For an alternative de�nition, see Section G.2.

82 CHAPTER 2. P, NP AND NP-COMPLETENESSis NP-hard, we reduce CSAT to SAT (and use Proposition 2.20). The reductionboils down to introducing auxiliary variables in order to \cut" the computation ofan arbitrary (\deep") circuit into a conjunction of related computations of \shal-low" circuits (i.e., depth-2 circuits) of unbounded fan-in, which in turn may bepresented as a CNF formula. The aforementioned auxiliary variables hold the pos-sible values of the internal gates of the original circuit, and the clauses of the CNFformula enforce the consistency of these values with the corresponding gate oper-ation. For example, if gatei and gatej feed into gatek, which is a ^-gate, thenthe corresponding auxiliary variables gi; gj ; gk should satisfy the Boolean conditiongk � (gi ^ gj), which can be written as a 3CNF with four clauses. Details follow.
1 2 3

or

and

and

1 2

g1

3

g2g1 g2

and

g3

eq

or

eq
eq

g4

eq

gate1

gate2

gate3
and

3

gate4 neg

neg

g3 g4
and

Using auxiliary variables (i.e., the gi's) to \cut" a depth-5 circuit (into a CNF).The dashed regions will be replaced by equivalent CNF formulae. The dashed cy-cle representing an unbounded fan-in and-gate is the conjunction of all constant-size circuits (which enforce the functionalities of the original gates) and the vari-able that represents the gate that feed the output terminal in the original circuit.Figure 2.2: The idea underlying the reduction of CSAT to SAT.We start by Karp-reducing CSAT to SAT. Given a Boolean circuit C, withn input terminals and m gates, we �rst construct m constant-size formulae onn +m variables, where the �rst n variables correspond to the input terminals ofthe circuit, and the other m variables correspond to its gates. The ith formula willdepend on the variable that correspond to the ith gate and the 1-2 variables thatcorrespond to the vertices that feed into this gate (i.e., 2 vertices in case of ^-gateor _-gate and a single vertex in case of a :-gate, where these vertices may be eitherinput terminals or other gates). This (constant-size) formula will be satis�ed bya truth assignment if and only if this assignment matches the gate's functionality(i.e., feeding this gate with the corresponding values result in the correspondingoutput value). Note that these constant-size formulae can be written as constant-size CNF formulae (in fact, as 3CNF formulae).16 Taking the conjunction of these16Recall that any Boolean function can be written as a CNF formula having size that is expo-nential in the length of its input, which in this case is a constant (i.e., either 2 or 3). Indeed, note

2.3. NP-COMPLETENESS 83m formulae and the variable associated with the gate that feeds into the outputterminal, we obtain a formula � in CNF (see Figure 2.2, where n = 3 and m = 4).Note that � can be constructed in polynomial-time from the circuit C; that is,the mapping of C to � = f(C) is polynomial-time computable. We claim that Cis in CSAT if and only if � is in SAT.1. Suppose that for some string s it holds that C(s) = 1. Then, assigning tothe ith auxiliary variable the value that is assigned to the ith gate of C whenevaluated on s, we obtain (together with s) a truth assignment that satis�es�. This is the case because such an assignment satis�es all m constant-sizeCNFs as well as the variable associated with the output of C.2. On the other hand, if � satis�es � then the �rst n bits in � correspond to aninput on which C evaluates to 1. This is the case because the m constant-sizeCNFs guarantee that the variables of � are assigned values that correspondto the evaluation of C on the �rst n bits of � , while the fact that the variableassociated with the output of C has value true guarantees that this evaluationof C yields the value 1.Note that the latter mapping (of � to its n-bit pre�x) is the second mappingrequired by the de�nition of a Levin-reduction.Thus, we have established that f is a Karp-reduction of CSAT to SAT, and thataugmenting f with the aforementioned second mapping yields a Levin-reductionof RCSAT to RSAT.Comment. The fact that the second mapping required by the de�nition of aLevin-reduction is explicit in the proof of the validity of the corresponding Karp-reduction is a fairly common phenomenon. Actually (see Exercise 2.28), typical pre-sentations of Karp-reductions provide two auxiliary polynomial-time computablemappings (in addition to the main mapping of instances from one problem (e.g.,CSAT) to instances of another problem (e.g., SAT)): The �rst auxiliary mappingis of solutions for the preimage instance (e.g., of CSAT) to solutions for the imageinstance of the reduction (e.g., of SAT), whereas the second mapping goes the otherway around. (Note that only the main mapping and the second auxiliary mappingare required in the de�nition of a Levin-reduction.) For example, the proof of thevalidity of the Karp-reduction of CSAT to SAT, denoted f , speci�ed two additionalmappings h and g such that (C; s) 2 RCSAT implies (f(C); h(C; s)) 2 RSAT and(f(C); �) 2 RSAT implies (C; g(C; �)) 2 RCSAT. Speci�cally, in the proof of Theo-rem 2.22, we used h(C; s) = (s; a1; :::; am) where ai is the value assigned to the ithgate in the evaluation of C(s), and g(C; �) being the n-bit pre�x of � .3SAT. Note that the formulae resulting from the Karp-reduction presented inthe proof of Theorem 2.22 are in conjunctive normal form (CNF) with each clausethat the Boolean functions that we refer to here depends on 2-3 Boolean variables (since theyindicate whether or not the corresponding values respect the gate's functionality).

84 CHAPTER 2. P, NP AND NP-COMPLETENESSreferring to at most three variables. Thus, the above reduction actually establishesthe NP-completeness of 3SAT (i.e., SAT restricted to CNF formula with up to threevariables per clause). Alternatively, one may Karp-reduce SAT (i.e., satis�abilityof CNF formula) to 3SAT (i.e., satis�ability of 3CNF formula), by replacing longclauses with conjunctions of three-variable clauses (using auxiliary variables; seeExercise 2.21). Either way, we get the following result, where the furthermore partis proved by an additional reduction.Proposition 2.23 3SAT is NP-complete. Furthermore, the problem remains NP-complete also if we restrict the instances such that each variable appears in at mostthree clauses.Proof Sketch: The furthermore part is proved by reduction from 3SAT. We justreplace each occurrence of each Boolean variable by a new copy of this variable, andadd clauses to enforce that all these copies are assigned the same value. Speci�cally,replacing the variable z by copies z(1); :::; z(m), we add the clauses z(i+1)_:z(i) fori = 1:::;m (where m+ 1 is understood as 1).Related problems. Note that instances of SAT can be viewed as systems ofBoolean conditions over Boolean variables. Such systems can be emulated by vari-ous types of systems of arithmetic conditions, implying the NP-hardness of solvingthe latter types of systems. Examples include systems of integer linear inequalities(see Exercise 2.23), and systems of quadratic equalities (see Exercise 2.25).2.3.3.2 Combinatorics and graph theoryTeaching note: The purpose of this subsection is to expose the students to a sample ofNP-completeness results and proof techniques (i.e., the design of reductions among com-putational problems). The author believes that this traditional material is insightful,but one may skip it in the context of a complexity class.We present just a few of the many appealing combinatorial problems that are knownto be NP-complete. Throughout this section, we focus on the decision versions ofthe various problems, and adopt a more informal style. Speci�cally, we will presenta typical decision problem as a problem of deciding whether a given instance, whichbelongs to a set of relevant instances, is a \yes-instance" or a \no-instance" (ratherthan referring to deciding membership of arbitrary strings in a set of yes-instances).For further discussion of this style and its rigorous formulation, see Section 2.4.1.We will also neglect showing that these decision problems are in NP; indeed, fornatural problems in NP, showing membership in NP is typically straightforward.Set Cover. We start with the set cover problem, in which an instance consists ofa collection of �nite sets S1; :::; Sm and an integerK and the question (for decision)is whether or not there exist (at most)17 K sets that cover Smi=1 Si (i.e., indicesi1; :::; iK such that SKj=1 Sij = Smi=1 Si).17Clearly, in case of Set Cover, the two formulations (i.e., asking for exactly K sets or at mostK sets) are computationally equivalent.

2.3. NP-COMPLETENESS 85Proposition 2.24 Set Cover is NP-complete.Proof Sketch: We sketch a reduction of SAT to Set Cover. For a CNF formula� with m clauses and n variables, we consider the sets S1;t; S1;f; ::; Sn;t; Sn;f �f1; :::;mg such that Si;t (resp., Si;f) is the set of the indices of the clauses (of �)that are satis�ed by setting the ith variable to true (resp., false). That is, ifthe ith variable appears unnegated (resp., negated) in the jth clause then j 2 Si;t(resp., j 2 Si;f). Note that the union of these 2n sets equals f1; :::;mg. Now,on input �, the reduction outputs the Set Cover instance f(�) def= ((S1; ::; S2n); n),where S2i�1 = Si;t [fm+ ig and S2i = Si;f [fm+ ig for i = 1; :::; n.Note that f is computable in polynomial-time, and that if � is satis�ed by�1 � � � �n then the collection fS2i��i : i = 1; :::; ng covers f1; :::;m + ng. Thus,� 2 SAT implies that f(�) is a yes-instance of Set Cover. On the other hand,each cover of fm+ 1; :::;m+ ng � f1; :::;m+ ng must include either S2i�1 or S2ifor each i. Thus, a cover of f1; :::;m + ng using n of the Sj 's must contain, forevery i, either S2i�1 or S2i but not both. Setting �i accordingly (i.e., �i = 1 if andonly if S2i�1 is in the cover) implies that fS2i��i : i = 1; :::; ng covers f1; :::;mg,which in turn implies that �1 � � � �n satis�es �. Thus, if f(�) is a yes-instance ofSet Cover then � 2 SAT.Exact Cover and 3XC. The exact cover problem is similar to the set cover prob-lem, except that here the sets that are used in the cover are not allowed to intersect.That is, each element in the universe should be covered by exactly one set in thecover. Restricting the set of instances to sequences of subsets each having exactlythree elements, we get the restricted problem called 3-Exact Cover (3XC), whereit is unnecessary to specify the number of sets to be used in the cover. The problem3XC is rather technical, but it is quite useful for demonstrating the NP-completenessof other problems (by reducing 3XC to them).Proposition 2.25 3-Exact Cover is NP-complete.Indeed, it follows that the Exact Cover (in which sets of arbitrary size are allowed)is NP-complete. This follows both for the case that the number of sets in the desiredcover is unspeci�ed and for the various cases in which this number is bounded (i.e.,upper-bounded or lower-bounded or both).Proof Sketch: The reduction is obtained by composing three reductions. We �rstreduce a restricted case of 3SAT to a restricted version of Set Cover, denoted 3SC,in which each set has at most three elements (and an instance consists, as in thegeneral case, of a sequence of �nite sets as well as an integer K). Speci�cally,we refer to 3SAT instances that are restricted such that each variable appears inat most three clauses, and recall that this restricted problem is NP-complete (seeProposition 2.23). Actually, we further reduce this special case of 3SAT to onein which each literal appears in at most two clauses.18 Now, we reduce the new18This can be done by observing that if all three occurrences of a variable are of the sametype (i.e., they are all negated or all non-negated) then this variable can be assigned a value that

86 CHAPTER 2. P, NP AND NP-COMPLETENESSversion of 3SAT to 3SC by using the (very same) reduction presented in the proof ofProposition 2.24, and observing that the size of each set in the reduced instance isat most three (i.e., one more than the number of occurrences of the correspondingliteral).Next, we reduce 3SC to the following restricted case of Exact Cover, denoted3XC', in which each set has at most three elements, an instance consists of a sequenceof �nite sets as well as an integer K, and the question is whether there exists anexact cover with at most K sets. The reduction maps an instance ((S1; :::; Sm);K)of 3SC to the instance (C 0;K) such that C 0 is a collection of all subsets of each of thesets S1; :::; Sm. Since each Si has size at most 3, we introduce at most 7 non-emptysubsets per each such set, and the reduction can be computed in polynomial-time.The reader may easily verify the validity of this reduction.Finally, we reduce 3XC' to 3XC. Consider an instance ((S1; :::; Sm);K) of 3XC',and suppose that Smi=1 Si = [n]. If n > 3K then this is de�nitely a no-instance,which can be mapped to a dummy no-instance of 3XC, and so we assume thatx def= 3K � n � 0. Note that x represents the \excess" covering ability of anexact cover having K sets, each having three elements. Thus, we augment the setsystem with x new elements, denoted n+ 1; :::; 3K, and replace each Si such thatjSij < 3 by a sub-collection of 3-sets that cover Si as well as arbitrary elementsfrom fn + 1; :::; 3Kg. That is, in case jSij = 2, the set Si is replaced by the sub-collection (Si[fn+1g; :::; Si[f3Kg), whereas a singleton Si is replaced by the setsSi [fj1; j2g for every j1 < j2 in fn + 1; :::; 3Kg. In addition, we add all possible3-subsets of fn+1; :::; 3Kg. This completes the description of the third reduction,the validity of which is left as an exercise.Vertex Cover, Independent Set, and Clique. Turning to graph theoreticproblems (see Section G.1), we start with the Vertex Cover problem, which isa special case of the Set Cover problem. The instances consists of pairs (G;K),where G = (V;E) is a simple graph andK is an integer, and the problem is whetheror not there exists a set of (at most) K vertices that is incident to all graph edges(i.e., each edge in G has at least one endpoint in this set). Indeed, this instanceof Vertex Cover can be viewed as an instance of Set Cover by considering thecollection of sets (Sv)v2V , where Sv denotes the set of edges incident at vertex v(i.e., Sv = fe 2 E : v 2 eg). Thus, the NP-hardness of Set Cover follows from theNP-hardness of Vertex Cover (but this implication is unhelpful for us here: wealready know that Set Cover is NP-hard and we wish to prove that Vertex Coveris NP-hard). We also note that the Vertex Cover problem is computationallyequivalent to the Independent Set and Clique problems (see Exercise 2.26), andthus it su�ces to establish the NP-hardness of one of these problems.satis�es all clauses in which it appears, and so the variable and the clauses in which it appear canbe omitted from the instance. This yields a reduction of 3SAT instances in which each variableappears in at most three clauses to 3SAT instances in which each literal appears in at most twoclauses. Actually, a closer look at the proof of Proposition 2.23 reveals the fact that the reducedinstances satisfy the latter property anyhow.

2.3. NP-COMPLETENESS 87Proposition 2.26 The problems Vertex Cover, Independent Set and Cliqueare NP-complete.Teaching note: The following reduction is not the \standard" one (see Exercise 2.27).It is rather adapted from the FGLSS-reduction (see Exercise 9.14), and is used herein anticipation of the latter. Furthermore, although the following reduction tends tocreate a larger graph, the author �nds it more clear than the \standard" reduction.Proof Sketch: We show a reduction from 3SAT to Independent Set. On inputa 3CNF formula � with m clauses and n variables, we construct a graph with 7mvertices, denoted G�. The vertices are grouped in m cliques, each correspondingto one of the clauses and containing 7 vertices that correspond to the 7 truthassignments (to the 3 variables in the clause) that satisfy the clause. In addition tothe internal edges of these m cliques, we add an edge between each pair of verticesthat correspond to partial assignments that are mutually inconsistent. That is, if aspeci�c (satisfying) assignment to the variables of the ith clause is inconsistent withsome (satisfying) assignment to the variables of the jth clause then we connect thecorresponding vertices by an edge. (Note that the internal edges of the m cliquesmay be viewed as a special case of the edges connecting mutually inconsistentpartial assignments.) Thus, on input �, the reduction outputs the pair (G�;m).Note that if � is satis�able by a truth assignment � then there are no edgesbetween the m vertices that correspond to the partial satisfying assignment derivedfrom � . (We stress that any truth assignment to � yields an independent set, butonly a satisfying assignment guarantees that this independent set contains a vertexfrom each of the m cliques.) Thus, � 2 SAT implies that G� has an independentset of size m. On the other hand, an independent set of size m in G� must containexactly one vertex in each of the m cliques, and thus induces a truth assignmentthat satis�es �. (We stress that each independent set induces a consistent truthassignment to �, because the partial assignments selected in the various cliquesmust be consistent, and that an independent set containing a vertex from a speci�cclique induces an assignment that satis�es the corresponding clause.) Thus, if G�has an independent set of size m then � 2 SAT.Graph 3-Colorability (G3C). In this problem the instances are graphs and thequestion is whether or not the graph can be colored using three colors such thatneighboring vertices are not assigned the same color.Proposition 2.27 Graph 3-Colorability is NP-complete.Proof Sketch: We reduce 3SAT to G3C by mapping a 3CNF formula � to thegraph G�, which consists of two special (\designated") vertices, a gadget per eachvariable of �, a gadget per each clause of �, and edges connecting some of thesecomponents.� The two designated vertices are called ground and false, and are connectedby an edge that ensures that they must be given di�erent colors in any 3-coloring of G�. We will refer to the color assigned to the vertex ground (resp.,

88 CHAPTER 2. P, NP AND NP-COMPLETENESSfalse) by the name ground (resp., false). The third color will be calledtrue.� The gadget associated with variable x is a pair of vertices, associated withthe two literals of x (i.e., x and :x). These vertices are connected by anedge, and each of them is also connected to the vertex ground. Thus, in a3-coloring of G� one of the vertices associated with the variable is coloredtrue and the other is colored false.
1

2

3

x

y
M

T1

T2

T3In a generic 3-coloring of the sub-gadget it must hold that if x = ythen x = y = 1. Thus, if the three terminals of the gadget areassigned the same color, �, then M is also assigned the color �.Figure 2.3: The reduction to G3C { the clause gadget and its sub-gadget.� The gadget associated with a clause C is depicted in Figure 2.3. It containsa master vertex, denoted M, and three terminal vertices, denoted T1, T2and T3. The master vertex is connected by edges to the vertices groundand false, and thus in a 3-coloring of G� the master vertex must be coloredtrue. The gadget has the property that it is possible to color the terminalswith any combination of the colors true and false, except for coloring allterminals with false. The terminals of the gadget associated with clause Cwill be identi�ed with the vertices that are associated with the correspondingliterals appearing in C. This means that the various clause-gadgets are notvertex-disjoint but may rather share some terminals (with the vertex-gadgetsas well as among themselves).19 See Figure 2.4.Verifying the validity of the reduction is left as an exercise.2.3.4 NP sets that are neither in P nor NP-completeAs stated in Section 2.3.3, thousands of problems have been shown to be NP-complete (cf., [81, Apdx.], which contains a list of more than three hundreds mainentries). Things reached a situation in which people seem to expect any NP-set tobe either NP-complete or in P . This naive view is wrong: Assuming NP 6= P, there19Alternatively, we may use disjoint gadgets and \connect" each terminal with the correspond-ing literal (in the corresponding vertex gadget). Such a connection (i.e., an auxiliary gadget)should force the two end-points to have the same color in any 3-coloring of the graph.

2.3. NP-COMPLETENESS 89
variable gadgets

clause gadgets

GROUND FALSE
the two designated verices

A single clause gadget and the relevant variables gadgets.Figure 2.4: The reduction to G3C { connecting the gadgets.exist sets in NP that are neither NP-complete nor in P, where here NP-hardnessallows also Cook-reductions.Theorem 2.28 Assuming NP 6= P, there exist a set T in NP nP such that somesets in NP are not Cook-reducible to T .Theorem 2.28 asserts that if NP 6= P then NP is partitioned into three non-emptyclasses: the class P , the class of problems to which NP is Cook-reducible, and therest, denote NPI. We already know that the �rst two classes are not empty,and Theorem 2.28 establishes the non-emptiness of NPI under the condition thatNP 6= P , which is actually a necessary condition (because if NP = P then everyset in NP is Cook-reducible to any other set in NP).The following proof of Theorem 2.28 presents an unnatural decision problemin NPI. We mention that some natural decision problems (e.g., some that arecomputationally equivalent to factoring) are conjectured to be in NPI. We alsomention that if NP 6= coNP , where coNP = ff0; 1g� n S : S 2 NPg, then� def= NP \ coNP � P [NPI holds (as a corollary to Theorem 2.35). Thus, ifNP 6= coNP then � n P is a (natural) subset of NPI, and the non-emptinessof NPI follows provided that � 6= P . Recall that Theorem 2.28 establishes thenon-emptiness of NPI under the seemingly weaker assumption that NP 6= P .Teaching note: We recommend either stating Theorem 2.28 without a proof or merelypresenting the proof idea.

90 CHAPTER 2. P, NP AND NP-COMPLETENESSProof Sketch: The basic idea is modifying an arbitrary set in NP n P so as tofail all possible reductions (from NP to the modi�ed set) as well as all possiblepolynomial-time decision procedures (for the modi�ed set). Speci�cally, startingwith S 2 NP nP , we derive S0 � S such that on one hand there is no polynomial-time reduction of S to S0 while on the other hand S0 2 NP n P . The process ofmodifying S into S0 proceeds in iterations, alternatively failing a potential reduction(by dropping su�ciently many strings from the rest of S) and failing a potentialdecision procedure (by including su�ciently many strings from the rest of S).Speci�cally, each potential reduction of S to S0 can be failed by dropping �nitelymany elements from the current S0, whereas each potential decision procedure canbe failed by keeping �nitely many elements of the current S0. These two assertionsare based on the following two corresponding facts:1. Any polynomial-time reduction (of any set not in P) to any �nite set (e.g.,a �nite subset of S) must fail, because only sets in P are Cook-reducible toa �nite set. Thus, for any �nite set F1 and any potential reduction (i.e.,a polynomial-time oracle machine), there exists an input x on which thisreduction to F1 fails.We stress that the aforementioned reduction fails while the only queries thatare answered positively are those residing in F1. Furthermore, the aforemen-tioned failure is due to a �nite set of queries (i.e., the set of all queries madeby the reduction when invoked on an input that is smaller or equal to x).Thus, for every �nite set F1 � S0 � S, any reduction of S to S0 can befailed by dropping a �nite number of elements from S0 and without droppingelements of F1.2. For every �nite set F2, any polynomial-time decision procedure for S n F2must fail, because S is Cook-reducible to S n F2. Thus, for any potentialdecision procedure (i.e., a polynomial-time algorithm), there exists an inputx on which this procedure fails.We stress that this failure is due to a �nite \pre�x" of S n F2 (i.e., the setfz 2 S n F2 : z � xg). Thus, for every �nite set F2, any polynomial-timedecision procedure for S nF2 can be failed by keeping a �nite subset of S nF2.As stated, the process of modifying S into S0 proceeds in iterations, alternativelyfailing a potential reduction (by dropping �nitely many strings from the rest of S)and failing a potential decision procedure (by including �nitely many strings fromthe rest of S). This can be done e�ciently because it is inessential to determine the�rst possible points of alternation (in which su�ciently many strings were dropped(resp., included) to fail the next potential reduction (resp., decision procedure)). Itsu�ces to guarantee that adequate points of alternation (albeit highly non-optimalones) can be e�ciently determined. Thus, S0 is the intersection of S and some setin P , which implies that S0 2 NP . Following are some comments regarding theimplementation of the foregoing idea.The �rst issue is that the foregoing plan calls for an (\e�ective") enumeration ofall polynomial-time oracle machines (resp., polynomial-time algorithms). However,

2.3. NP-COMPLETENESS 91none of these sets can be enumerated (by an algorithm). Instead, we enumerateall corresponding machines along with all possible polynomials, and for each pair(M;p) we consider executions of machine M with time bound speci�ed by thepolynomial p. That is, we use the machine Mp obtained from the pair (M;p) bysuspending the execution of M on input x after p(jxj) steps. We stress that we donot know whether machine M runs in polynomial-time, but the computations ofany polynomial-time machine is \covered" by some pair (M;p).Next, let us clarify the process in which reductions and decision procedures areruled out. We present a construction of a \�lter" set F in P such that the �nal setS0 will equal S \ F . Recall that we need to select F such that each polynomial-time reduction of S to S\F fails, and each polynomial-time procedure for decidingS \ F fails. The key observation is that for every �nite F 0 each polynomial-timereduction of S to S \F 0 fails, whereas for every co-�nite F 0 (i.e., �nite f0; 1g� nF 0)each polynomial-time procedure for deciding S\F 0 fails. Furthermore, each of thesefailures occur on some input, and such an input can be determined by �nite portionsof S and F . Thus, we alternate between failing possible reductions and decisionprocedures on some inputs, while not trying to determine the \optimal" pointsof alternation but rather determining points of alternation in an e�cient manner(which in turn allows for e�ciently deciding membership in F). Speci�cally, welet F = fx : f(jxj) � 1 mod 2g, where f : N ! f0g [N will be de�ned such that(i) each of the �rst f(n)� 1 machines is failed by some input of length at most n,and (ii) the value f(n) can be computed in time poly(n).The value of f(n) is de�ned by the following process that performs exactlyn3 computation steps (where cubic-time is a rather arbitrary choice). The processproceeds in (an a priori unknown number of) iterations, where in the i+1st iterationwe try to �nd an input on which the i+ 1st (modi�ed) machine fails. Speci�cally,in the i + 1st iteration we scan all inputs, in lexicographic order, until we �nd aninput on which the i+1st (modi�ed) machine fails, where this machine is an oraclemachine if i+1 is odd and a standard machine otherwise. If we detect a failure ofthe i+ 1st machine, then we increment i and proceed to the next iteration. Whenwe reach the allowed number of steps (i.e., n3 steps), we halt outputting the currentvalue of i (i.e., the current i is output as the value of f(n)). Needless to say, thisdescription is heavily based on determining whether or not the i+1st machine failson speci�c inputs. Intuitively, these inputs will be much shorter than n, and soperforming these decisions in time n3 (or so) is not out of the question { see nextparagraph.In order to determine whether or not a failure (of the i + 1st machine) occurson a particular input x, we need to emulate the computation of this machine oninput x as well as determine whether x is in the relevant set (which is either S orS0 = S \ F). Recall that if i+ 1 is even then we need to fail a standard machine(which attempts to decide S0) and otherwise we need to fail an oracle machine(which attempts to reduce S to S0). Thus, for even i + 1 we need to determinewhether x is in S0 = S \ F , whereas for odd i + 1 we need to determine whetherx is in S as well as whether some other strings (which appear as queries) are inS0. Deciding membership in S 2 NP can be done in exponential-time (by using

92 CHAPTER 2. P, NP AND NP-COMPLETENESSthe exhaustive search algorithm that tries all possible NP-witnesses). Indeed, thismeans that when computing f(n) we may only complete the treatment of inputsthat are of logarithmic (in n) length, but anyhow in n3 steps we can not hope toreach (in our lexicographic scanning) strings of length greater than 3 log2 n. As fordeciding membership in F , this requires ability to compute f on adequate integers.That is, we may need to compute the value of f(n0) for various integers n0, but asnoted n0 will be much smaller than n (since n0 � poly(jxj) � poly(logn)). Thus,the value of f(n0) is just computed recursively (while counting the recursive stepsin our total number of steps).20 The point is that, when considering an input x,we may need the values of f only on f1; :::; pi+1(jxj)g, where pi+1 is the polynomialbounding the running-time of the i + 1st (modi�ed) machine, and obtaining sucha value takes at most pi+1(jxj)3 steps. We conclude that the number of stepsperformed towards determining whether or not a failure (of the i + 1st machine)occurs on the input x is upper-bounded by an (exponential) function of jxj.As hinted in the foregoing, the procedure will complete n3 steps much beforeexamining inputs of length greater than 3 log2 n, but this does not matter. Whatmatters is that f is unbounded (see Exercise 2.34). Furthermore, by construction,f(n) is computed in poly(n) time.Comment: The proof of Theorem 2.28 actually establishes that for every S 62 Pthere exists S0 62 P such that S0 is Karp-reducible to S but S is not Cook-reducibleto S0.21 Thus, if P 6= NP then there exists an in�nite sequence of sets S1; S2; :::in NP n P such that Si+1 is Karp-reducible to Si but Si is not Cook-reducibleto Si+1. That is, there exists an in�nite hierarchy of problems (albeit unnaturalones), all in NP , such that each problem is \easier" than the previous ones (in thesense that it can be reduced to the previous problems while these problems cannotbe reduced to it).2.4 Three relatively advanced topicsIn this section we discuss three relatively advanced topics. The �rst topic, whichwas eluded to in previous sections, is the notion of promise problems (Section 2.4.1).Next we present an optimal search algorithm for NP (Section 2.4.2), and discussthe class (coNP) of sets that are complements of sets in NP.Teaching note: These topics are typically not mentioned in a basic course on com-plexity. Still, pending on time constraints, we suggest discussing them at least at a highlevel.20We do not bother to present a more e�cient implementation of this process. That is, we maya�ord to recompute f(n0) every time we need it (rather than store it for later use).21The said Karp-reduction (of S0 to S) maps x to itself if x 2 F and otherwise maps x to a�xed no-instance of S.

2.4. THREE RELATIVELY ADVANCED TOPICS 932.4.1 Promise ProblemsPromise problems are a natural generalization of search and decision problems,where one explicitly considers a set of legitimate instances (rather than consider-ing any string as a legitimate instance). As noted previously, this generalizationprovides a more adequate formulation of natural computational problems (and in-deed this formulation is used in all informal discussions). For example, in x2.3.3.2we presented such problems using phrases like \given a graph and an integer..." (or\given a collection of sets..."). In other words, we assumed that the input instancehas a certain format (or rather we \promised the solver" that this is the case).Indeed, we claimed that in these cases the assumption can be removed without af-fecting the complexity of the problem, but we avoided providing a formal treatmentof this issue, which is done next.Teaching note: The notion of promise problems was originally introduced in thecontext of decision problems, and is typically used only in that context. However, webelieve that promise problems are as natural in the context of search problems.2.4.1.1 De�nitionsIn the context of search problems, a promise problem is a relaxation in which oneis only required to �nd solutions to instances in a predetermined set, called thepromise. The requirement regarding e�cient checkability of solutions is adapted inan analogous manner.De�nition 2.29 (search problems with a promise): A search problem with a promiseconsists of a binary relation R � f0; 1g� � f0; 1g� and a promise set P . Such aproblem is also referred to as the search problem R with promise P .� The search problem R with promise P is solved by algorithm A if for everyx 2 P it holds that (x;A(x)) 2 R if x 2 SR = fx : R(x) 6= ;g and A(x) = ?otherwise, where R(x) = fy : (x; y) 2 Rg.The time complexity of A on inputs in P is de�ned as TAjP (n) def= maxx2P\f0;1gnftA(x)g,where tA(x) is the running time of A(x) and TAjP (n) = 0 if P \ f0; 1gn = ;.� The search problem R with promise P is in the promise problem extension ofPF if there exists a polynomial-time algorithm that solves this problem.22� The search problem R with promise P is in the promise problem extension ofPC if there exists a polynomial T and an algorithm A such that, for everyx 2 P and y 2 f0; 1g�, algorithm A makes at most T (jxj) steps and it holdsthat A(x; y) = 1 if and only if (x; y) 2 R.22In this case it does not matter whether the time complexity of A is de�ned on inputs in Por on all possible strings. Suppose that A has (polynomial) time complexity T on inputs in P ,then we can modify A to halt on any input x after at most T (jxj) steps. This modi�cation mayonly e�ects the output of A on inputs not in P (which is OK by us). The modi�cation can beimplemented in polynomial-time by computing t = T (jxj) and emulating the execution of A(x)for t steps. A similar comment applies to the de�nition of PC, P and NP.

94 CHAPTER 2. P, NP AND NP-COMPLETENESSWe stress that nothing is required of the solver in the case that the input violatesthe promise (i.e., x 62 P); in particular, in such a case the algorithm may haltwith a wrong output. (Indeed, the standard formulation of search problems isobtained by considering the trivial promise P = f0; 1g�.)23 In addition to theforegoing motivation for promise problems, we mention one natural class of searchproblems with a promise. These are search problem in which the promise is thatthe instance has a solution (i.e., in terms of the foregoing notation P = SR, whereSR def= fx : 9y s.t. (x; y) 2 Rg). We refer to such search problems by the namecandid search problems.De�nition 2.30 (candid search problems): An algorithm A solves the candidsearch problem of the binary relation R if for every x 2 SR (i.e., for every (x; y)2R)it holds that (x;A(x)) 2 R. The time complexity of such an algorithm is de�ned asTAjSR(n) def= maxx2P\f0;1gnftA(x)g, where tA(x) is the running time of A(x) andTAjSR(n) = 0 if P \ f0; 1gn = ;.Note that nothing is required when x 62 SR: In particular, algorithm A may ei-ther output a wrong solution (although no solutions exist) or run for more thanTAjSR(jxj) steps. The �rst case can be essentially eliminated whenever R 2 PC.Furthermore, for R 2 PC, if we \know" the time complexity of algorithm A (e.g.,if we can compute TAjSR(n) in poly(n)-time), then we may modify A into an algo-rithm A0 that solves the (general) search problem of R (i.e., halts with a correctoutput on each input) in time TA0(n) = TAjSR(n) + poly(n). However, we do notnecessarily know the running-time of an algorithm that we consider. Furthermore,as we shall see in Section 2.4.2, the naive assumption by which we always know therunning-time of an algorithm that we design is not valid.Decision problems with a promise. In the context of decision problems, apromise problem is a relaxation in which one is only required to determine thestatus of instances that belong to a predetermined set, called the promise. Therequirement of e�cient veri�cation is adapted in an analogous manner. In viewof the standard usage of the term, we refer to decision problems with a promiseby the name promise problems. Formally, promise problems refer to a three-waypartition of the set of all strings into yes-instances, no-instances and instances thatviolate the promise. Standard decision problems are obtained as a special case byinsisting that all inputs are allowed (i.e., the promise is trivial).De�nition 2.31 (promise problems): A promise problem consists of a pair of non-intersecting sets of strings, denoted (Syes; Sno), and Syes[Sno is called the promise.� The promise problem (Syes; Sno) is solved by algorithm A if for every x 2 Syesit holds that A(x) = 1 and for every x 2 Sno it holds that A(x) = 0. Thepromise problem is in the promise problem extension of P if there exists apolynomial-time algorithm that solves it.23Here we refer to the formulation presented in Section 2.1.6.

2.4. THREE RELATIVELY ADVANCED TOPICS 95� The promise problem (Syes; Sno) is in the promise problem extension of NP ifthere exists a polynomial p and a polynomial-time algorithm V such that thefollowing two conditions hold:1. Completeness: For every x 2 Syes, there exists y of length at most p(jxj)such that V (x; y) = 1.2. Soundness: For every x 2 Sno and every y, it holds that V (x; y) = 0.We stress that for algorithms of polynomial-time complexity, it does not matterwhether the time complexity is de�ned only on inputs that satisfy the promise oron all strings (see Footnote 22). Thus, the extended classes P and NP (like PFand PC) are invariant under this choice.Reducibility among promise problems. The notion of a Cook-reduction ex-tend naturally to promise problems, when postulating that a query that violatesthe promise (of the problem at the target of the reduction) may be answeredarbitrarily.24 That is, the oracle machine should solve the original problem nomatter how queries that violate the promise are answered. The latter requirementis consistent with the conceptual meaning of reductions and promise problems. Re-call that reductions captures procedures that make subroutine calls to an arbitraryprocedure that solves the reduced problem. But, in the case of promise problems,such a solver may behave arbitrarily on instances that violate the promise. Westress that the main property of a reduction is preserved (see Exercise 2.35): ifthe promise problem � is Cook-reducible to a promise problem that is solvable inpolynomial-time, then � is solvable in polynomial-time.We warn that the extension of a complexity class to promise problems does notnecessarily inherit the \structural" properties of the standard class. For example,in contrast to Theorem 2.35, there exists promise problems in NP \ coNP suchthat every set in NP can be Cook-reduced to them: see Exercise 2.36. Needlessto say, NP = coNP does not seem to follow from Exercise 2.36. See furtherdiscussion at the end of x2.4.1.2.2.4.1.2 ApplicationsThe following discussion refers both to the decision and search versions of promiseproblems. Recall that promise problems o�er the most direct way of formulatingnatural computational problems (e.g., when referring to computational problemsregarding graphs, the promise mandates that the input is a graph). In addition tothe foregoing application of promise problems, we mention their use in formulatingthe natural notion of a restriction of a computational problem to a subset of the in-stances. Speci�cally, such a restriction means that the promise set of the restrictedproblem is a subset of the promise set of the unrestricted problem.24It follows that Karp-reductions among promise problems are not allowed to make queriesthat violate the promise. Speci�cally, we say that the promise problem � = (�yes ;�no) is Karp-reducible to the promise problem �0 = (�0yes;�0no) if there exists a polynomial-time mapping fsuch that for every x 2 �yes (resp., x 2 �no) it holds that f(x) 2 �0yes (resp., f(x) 2 �0no).

96 CHAPTER 2. P, NP AND NP-COMPLETENESSDe�nition 2.32 (restriction of computational problems):� For any P 0 � P and binary relation R, we say that the search problem Rwith promise P 0 is a restriction of the search problem R with promise P .� We say that the promise problem (S0yes; S0no) is a restriction of the promiseproblem (Syes; Sno) if both S0yes � Syes and S0no � Sno hold.For example, when we say that 3SAT is a restriction of SAT, we refer to the factthat the set of allowed instances is now restricted to 3CNF formulae (rather than toarbitrary CNF formulae). In both cases, the computational problem is to determinesatis�ability (or to �nd a satisfying assignment), but the set of instances (i.e., thepromise set) is further restricted in the case of 3SAT. The fact that a restrictedproblem is never harder than the original problem is captured by the fact that therestricted problem is reducible to the original one (via the identity mapping).Other uses and some reservations. In addition to the two aforementionedgeneric uses of the notion of a promise problem, we mention that this notionprovides adequate formulations for a variety of speci�c computational complex-ity notions and results. Examples include the notion of \unique solutions" (seeSection 6.2.3) and the formulation of \gap problems" as capturing various approx-imation tasks (see Section 10.1). In all these cases, promise problems allow todiscuss natural computational problems and make statements about their inher-ent complexity. Thus, the complexity of promise problems (and classes of suchproblems) addresses natural questions and concerns. Consequently, demonstratingthe intractability of a promise problem that belongs to some class (e.g., sayingthat some promise problem in NP cannot be solved by a polynomial-time algo-rithm) carries the same conceptual message as demonstrating the intractability ofa standard problem in the corresponding class. In contrast, as indicated at theend of x2.4.1.1, structural properties of promise problems may not hold for thecorresponding classes of standard problems (e.g., see Exercise 2.36). Indeed, we dodistinguish here between the inherent (or absolute) properties such as intractabilityand structural (or relative) properties such as reducibility.2.4.1.3 The standard convention of avoiding promise problemsRecall that, although promise problems provide a good framework for presentingnatural computational problems, we managed to avoid this framework in previoussections. This was done by relying on the fact that, for all the (natural) problemsconsidered in the previous sections, it is easy to decide whether or not a giveninstance satis�es the promise. For example, given a formula it is easy to decidewhether or not it is in CNF (or 3CNF). Actually, the issue arises already whentalking about formulae: What we are actually given is a string that is supposed toencode a formula (under some predetermined encoding scheme), and so the promise(which is easy to decide for natural encoding schemes) is that the input string is avalid encoding of some formula. In any case, if the promise is e�ciently recognizable

2.4. THREE RELATIVELY ADVANCED TOPICS 97(i.e., membership in it can be decided in polynomial-time) then we may avoidmentioning the promise by using one of the following two \nasty" conventions:1. Extending the set of instances to the set of all possible strings (and allowingtrivial solutions for the corresponding dummy instances). For example, inthe case of a search problem, we may either de�ne all instance that violatethe promise to have no solution or de�ne them to have a trivial solution (e.g.,be a solution for themselves); that is, for a search problem R with promiseP , we may consider the (standard) search problem of R where R is modi�edsuch that R(x) = ; for every x 62 P (or, say, R(x) = fxg for every x 62 P).In the case of a promise (decision) problem (Syes; Sno), we may consider theproblem of deciding membership in Syes, which means that instances thatviolate the promise are considered as no-instances.2. Considering every string as a valid encoding of an object that satis�es thepromise. That is, �xing any string x0 that satis�es the promise, we considerevery string that violates the promise as if it were x0. In the case of a searchproblem R with promise P , this means considering the (standard) searchproblem of R where R is modi�ed such that R(x) = R(x0) for every x 62 P .Similarly, in the case of a promise (decision) problem (Syes; Sno), we considerthe problem of deciding membership in Syes (provided x0 2 Sno and otherwisewe consider the problem of deciding membership in f0; 1g� n Sno).We stress that in the case that the promise is e�ciently recognizable the aforemen-tioned conventions (or modi�cations) do not e�ect the complexity of the relevant(search or decision) problem. That is, rather than considering the original promiseproblem, we consider a (search or decision) problem (without a promise) that iscomputational equivalent to the original one. Thus, in some sense we loss nothingby studying the latter problem rather than the original one. On the other hand,even in the case that these two problems are computationally equivalent, it is usefulto have a formulation that allows to distinguish between them (as we do distinguishbetween the di�erent NP-complete problems although they are all computationallyequivalent). This conceptual concern becomes of crucial importance in the case (tobe discussed next) that the promise is not e�ciently recognizable.The foregoing transformations of promise problems into computationally equiv-alent standard (decision and search) problems does not necessarily preserve thecomplexity of the problem in the case that the promise is not e�ciently recogniz-able. In this case, the terminology of promise problems is unavoidable. Consider,for example, the problem of deciding whether a Hamiltonian graph is 3-colorable.On the face of it, such a problem may have fundamentally di�erent complexity thanthe problem of deciding whether a given graph is both Hamiltonian and 3-colorable.In spite of the foregoing opinions, we adopt the convention of focusing on stan-dard decision and search problems. That is, by default, all complexity classesdiscussed in this book refer to standard decision and search problems, and the ex-ceptions in which we refer to promise problems are explicitly stated as such. Suchexceptions appear in Sections 2.4.2, 6.1.2, 6.2.3, and 10.1.

98 CHAPTER 2. P, NP AND NP-COMPLETENESS2.4.2 Optimal search algorithms for NPWe actually refer to solving the candid search problem of any relation in PC.Recall that PC is the class of search problems that allow for e�cient checking ofthe correctness of candidate solutions (see De�nition 2.3), and that the candidsearch problem is a search problem in which the solver is promised that the giveninstance has a solution (see De�nition 2.30).We claim the existence of an optimal algorithm for solving the candid searchproblem of any relation in PC. Furthermore, we will explicitly present such analgorithm, and prove that it is optimal in a very strong sense: for any algorithmsolving the candid search problem of R 2 PC, our algorithm solves the sameproblem in time that is at most a constant factor slower (ignoring a �xed additivepolynomial term, which may be disregarded in the case that the problem is notsolvable in polynomial-time). Needless to say, we do not know the time-complexityof the aforementioned optimal algorithm (indeed if we knew it then we would haveresolved the P-vs-NP Question). In fact, the P-vs-NP Question boils down todetermining the time-complexity of a single explicitly presented algorithm (i.e.,the optimal algorithm claimed in Theorem 2.33).Theorem 2.33 For every binary relation R 2 PC there exists an algorithm A thatsatis�es the following:1. A solves the candid search problem of R.2. There exists a polynomial p such that for every algorithm A0 that solves thecandid search problem of R and for every x 2 SR (i.e., for every (x; y)2R)it holds that tA(x) = O(tA0 (x) + p(jxj)), where tA (resp., tA0) denotes thenumber of steps taken by A (resp., A0) on input x.Interestingly, we establish the optimality of A without knowing what its (optimal)running-time is. Furthermore, the optimality claim is \point-wise" (i.e., it refers toany input) rather than \global" (i.e., referring to the (worst-case) time-complexityas a function of the input length).We stress that the hidden constant in the O-notation depends only on A0,but in the following proof this dependence is exponential in the length of thedescription of algorithm A0 (and it is not known whether a better dependence canbe achieved). Indeed, this dependence as well as the idea underlying it constituteone negative aspect of this otherwise amazing result. Another negative aspect isthat the optimality of algorithm A refers only to inputs that have a solution (i.e.,inputs in SR). Finally, we note that the theorem as stated refers only to models ofcomputation that have machines that can emulate a given number of steps of othermachines with a constant overhead. We mention that in most natural models theoverhead of such emulation is at most poly-logarithmic in the number of steps, inwhich case it holds that tA(x) = eO(tA0(x) + p(jxj)).Proof Sketch: Fixing R, we let M be a polynomial-time algorithm that decidesmembership in R, and let p be a polynomial bounding the running-time of M(as a function of the length of the �rst element in the input pair). Using M , we

2.4. THREE RELATIVELY ADVANCED TOPICS 99present an algorithm A that solves the candid search problem of R as follows. Oninput x, algorithm A emulates all possible search algorithms \in parallel" (on inputx), checks the result provided by each of them (using M), and halts whenever itrecognizes a correct solution. Indeed, most of the emulated algorithms are totallyirrelevant to the search, but using M we can screen the bad solutions o�ered bythem and output a good solution once obtained.Since there are in�nitely many possible algorithms, it may not be clear whatwe mean by the expression \emulating all possible algorithms in parallel." Whatwe mean is emulating them at di�erent \rates" such that the in�nite sum of theserates converges to 1 (or to any other constant). Speci�cally, we will emulate the ithpossible algorithm at rate 1=(i+ 1)2, which means emulating a single step of thisalgorithm per (i + 1)2 emulation steps (performed for all algorithms). Note thata straightforward implementation of this idea may create a signi�cant overhead,involved in switching frequently from the emulation of one machine to the emulationof another. Instead, we present an alternative implementation that proceeds initerations.In the jth iteration, for i = 1; :::; 2j=2�1, algorithm A emulates 2j=(i+1)2 stepsof the ith machine (where the machines are ordered according to the lexicographicorder of their descriptions). Each of these emulations is conducted in one chunk,and thus the overhead of switching between the various emulations is insigni�cant(in comparison to the total number of steps being emulated). In the case thatsome of these emulations (on input x) halts with output y, algorithm A invokesM on input (x; y) and output y if and only if M(x; y) = 1. Furthermore, theveri�cation of a solution provided by a candidate algorithm is also emulated at theexpense of its step-count. (Put in other words, we augment each algorithm witha canonical procedure (i.e., M) that checks the validity of the solution o�ered bythe algorithm.)By its construction, whenever A(x) outputs a string y (i.e., y 6= ?) it must holdthat (x; y) 2 R. To show the optimality of A, we consider an arbitrary algorithmA0 that solves the candid search problem of R. Our aim is to show that A isnot much slower than A0. Intuitively, this is the case because the overhead of Aresults from emulating other algorithms (in addition to A0), but the total numberof emulation steps wasted (due to these algorithms) is inversely proportional tothe rate of algorithm A0, which in turn is exponentially related to the length ofthe description of A0. The punch-line is that since A0 is �xed, the length of itsdescription is a constant. Details follow.For every x, let us denote by t0(x) the number of steps taken by A0 on in-put x, where t0(x) also accounts for the running time of M(x; �); that is, t0(x) =tA0(x) + p(jxj), where tA0(x) is the number of steps taken by A0(x) itself. Then,the emulation of t0(x) steps of A0 on input x is \covered" by the jth iteration of A,provided that 2j=(2jA0j+1)2 � t0(x) where jA0j denotes the length of the descriptionof A0. (Indeed, we use the fact that the algorithms are emulated in lexicographicorder, and note that there are at most 2jA0j+1 � 2 algorithms that precede A0 inlexicographic order.) Thus, on input x, algorithm A halts after at most jA0(x)iterations, where jA0(x) = 2(jA0j+1)+log2(tA0(x)+p(jxj)), after emulating a total

100 CHAPTER 2. P, NP AND NP-COMPLETENESSnumber of steps that is at mostt(x) def= jA0 (x)Xj=1 2j=2�1Xi=1 2j(i+ 1)2 < 2jA0 (x)+1 = 22jA0j+3 � (tA0(x) + p(jxj)):The question of how much time is required for emulating these many steps dependson the speci�c model of computation. In many models of computation, the em-ulation of t steps of one machine by another machine requires eO(t) steps of theemulating machines, and in some models this emulation can even be performedwith constant overhead. The theorem follows.Comment: By construction, the foregoing algorithm A does not halt on inputx 62 SR. This can be easily recti�ed by letting A emulate a straightforward ex-haustive search for a solution, and halt with output ? if and only if this exhaustivesearch indicates that there is no solution to the current input. This extra emulationcan be performed in parallel to all other emulations (e.g., at a rate of one step forthe extra emulation per each step of everything else).2.4.3 The class coNP and its intersection with NPBy prepending the name of a complexity class (of decision problems) with the pre�x\co" we mean the class of complement sets; that is,coC def= ff0; 1g� n S : S 2 Cg: (2.4)Speci�cally, coNP = ff0; 1g� n S : S 2 NPg is the class of sets that are comple-ments of sets in NP .Recalling that sets in NP are characterized by their witness relations such thatx 2 S if and only if there exists an adequate NP-witness, it follows that theircomplement sets consists of all instances for which there are no NP-witness (i.e.,x 2 f0; 1g� nS if there is no NP-witness for x being in S). For example, SAT 2 NPimplies that the set of unsatis�able CNF formulae is in coNP . Likewise, the setof graphs that are not 3-colorable is in coNP . (Jumping ahead, we mention thatit is widely believed that these sets are not in NP .)Another perspective on coNP is obtained by considering the search problemsin PC. Recall that for such R 2 PC, the set of instances having a solution (i.e.,SR = fx : 9y s.t. (x; y)2Rg) is in NP . It follows that the set of instances havingno solution (i.e., f0; 1g� n SR = fx : 8y (x; y) 62Rg) is in coNP .It is widely believed that NP 6= coNP (which means that NP is not closedunder complementation). Indeed, this conjecture implies P 6= NP (because P isclosed under complementation). The conjecture NP 6= coNP means that somesets in coNP do not have NP-proof systems (because NP is the class of sets havingNP-proof systems). As we will show next, under this conjecture, the complementsof NP-complete sets do not have NP-proof systems; for example, there exists noNP-proof system for proving that a given CNF formula is not satis�able. We �rst

2.4. THREE RELATIVELY ADVANCED TOPICS 101establish this fact for NP-completeness in the standard sense (i.e., under Karp-reductions, as in De�nition 2.17).Proposition 2.34 Suppose that NP 6= coNP and let S 2 NP such that every setin NP is Karp-reducible to S. Then S def= f0; 1g� n S is not in NP.Proof Sketch: We �rst observe that the fact that every set in NP is Karp-reducible to S implies that every set in coNP is Karp-reducible to S. We nextclaim that if S0 is in NP then every set that is Karp-reducible to S0 is also in NP .Applying the claim to S0 = S, we conclude that S 2 NP implies coNP � NP ,which in turn implies NP = coNP in contradiction to the main hypothesis.We now turn to prove the foregoing claim; that is, we prove that if S0 has an NP-proof system and S00 is Karp-reducible to S0 then S00 has an NP-proof system. LetV 0 be the veri�cation procedure associated with S0, and let f be a Karp-reductionof S00 to S0. Then, we de�ne the veri�cation procedure V 00 (for membership in S00)by V 00(x; y) = V 0(f(x); y). That is, any NP-witness that f(x) 2 S0 serves as anNP-witness for x 2 S00 (and these are the only NP-witnesses for x 2 S00). This maynot be a \natural" proof system (for S00), but it is de�nitely an NP-proof systemfor S00.Assuming that NP 6= coNP , Proposition 2.34 implies that sets in NP \ coNPcannot be NP-complete with respect to Karp-reductions. In light of other limita-tions of Karp-reductions (see, e.g., Exercise 2.7), one may wonder whether or notthe exclusion of NP-complete sets from the class NP \ coNP is due to the useof a restricted notion of reductions (i.e., Karp-reductions). The following theoremasserts that this is not the case: some sets in NP cannot be reduced to sets in theintersection NP \ coNP even under general reductions (i.e., Cook-reductions).Theorem 2.35 If every set in NP can be Cook-reduced to some set in NP\coNPthen NP = coNP.In particular, assuming NP 6= coNP , no set in NP \ coNP can be NP-complete,even when NP-completeness is de�ned with respect to Cook-reductions. SinceNP \ coNP is conjectured to be a proper superset of P , it follows (assumingNP 6= coNP) that there are decision problems in NP that are neither in Pnor NP-hard (i.e., speci�cally, the decision problems in (NP \ coNP) n P). Westress that Theorem 2.35 refers to standard decision problems and not to promiseproblems (see Section 2.4.1 and Exercise 2.36).Proof: Analogously to the proof of Proposition 2.34 , the current proof boils downto proving that if S is Cook-reducible to a set in NP\coNP then S 2 NP\coNP .Using this claim, the theorem's hypothesis implies that NP � NP \ coNP , whichin turn implies NP � coNP and NP = coNP .Fixing any S and S0 2 NP \ coNP such that S is Cook-reducible to S0, weprove that S 2 NP (and the proof that S 2 coNP is similar).25 Let us denote by25Alternatively, we show that S 2 coNP by applying the following argument to S def= f0; 1g� nSand noting that S is Cook-reducible to S0 (via S, or alternatively that S is Cook-reducible tof0; 1g� n S0 2 NP \ coNP).

102 CHAPTER 2. P, NP AND NP-COMPLETENESSM the oracle machine reducing S to S0. That is, on input x, machine M makesqueries and decides whether or not to accept x, and its decision is correct providedthat all queries are answered according to S0. To show that S 2 NP , we willpresent an NP-proof system for S. This proof system (or rather its veri�cationprocedure), denoted V , accepts a pair of the form (x; ((z1; �1; w1); :::; (zt; �t; wt)) ifthe following two conditions hold:1. On input x, machine M accepts after making the queries z1; :::; zt, and ob-taining the corresponding answers �1; :::; �t.That is, V check that, on input x, after obtaining the answers �1; :::; �i�1 tothe �rst i � 1 queries, the ith query made by M equals zi. In addition, Vchecks that, on input x and after receiving the answers �1; :::; �t, machine Mhalts with output 1 (indicating acceptance).Note that V does not have oracle access to S0. The procedure V ratheremulates the computation of M(x) by answering, for each i, the ith query ofM(x) by using the bit �i (provided to V as part of its input). The correctnessof these answers will be veri�ed (by V) separately (i.e., see the next item).2. For every i, it holds that if �i = 1 then wi is an NP-witness for zi 2 S0,whereas if �i = 0 then wi is an NP-witness for zi 2 f0; 1g� n S0.Thus, if this condition holds then it is the case that each �i indicates thecorrect status of zi with respect to S0 (i.e., �i = 1 if and only if zi 2 S0).We stress that we use the fact that both S0 and S0 def= f0; 1g� n S have NP-proofsystems, and refer to the corresponding NP-witnesses.Note that V is indeed an NP-proof system for S. Firstly, the length of thecorresponding witnesses is bounded by the running-time of the reduction (and thelength of the NP-witnesses supplied for the various queries). Next note that Vruns in polynomial time (i.e., verifying the �rst condition requires an emulation ofthe polynomial-time execution of M on input x when using the �i's to emulate theoracle, whereas verifying the second condition is done by invoking the relevant NP-proof systems). Finally, observe that x 2 S if and only if there exists a sequencey def= ((z1; �1; w1); :::; (zt; �t; wt)) such that V (x; y) = 1. In particular, V (x; y) = 1holds only if y contains a valid sequence of queries and answers as made in acomputation of M on input x and oracle access to S0, and M accepts based onthat sequence.The world view { a digest. Recall that on top of the P 6= NP conjecture, wementioned two other conjectures (which clearly imply P 6= NP):1. The conjecture that NP 6= coNP (equivalently, NP \ coNP 6= NP).This conjecture is equivalent to the conjecture that CNF formulae have noshort proofs of unsatis�ability (i.e., the set f0; 1g� n SAT has no NP-proofsystem).

2.4. THREE RELATIVELY ADVANCED TOPICS 1032. The conjecture that NP \ coNP 6= P .Notable candidates for the class NP \ coNP 6= P include decision problemsthat are computationally equivalent to the integer factorization problem (i.e.,the search problem (in PC) in which, given a composite number, the task isto �nd its prime factors).Combining these conjectures, we get the world view depicted in Figure 2.5, whichalso shows the class of coNP-complete sets (de�ned next).
P

NPC

coNP

NP

coNPCFigure 2.5: The world view under P 6= coNP \NP 6= NP .De�nition 2.36 A set S is called coNP-hard if every set in coNP is Karp-reducible to S. A set is called coNP-complete if it is both in coNP and coNP-hard.Indeed, insisting on Karp-reductions is essential for a distinction between NP-hardness and coNP-hardness.Chapter NotesMany sources provide historical accounts of the developments that led to the formu-lation of the P vs NP Problem and to the discovery of the theory of NP-completeness(see, e.g., [81, Sec. 1.5] and [213]). Still, we feel that we should not refrain fromo�ering our own impressions, which are based on the texts of the original papers.Nowadays, the theory of NP-completeness is commonly attributed to Cook [55],Karp [131], and Levin [146]. It seems that Cook's starting point was his interestin theorem proving procedures for propositional calculus [55, P. 151]. Trying toprovide evidence to the di�culty of deciding whether or not a given formula is a tau-tology, he identi�ed NP as a class containing \many apparently di�cult problems"(cf, e.g., [55, P. 151]), and showed that any problem in NP is reducible to decidingmembership in the set of 3DNF tautologies. In particular, Cook emphasized the

104 CHAPTER 2. P, NP AND NP-COMPLETENESSimportance of the concept of polynomial-time reductions and the complexity classNP (both explicitly de�ned for the �rst time in his paper). He also showed thatCLIQUE is computationally equivalent to SAT, and envisioned a class of problems ofthe same nature.Karp's paper [131] can be viewed as ful�lling Cook's prophecy: Stimulated byCook's work, Karp demonstrated that a \large number of classic di�cult computa-tional problems, arising in �elds such as mathematical programming, graph theory,combinatorics, computational logic and switching theory, are [NP-]complete (andthus equivalent)" [131, P. 86]. Speci�cally, his list of twenty-one NP-complete prob-lems includes Integer Linear Programming, Hamilton Circuit, Chromatic Number,Exact Set Cover, Steiner Tree, Knapsack, Job Scheduling, and Max Cut. Interest-ingly, Karp de�ned NP in terms of veri�cation procedures (i.e., De�nition 2.5),pointed to its relation to \backtrack search of polynomial bounded depth" [131,P. 86], and viewed NP as the residence of a \wide range of important computa-tional problems" (which are not in P).Independently of these developments, while being in the USSR, Levin proved theexistence of \universal search problems" (where universality meant NP-completeness).The starting point of Levin's work [146] was his interest in the \perebor" conjec-ture asserting the inherent need for brute-force in some search problems that havee�ciently checkable solutions (i.e., problems in PC). Levin emphasized the impli-cation of polynomial-time reductions on the relation between the time-complexityof the related problems (for any growth rate of the time-complexity), asserted theNP-completeness of six \classical search problems", and claimed that the underly-ing method \provides a mean for readily obtaining" similar results for \many otherimportant search problems."It is interesting to note that although the works of Cook [55], Karp [131], andLevin [146] were received with di�erent levels of enthusiasm, none of the con-temporaries realized the depth of the discovery and the di�culty of the questionposed (i.e., the P-vs-NP Question). This fact is evident in every account from theearly 1970's, and may explain the frustration of the corresponding generation ofresearchers, which expected the P-vs-NP Question to be resolved in their life-time(if not in a matter of years). Needless to say, the author's opinion is that therewas absolutely no justi�cation for these expectations, and that one should haveactually expected quite the opposite.We mention that the three \founding papers" of the theory of NP-completeness(i.e., Cook [55], Karp [131], and Levin [146]) use the three di�erent types of reduc-tions used in this chapter. Speci�cally, Cook uses the general notion of polynomial-time reduction [55], often referred to as Cook-reductions (De�nition 2.9). Thenotion of Karp-reductions (De�nition 2.11) originates from Karp's paper [131],whereas its augmentation to search problems (i.e., De�nition 2.12) originates fromLevin's paper [146]. It is worth stressing that Levin's work is stated in terms ofsearch problems, unlike Cook and Karp's works, which treat decision problems.The reductions presented in x2.3.3.2 are not necessarily the original ones. Mostnotably, the reduction establishing the NP-hardness of the Independent Set prob-lem (i.e., Proposition 2.26) is adapted from [70] (see also Exercise 9.14). In contrast,

2.4. THREE RELATIVELY ADVANCED TOPICS 105the reductions presented in x2.3.3.1 are merely a re-interpretation of the originalreduction as presented in [55]. The equivalence of the two de�nitions of NP (i.e.,Theorem 2.8) was proved in [131].The existence of NP-sets that are neither in P nor NP-complete (i.e., Theo-rem 2.28) was proven by Ladner [143], Theorem 2.35 was proven by Selman [191],and the existence of optimal search algorithms for NP-relations (i.e., Theorem 2.33)was proven by Levin [146]. (Interestingly, the latter result was proved in the samepaper in which Levin presented the discovery of NP-completeness, independentlyof Cook and Karp.) Promise problems were explicitly introduced by Even, Selmanand Yacobi [68]; see [90] for a survey of their numerous applications.We mention that the standard reductions used to establish natural NP-completenessresults have several additional properties or can be modi�ed to have such properties.These properties include an e�cient transformation of solutions in the direction ofthe reduction (see Exercise 2.28), the preservation of the number of solutions (seeExercise 2.29), being computable by a log-space algorithm (see Section 5.2.2), andbeing invertible in polynomial-time (see Exercise 2.30). We also mention the factthat all known NP-complete sets are (e�ectively) isomorphic (see Exercise 2.31).ExercisesExercise 2.1 (PF contains problems that are not in PC) Show that PF con-tains some (unnatural) problems that are not in PC.Guideline: Consider the relation R = f(x; 1) : x 2 f0; 1g�g [f(x; 0) : x 2 Sg, where S issome undecidable set. Note that R is the disjoint union of two binary relations, denotedR1 and R2, where R1 is in PF whereas R2 is not in PC. Furthermore, for every x it holdsthat R1(x) 6= ;.Exercise 2.2 Show that any S 2 NP has many di�erent NP-proof systems (i.e.,veri�cation procedures V1; V2; ::: such that Vi(x; y) = 1 does not imply Vj(x; y) = 1for i 6= j).Guideline: For V and p be as in De�nition 2.5, de�ne Vi(x; y) = 1 if jyj = p(jxj)+ i andthere exists a pre�x y0 of y such that V (x; y0) = 1.Exercise 2.3 Relying on the fact that primality is decidable in polynomial-timeand assuming that there is no polynomial-time factorization algorithm, present two\natural but fundamentally di�erent" NP-proof systems for the set of compositenumbers.Guideline: Consider the following veri�cation procedures V1 and V2 for the set of com-posite numbers. Let V1(n; y) = 1 if and only if y = n and n is not a prime, andV2(n;m) = 1 if and only if m is a non-trivial divisor of n. Show that valid proofs withrespect to V1 are easy to �nd, whereas valid proofs with respect to V2 are hard to �nd.Exercise 2.4 Regarding De�nition 2.7, show that if S is accepted by some non-deterministic machine of time complexity t then it is accepted by a non-deterministic

106 CHAPTER 2. P, NP AND NP-COMPLETENESSmachine of time complexity O(t) that has a transition function that maps each pos-sible symbol-state pair to exactly two triples.Exercise 2.5 Verify the following properties of Cook-reductions:1. If � is Cook-reducible to �0 and �0 is solvable in polynomial-time then so is�.2. Cook-reductions are transitive (i.e., if � is Cook-reducible to �0 and �0 isCook-reducible to �00 then � is Cook-reducible to �00).3. If � is solvable in polynomial-time then it is Cook-reducible to any problem�0.In continuation to the last item, show that a problem � is solvable in polynomial-time if and only if it is Cook-reducible to a trivial problem (e.g., deciding member-ship in the empty set).Exercise 2.6 Show that Karp-reductions (and Levin-reductions) are transitive.Exercise 2.7 Show that some decision problems are not Karp-reducible to theircomplement (e.g., the empty set is not Karp-reducible to f0; 1g�).A popular exercise of dubious nature is showing that any decision problem in Pis Karp-reducible to any non-trivial decision problem, where the decision problemregarding a set S is called non-trivial if S 6= ; and S 6= f0; 1g�. It follows thatevery non-trivial set in P is Karp-reducible to its complement.Exercise 2.8 (reducing search problems to optimization problems) For ev-ery polynomially bounded relation R (resp., R 2 PC), present a function f (resp.,a polynomial-time computable function f) such that the search problem of R iscomputationally equivalent to the search problem in which given (x; v) one has to�nd a y 2 f0; 1gpoly(jxj) such that f(x; y) � v.(Hint: use a Boolean function.)Exercise 2.9 (binary search) Show that using ` binary queries of the form \isz < v" it is possible to determine the value of an integer z that is a priori knownto reside in the interval [0; 2` � 1].Guideline: Consider a process that iteratively halves the interval in which z is knownto reside in.Exercise 2.10 Show that if R 2 PC nPF is self-reducible then the relevant Cook-reduction makes more than a logarithmic number of queries to SR. More generally,show that if R 2 PC n PF is Cook-reducible to any decision problem, then thisreduction makes more than a logarithmic number of queries.Guideline: Note that the oracle answers can be emulated by trying all possibilities, andthat the correctness of the output of the oracle machine can be e�ciently tested.

2.4. THREE RELATIVELY ADVANCED TOPICS 107Exercise 2.11 Show that the standard search problem of Graph 3-Colorability isself-reducible, where this search problem consists of �nding a 3-coloring for a giveninput graph.Guideline: Iteratively extend the current pre�x of a 3-coloring of the graph by makingadequate oracle calls to the decision problem of Graph 3-Colorability. Speci�cally, encodethe question of whether or not (�1; :::; �t) 2 f1; 2; 3gt is a pre�x of a 3-coloring of thegraph G as a query regarding the 3-colorability of an auxiliary graph G0.)26Exercise 2.12 Show that the standard search problem of Graph Isomorphismis self-reducible, where this search problem consists of �nding an isomorphismbetween a given pair of graphs.Guideline: Iteratively extend the current pre�x of an isomorphism between the twoN -vertex graphs by making adequate oracle calls to the decision problem of Graph Iso-morphism. Speci�cally, encode the question of whether or not (�1; :::; �t) 2 [N]t is a pre�xof an isomorphism between G1 = ([N]; E1) and G2 = ([N]; E2) as a query regarding iso-morphism between two auxiliary graphs G01 and G02.)27Exercise 2.13 (downwards self-reducibility) We say that a set S is down-wards self-reducible if there exists a Cook-reduction of S to itself that only makesqueries that are each shorter than the reduction's input (i.e., if on input x thereduction makes the query q then jqj < jxj).281. Show that SAT is downwards self-reducible with respect to a natural encodingof CNF formulae. Note that this encoding should have the property thatinstantiating a variable in a formula results in a shorter formula.A harder exercise consists of showing that Graph 3-Colorability is downwardsself-reducible with respect to some reasonable encoding of graphs. Note thatthis encoding has to be selected carefully (if it is to work for a process anal-ogous to the one used in Exercise 2.11).2. Suppose that S is downwards self-reducible by a reduction that outputs thedisjunction of the oracle answers. (Note that this is the case for SAT.) Showthat in this case, S is characterized by a witness relation R 2 PC (i.e.,S = fx : R(x) 6= ;g) that is self-reducible (i.e., the search problem of R isCook-reducible to S). Needless to say, it follows that S 2 NP .Guideline: Include (x0; hx1; :::; xti) in R if xt 2 S \ f0; 1gO(1) and, for everyi 2 f0; 1; :::; t�1g, on input xi the self-reduction makes a set of queries that containsxi+1. Prove that, indeed, R 2 PC and S = fx : R(x) 6= ;g.26Note that we merely need to check whether G has a 3-coloring in which the equalities andinequalities induced by (�1; :::; �t) hold. This can be done by adequate gadgets (e.g., inequalityis enforced by an edge between the corresponding vertices, whereas equality is enforced by anadequate subgraph that includes the relevant vertices as well as auxiliary vertices). For Part 1 ofExercise 2.13, equality is better enforced by combining the two vertices.27This can be done by attaching adequate gadgets to pairs of vertices that we wish to be mappedto one another (by the isomorphism). For example, we may connect the vertices in the ith pairto an auxiliary star consisting of (N + i) vertices.28Note that on some instances the reduction may make no queries at all. (This prevent apossible non-viability of the de�nition due to very short instances.)

108 CHAPTER 2. P, NP AND NP-COMPLETENESSNote that the notion of downwards self-reducibility may be generalized in somenatural ways. For example, we may say that S is downwards self-reducible alsoin case it is computationally equivalent via Karp-reductions to some set that isdownwards self-reducible (in the foregoing strict sense). Note that Part 2 stillholds.Exercise 2.14 (NP problems that are not self-reducible)1. Assuming that P 6= NP \ coNP, show that there exists a search problem Rin PC that is not self-reducible.Guideline: Given S 2 NP \ coNP n P, present relations R1; R2 2 PC suchthat S = fx : R1(x) 6= ;g = fx : R2(x) = ;g. Then, consider the relationR = f(x; 1y) : (x; y) 2 R1g [f(x; 0y) : (x; y) 2 R2g, and prove that R 62 PF butSR = f0; 1g�.2. Prove that if a search problem R is not self-reducible then S0R = f(x; y0) :9y00 s.t. (x; y0y00)2Rg is not Cook-reducible to SR = fx : 9y s.t. (x; y)2Rg.Exercise 2.15 (extending any pre�x of any solution versus PC and PF)Assuming that P 6= NP , present a search problem R in PC\PF such that decidingS0R is not reducible to the search problem of R.Guideline: Consider the relation R = f(x; 0x) : x 2 f0; 1g�g [f(x; 1y) : (x; y) 2 R0g,where R0 is an arbitrary relation in PC n PF , and prove that R 2 PF but S0R 62 P.Exercise 2.16 In continuation to Exercise 2.14, present a natural search problemR in PC such that if factoring integers is intractable then the search problem R(and so also S0R) is not reducible to SR.Guideline: Consider the relation R such that (N;Q) 2 R if the integer Q is a non-trivialdivisor of the integer N . Use the fact that the set of prime numbers is in P.Exercise 2.17 In continuation to Exercises 2.14 and 2.16, show that under suit-able assumptions there exists relations R1; R2 2 PC having the same implicit-decision problem (i.e., fx : R1(x) 6= ;g = fx : R2(x) 6= ;g) such that R1 isself-reducible but R2 is not.Exercise 2.18 Provide an alternative proof of Theorem 2.16 without referring tothe set S0R = f(x; y0) : 9y00 s.t. (x; y0y00)2Rg. Hint: use Proposition 2.15.Guideline: Reduce the search problem of R to the search problem of RSAT, next reduceRSAT to SAT, and �nally reduce SAT to SR. Justify the existence of each of these threereductions.Exercise 2.19 Prove that Bounded Halting and Bounded Non-Halting are NP-complete, where the problems are de�ned as follows. The instance consists of a pair(M; 1t), where M is a Turing machine and t is an integer. The decision version ofBounded Halting (resp., Bounded Non-Halting) consists of determining whether

2.4. THREE RELATIVELY ADVANCED TOPICS 109or not there exists an input (of length at most t) on which M halts (resp., does nothalt) in t steps, whereas the search problem consists of �nding such an input.Guideline: Either modify the proof of Theorem 2.19 or present a reduction of (say) thesearch problem of Ru to the search problem of Bounded (Non-)Halting. (Indeed, theexercise is more straightforward in the case of Bounded Halting.)Exercise 2.20 In the proof of Theorem 2.21, we claimed that the value of eachentry in the \array of con�gurations" of a machine M is determined by the valuesof the three entries that reside in the row above it (as in Figure 2.1). Present afunction fM : �3 ! �, where � = �� (Q [f?g), that substantiates this claim.Guideline: For example, for every �1; �2; �3 2 �, it holds that fM((�1;?); (�2;?); (�3;?)) =(�2;?). More interestingly, if the transition function of M maps (�; q) to (�; p;+1)then, for every �1; �2; �3 2 Q, it holds that fM ((�; q); (�2;?); (�3;?)) = (�2; p) andfM ((�1;?); (�; q); (�3;?)) = (�;?).Exercise 2.21 Present and analyze a reduction of SAT to 3SAT.Guideline: For a clause C, consider auxiliary variables such that the ith variable indicateswhether one of the �rst i literals is satis�ed, and replace C by a 3CNF that uses theoriginal variables of C as well as the auxiliary variables. For example, the clause _ti=1xiis replaced by the conjunction of 3CNFs that are logically equivalent to the formulae(y2 � (x1 _ x2)), (yi � (yi�1 _ xi)) for i = 3; :::; t, and yt. We comment that this is notthe standard reduction, but we �nd it conceptually more appealing.29Exercise 2.22 (e�cient solveability of 2SAT) In contrast to Exercise 2.21,prove that 2SAT (i.e., the satis�ability of 2CNF formulae) is in P .Guideline: Consider the following \forcing process" for CNF formulae. If the formulacontains a singleton clause (i.e., a clause having a single literal), then the correspondingvariable is assigned the only value that satis�es the clause, and the formula is simpli�edaccordingly (possibly yielding a constant formula, which is either true or false). Theprocess is repeated until the formula is either a constant or contains only non-singletonclauses. Note that a formula � is satis�able if and only if the formula obtained from � bythe forcing process is satis�able. Consider the following algorithm for solving the searchproblem associated with 2SAT.1. Choose an arbitrary variable in �. For each � 2 f0; 1g, denote by �� the formulaobtained from � by assigning this variable the value �.2. If, for some � 2 f0; 1g, applying the forcing process to �� yields a (non-constant)2CNF formula �0, then set � �0 and goto Step 1. (The case that this happensfor both � 2 f0; 1g is treated as the case that this happens for a single �; that is,in such a case we proceed with an arbitrary choice of �.)3. If one of these assignments yields (via the application of the forcing process) theconstant true then we halt with a satisfying assignment for the original formula.Otherwise (i.e., both assignments yield the constant false), we halt asserting thatthe original formula is unsatis�able.29The standard reduction replaces the clause _ti=1xi by the conjunction of the 3CNFs (x1 _x2 _ z2), ((:zi�1) _ xi _ zi) for i = 3; :::; t, and :zt.

110 CHAPTER 2. P, NP AND NP-COMPLETENESSProving the correctness of this algorithm boils down to observing that the arbitrary choicemade in Step 2 is immaterial. Indeed, this observation relies on the fact that we refer to3CNF formulae.Exercise 2.23 (Integer Linear Programming) Prove that the following prob-lem is NP-complete. An instance of the problem is a systems of linear inequalities(say with integer constants), and the problem is to determine whether the systemhas an integer solution. A typical instance of this decision problem follows.x+ 2y � z � 3�3x� z � �5x � 0�x � �1Guideline: Reduce from SAT. Speci�cally, consider an arithmetization of the input CNFby replacing _ with addition and :x by 1�x. Thus, each clause gives rise to an inequality(e.g., the clause x _ :y is replaced by the inequality x + (1 � y) � 1, which simpli�esto x � y � 2). Enforce a 0-1 solution by introducing inequalities of the form x � 0 and�x � �1, for every variable x.Exercise 2.24 (Maximum Satis�ability of Linear Systems over GF(2)) Provethat the following problem is NP-complete. An instance of the problem consists ofa systems of linear equations over GF(2) and an integer k, and the problem is todetermine whether there exists an assignment that satis�es at least k equations.(Note that the problem of determining whether there exists an assignment thatsatis�es all the equations is in P .)Guideline: Reduce from 3SAT, using the following arithmetization. Replace each clausethat contains t � 3 literals by 2t � 1 linear GF(2) equations that correspond to thedi�erent non-empty subsets of these literals, and assert that their sum (modulo 2) equalsone; for example, the clause x_:y is replaced by the equations x+(1�y) = 1, x = 1, and1�y = 1. Identifying ffalse; trueg with f0; 1g, prove that if the original clause is satis�edby a Boolean assignment v then exactly 2t�1 of the corresponding equations are satis�edby v, whereas if the original clause is unsatis�ed by v then none of the correspondingequations is satis�ed by v.Exercise 2.25 (Satis�ability of Quadratic Systems over GF(2)) Prove thatthe following problem is NP-complete. An instance of the problem consists of a sys-tem of quadratic equations over GF(2), and the problem is to determine whetherthere exists an assignment that satis�es all the equations. Note that the resultholds also for systems of quadratic equations over the reals (by adding conditionsthat enforce a value in f0; 1g).Guideline: Start by showing that the corresponding problem for cubic equations is NP-complete, by a reduction from 3SAT that maps the clause x _ :y _ z to the equation(1 � x) � y � (1 � z) = 0. Reduce the problem for cubic equations to the problem forquadratic equations by introducing auxiliary variables; that is, given an instance with

2.4. THREE RELATIVELY ADVANCED TOPICS 111variables x1; :::; xn, introduce the auxiliary variables xi;j 's and add equations of the formxi;j = xi � xj .Exercise 2.26 (Clique and Independent Set) An instance of the IndependentSet problem consists of a pair (G;K), where G is a graph and K is an integer,and the question is whether or not the graph G contains an independent set (i.e.,a set with no edges between its members) of size (at least) K. The Clique prob-lem is analogous. Prove that both problems are computationally equivalent viaKarp-reductions to the Vertex Cover problem.Exercise 2.27 (an alternative proof of Proposition 2.26) Consider the fol-lowing sketch of a reduction of 3SAT to Independent Set. On input a 3CNFformula � with m clauses and n variables, we construct a graph G� consisting of mtriangles (corresponding to the m clauses) augmented with edges that link conict-ing literals. That is, if x appears as the ith1 literal of the jth1 clause and :x appearsas the ith2 literal of the jth2 clause, then we draw an edge between the ith1 vertex ofthe jth1 triangle and the ith2 vertex of the jth2 triangle. Prove that � 2 3SAT if andonly if G� has an independent set of size m.Exercise 2.28 (additional properties of standard reductions) In continua-tion to the discussion in the main text, consider the following augmented form ofKarp-reductions. Such a reduction of R to R0 consists of three polynomial-timemappings (f; h; g) such that f is a Karp-reduction of SR to SR0 and the followingtwo conditions hold:1. For every (x; y) 2 R it holds that (f(x); h(x; y)) 2 R0.2. For every (f(x); y0) 2 R0 it holds that (x; g(x; y0)) 2 R.(We note that this de�nition is actually the one used by Levin in [146], except thathe restricted h and g to only depend on their second argument.)Prove that such a reduction implies both a Karp-reduction and a Levin-Reduction,and show that all reductions presented in this chapter satisfy this augmented re-quirement. Furthermore, prove that in all these cases the main mapping (i.e., f)is 1-1 and polynomial-time invertible.Exercise 2.29 (parsimonious reductions) Let R;R0 2 PC and let f be a Karp-reduction of SR = fx : R(x) 6=;g to SR0 = fx : R0(x) 6=;g. We say that f is parsi-monious (with respect to R and R0) if for every x it holds that jR(x)j = jR0(f(x))j.For each of the reductions presented in this chapter, checked whether or not itis parsimonious. For the reductions that are not parsimonious, �nd alternativereductions that are parsimonious (cf. [81, Sec. 7.3]).Exercise 2.30 (on polynomial-time invertible reductions (following [35]))We say that a set S is markable if there exists a polynomial-time (marking) algo-rithm M such that1. For every x; � 2 f0; 1g� it holds that(a) M(x; �) 2 S if and only if x 2 S.

112 CHAPTER 2. P, NP AND NP-COMPLETENESS(b) jM(x; �)j > jxj.2. There exists a polynomial-time (de-marking) algorithmD such that, for everyx; � 2 f0; 1g�, it holds that D(M(x; �)) = �.Note that all natural NP-sets (e.g., those considered in this chapter) are markable(e.g., for SAT, one may mark a formula by augmenting it with additional satis�-able clauses that use specially designated auxiliary variables). Prove that if S0 isKarp-reducible to S and S is markable then S0 is Karp-reducible to S by a length-increasing, one-to-one, and polynomial-time invertible mapping.30 Infer that forany natural NP-complete problem S, any set in NP is Karp-reducible to S by alength-increasing, one-to-one, and polynomial-time invertible mapping.Guideline: Let f be a Karp-reduction of S0 to S, and let M be the guaranteed markingalgorithm. Consider the reduction that maps x to M(f(x); x).Exercise 2.31 (on the isomorphism of NP-complete sets (following [35]))Suppose that S and T are Karp-reducible to one another by length-increasing, one-to-one, and polynomial-time invertible mappings, denoted f and g respectively.Using the following guidelines, prove that S and T are \e�ectively" isomorphic;that is, present a polynomial-time computable and invertible one-to-one mapping� such that T = �(S) def= f�(x) : x2Sg.1. Let F def= ff(x) : x 2 f0; 1g�g and G def= fg(x) : x 2 f0; 1g�g. Using thelength-preserving condition of f (resp., g), prove that F (resp., G) is a propersubset of f0; 1g�. Prove that for every y 2 f0; 1g� there exists a unique triple(j; x; i) 2 f1; 2g � f0; 1g� � (f0g [N) that satis�es one of the following twoconditions:(a) j = 1, x 2 G def= f0; 1g� nG, and y = (g � f)i(x);(b) j = 2, x 2 F def= f0; 1g� n F , and y = (g � f)i(g(x)).(In both cases h0(z) = z, hi(z) = h(hi�1(z)), and (g � f)(z) = g(f(z)). Hint:consider the maximal sequence of inverse operations g�1; f�1; g�1; ::: thatcan be applied to y, and note that each inverse shrinks the current string.)2. Let U1 def= f(g �f)i(x) : x2G^ i�0g and U2 def= f(g �f)i(g(x)) : x2F ^ i�0g.Prove that (U1; U2) is a partition of f0; 1g�. Using the fact that f and g arelength increasing and polynomial-time invertible, present a polynomial-timeprocedure for deciding membership in the set U1.Prove the same for the sets V1 = f(f � g)i(x) : x 2 F ^ i � 0g and V2 =f(f � g)i(f(x)) : x2G ^ i�0g.3. Note that U2 � G, and de�ne �(x) def= f(x) if x 2 U1 and �(x) def= g�1(x)otherwise.30When given a string that is not in the image of the mapping, the inverting algorithm returnsa special symbol.

2.4. THREE RELATIVELY ADVANCED TOPICS 113(a) Prove that � is a Karp-reduction of S to T .(b) Note that � maps U1 to f(U1) = ff(x) : x 2 U1g = V2 and U2 tog�1(U2) = fg�1(x) : x2U2g = V1. Prove that � is one-to-one and onto.Observe that ��1(x) = f�1(x) if x 2 f(U1) and ��1(x) = g(x) otherwise.Prove that ��1 is a Karp-reduction of T to S. Infer that �(S) = T .Using Exercise 2.30, infer that all natural NP-complete sets are isomorphic.Exercise 2.32 Prove that a set S is Karp-reducible to some set in NP if and onlyif S is in NP .Guideline: For the non-trivial direction, see the proof of Proposition 2.34.Exercise 2.33 Recall that the empty set is not Karp-reducible to f0; 1g�, whereasany set is Cook-reducible to its complement. Thus our focus here is on the Karp-reducibility of non-trivial sets to their complements, where a set is non-trivial if itis neither empty nor contains all strings. Furthermore, since any non-trivial set inP is Karp-reducible to its complement (see Exercise 2.7), we assume that P 6= NPand focus on sets in NP n P .1. Prove that NP = coNP implies that some sets in NPnP are Karp-reducibleto their complements.2. Prove that NP 6= coNP implies that some sets in NP n P are not Karp-reducible to their complements.Guideline: Use NP-complete sets in both parts, and Exercise 2.32 in the second part.Exercise 2.34 Referring to the proof of Theorem 2.28, prove that the function fis unbounded (i.e., for every i there exists an n such that n3 steps of the processde�ned in the proof allow for failing the i+ 1st machine).Guideline: Note that f is monotonically non-decreasing (because more steps allow to failat least as many machines). Assume, towards the contradiction that f is bounded. Leti = supn2Nff(n)g and n0 be the smallest integer such that f(n0) = i. If i is odd then theset F determined by f is co-�nite (because F = fx : f(jxj)�1 (mod 2)g � fx : jxj�n0g).In this case, the i+1st machine tries to decide S\F (which di�ers from S on �nitely manystrings), and must fail on some x. Derive a contradiction by showing that the number ofsteps taken till reaching and considering this x is at most exp(poly(jxj)), which is smallerthan n3 for some su�ciently large n. A similar argument applies to the case that i iseven, where we use the fact that F � fx : jxj<n0g is �nite and so the relevant reductionof S to S \ F must fail on some input x.Exercise 2.35 Prove that if the promise problem � is Cook-reducible to a promiseproblem that is solvable in polynomial-time, then � is solvable in polynomial-time.Note that the solver may not halt on inputs that violate the promise.Guideline: Any polynomial-time algorithm solving any promise problem can be modi�edsuch that it halts on all inputs.

114 CHAPTER 2. P, NP AND NP-COMPLETENESSExercise 2.36 (NP-complete promise problems in coNP (following [68]))Consider the promise problem xSAT, having instances that are pairs of CNF formu-lae. The yes-instances consists of pairs (�1; �2) such that �1 is satis�able and �2 isunsatis�able, whereas the no-instances consists of pairs such that �1 is unsatis�ableand �2 is satis�able.1. Show that xSAT is in the intersection of (the promise problem classes thatare analogous to) NP and coNP .2. Prove that any promise problem in NP is Cook-reducible to xSAT. In de-signing the reduction, recall that queries that violate the promise may beanswered arbitrarily.Guideline: Note that the promise problem version of NP is reducible to SAT,and show a reduction of SAT to xSAT. Speci�cally, show that the search problemassociated with SAT is Cook-reducible to xSAT, by adapting the ideas of the proofof Proposition 2.15. That is, suppose that we know (or assume) that � is a pre�xof a satisfying assignment to �, and we wish to extend � by one bit. Then, for each� 2 f0; 1g, we construct a formula, denoted �0�, by setting the �rst j� j+1 variablesof � according to the values ��. We query the oracle about the pair (�01; �00), andextend � accordingly (i.e., we extend � by the value 1 if and only if the answer ispositive). Note that if both �01 and �00 are satis�able then it does not matter whichbit we use in the extension, whereas if exactly one formula is satis�able then theoracle answer is reliable.3. Pinpoint the source of failure of the proof of Theorem 2.35 when applied tothe reduction provided in the previous item.

Chapter 3Variations on P and NPCast a cold eyeOn life, on death.Horseman, pass by!W.B. Yeats, Under Ben BulbenIn this chapter we consider variations on the complexity classes P and NP. Werefer speci�cally to the non-uniform version of P, and to the Polynomial-time Hier-archy (which extends NP). These variations are motivated by relatively technicalconsiderations; still, the resulting classes are referred to quite frequently in theliterature.Summary: Non-uniform polynomial-time (P/poly) captures e�cientcomputations that are carried out by devices that can each only handleinputs of a speci�c length. The basic formalism ignore the complexityof constructing such devices (i.e., a uniformity condition). A �ner for-malism that allows to quantify the amount of non-uniformity refers toso called \machines that take advice."The Polynomial-time Hierarchy (PH) generalizes NP by consideringstatements expressed by quanti�ed Boolean formulae with a �xed num-ber of alternations of existential and universal quanti�ers. It is widelybelieved that each quanti�er alternation adds expressive power to theclass of such formulae.The two di�erent classes are related by showing that if NP is containedin P/poly then the Polynomial-time Hierarchy collapses to its secondlevel. This result is commonly interpreted as supporting the commonbelief that non-uniformity is irrelevant to the P-vs-NP Question; that is,although P/poly extends beyond the class P, is is believed that P/polydoes not contain NP.Except for the latter result, which is presented in Section 3.2.3, the treatments ofP/poly (in Section 3.1) and of the Polynomial-time Hierarchy (in Section 3.2) areindependent of one another. 117

118 CHAPTER 3. VARIATIONS ON P AND NP3.1 Non-uniform polynomial-time (P/poly)In this section we consider two formulations of the notion of non-uniform polynomial-time, based on the two models of non-uniform computing devices that were pre-sented in Section 1.2.4. That is, we specialize the treatment of non-uniform com-puting devices, provided in Section 1.2.4, to the case of polynomially boundedcomplexities. It turns out that both (polynomially bounded) formulations allowfor solving the same class of computational problems, which is a strict superset ofthe class of problems solvable by polynomial-time algorithms.The two models of non-uniform computing devices are Boolean circuits and\machines that take advice" (cf. x1.2.4.1 and x1.2.4.2, respectively). We will focuson the restriction of both models to the case of polynomial complexities, considering(non-uniform) polynomial-size circuits and polynomial-time algorithms that take(non-uniform) advice of polynomially bounded length.The main motivation for considering non-uniform polynomial-size circuits isthat their computational limitations imply analogous limitations on polynomial-time algorithms. The hope is that, as is often the case in mathematics and Science,disposing of an auxiliary condition (i.e., uniformity) that seems secondary1 and isnot well-understood may turn out fruitful. In particular, the (non-uniform) circuitmodel facilitates a low-level analysis of the evolution of a computation, and allowfor the application of combinatorial techniques. The bene�t of this approach hasbeen demonstrated in the study of restricted classes of circuits (see Sections B.2.2and B.2.3).The main motivation for considering polynomial-time algorithms that take poly-nomially bounded advice is that such devices are useful in modeling auxiliary in-formation that is available to possible e�cient strategies that are of interest to us.We mention two such settings. In cryptography (see Appendix C), the advice isused for accounting for auxiliary information that is available to an adversary. Inthe context of derandomization (see Section 8.3), the advice is used for account-ing for the main input to the randomized algorithm. In addition, the model ofpolynomial-time algorithms that take advice allows for a quantitative study of theamount of non-uniformity, ranging from zero to polynomial.3.1.1 Boolean CircuitsWe refer the reader to x1.2.4.1 for a de�nition of (families of) Boolean circuitsand the functions computed by them. For concreteness and simplicity, we assumethroughout this section that all circuits have bounded fan-in. We highlight thefollowing result stated in x1.2.4.1:Theorem 3.1 (circuit evaluation): There exists a polynomial-time algorithm that,given a circuit C : f0; 1gn ! f0; 1gm and an n-bit long string x, returns C(x).1The common belief is that the issue of non-uniformity is irrelevant to the P-vs-NP Question;that is, that resolving the latter question by proving that P 6= NP is not easier than provingthat NP does not have polynomial-size circuits. For further discussion see Appendix B.2 andSection 3.2.3.

3.1. NON-UNIFORM POLYNOMIAL-TIME (P/POLY) 119Recall that the algorithm works by performing the \value-determination" processthat underlies the de�nition of the computation of the circuit on a given input.This process assigns values to each of the circuit vertices based on the values ofits children (or the values of the corresponding bit of the input, in the case of aninput-terminal vertex).Circuit size as a complexity measure. We recall the de�nitions of circuitcomplexity presented in to x1.2.4.1: The size of a circuit is de�ned as the numberof edges, and the length of its description is almost linear in the latter; that is, acircuit of size s is commonly described by the list of its edges and the labels of itsvertices, which means that its description length is O(s log s). We are interestedin families of circuits that solve computational problems, and thus we say that thecircuit family (Cn)n2N computes the function f : f0; 1g� ! f0; 1g� if for everyx 2 f0; 1g� it holds that Cjxj(x) = f(x). The size complexity of this family is thefunction s : N ! N such that s(n) is the size of Cn. The circuit complexity of afunction f , denoted sf , is the size-complexity of the smallest family of circuits thatcomputes f . An equivalent formulation follows.De�nition 3.2 (circuit complexity): The circuit complexity of f : f0; 1g� ! f0; 1g�is the function sf : N ! N such that sf (n) is the size of the smallest circuit thatcomputes the restriction of f to n-bit strings.We stress that non-uniformity is implicit in this de�nition, because no conditionsare made regarding the relation between the various circuits that are used to com-pute the function value on di�erent input lengths.An interesting feature of De�nition 3.2 is that, unlike in the case of uniformmodel of computation, it allows considering the actual complexity of the functionrather than an upper-bound on its complexity (cf. x1.2.3.5 and Section 4.2.1). Thisis a consequence of the fact that the circuit model has no \free parameters" (suchas various parameters of the possible algorithm that is use in the uniform model).2We will be interested in the class of problems that are solvable by families ofpolynomial-size circuits. That is, a problem is solvable by polynomial-size circuits ifit can be solved by a function f that has polynomial circuit complexity (i.e., thereexists a polynomial p such that sf (n) � p(n), for every n 2 N).A detour: uniform families. A family of polynomial-size circuits (Cn)n iscalled uniform if given n one can construct the circuit Cn in poly(n)-time. Moregenerally:De�nition 3.3 (uniformity): A family of circuits (Cn)n is called uniform if thereexists an algorithm that on input n outputs Cn within a number of steps that ispolynomial in the size of Cn.2Advanced comment: The \free parameters" in the uniform model include the length ofthe description of the �nite algorithm and its alphabet size. Note that these \free parameters"underly linear speedup results such as Exercise 4.4, which in turn prevent the speci�cation of theexact (uniform) complexities of functions.

120 CHAPTER 3. VARIATIONS ON P AND NPWe note that stronger notions of uniformity have been considered. For example,one may require the existence of a polynomial-time algorithm that on input n andv, returns the label of vertex v as well as the list of its children (or an indicationthat v is not a vertex in Cn). For further discussion see Section 5.2.3. Turningback to De�nition 3.3, we note that indeed the computation of a uniform family ofcircuits can be emulated by a uniform computing device.Proposition 3.4 If a problem is solvable by a uniform family of polynomial-sizecircuits then it is solvable by a polynomial-time algorithm.As was hinted in x1.2.4.1, the converse holds as well. The latter fact follows easilyfrom the proof of Theorem 2.21 (see also the proof of Theorem 3.6).Proof: On input x, the algorithm operates in two stages. In the �rst stage,it invokes the algorithm guaranteed by the uniformity condition, on input n def=jxj, and obtains the circuit Cn. Next, it invokes the circuit evaluation algorithm(asserted in Theorem 3.1) on input Cn and x, and obtains Cn(x). Since the size ofCn (as well as its description length) is polynomial in n, it follows that each stageof our algorithm runs in polynomial time (i.e., polynomial in n = jxj). Thus, thealgorithm emulates the computation of Cjxj(x), and does so in time polynomial inthe length of its own input (i.e., x).3.1.2 Machines that take adviceGeneral (i.e., possibly non-uniform) families of polynomial-size circuits and uniformfamilies of polynomial-size circuits are two extremes with respect to the \amounts ofnon-uniformity" in the computing device. Intuitively, in the former, non-uniformityis only bounded by the size of the device, whereas in the latter the amounts of non-uniformity is zero. Here we consider a model that allows to decouple the size ofthe computing device from the amount of non-uniformity, which may indeed rangefrom zero to the device's size. Speci�cally, we consider algorithms that \take anon-uniform advice" that depends only on the input length. The amount of non-uniformity will be de�ned to equal the length of the corresponding advice (as afunction of the input length). Thus, we specialize De�nition 1.12 to the case ofpolynomial-time algorithms.De�nition 3.5 (non-uniform polynomial-time and P=poly): We say that a func-tion f is computed in polynomial-time with advice of length ` : N ! N if these existsa polynomial-time algorithm A and an in�nite advice sequence (an)n2N such that1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).2. For every n 2 N , it holds that janj = `(n).We say that a computational problem can be solved in polynomial-time with ad-vice of length ` if a function solving this problem can be computed within theseresources. We denote by P=` the class of decision problems that can be solved inpolynomial-time with advice of length `, and by P=poly the union of P=p takenover all polynomials p.

3.1. NON-UNIFORM POLYNOMIAL-TIME (P/POLY) 121Clearly, P=0 = P . But allowing some (non-empty) advice increases the power ofthe class (see Theorem 3.7), and allowing advice of length comparable to the timecomplexity yields a formulation equivalent to circuit complexity (see Theorem 3.6).We highlight the greater exibility available by the formalism of machines thattake advice, which allows for separate speci�cation of time complexity and advicelength. (Indeed, this comes at the expense of a more cumbersome formulation;thus, we shall prefer the circuit formulation whenever we consider the case thatboth complexity measures are polynomial.)Relation to families of polynomial-size circuits. As hinted before, the classof problems solvable by polynomial-time algorithms with polynomially boundedadvice equals the class of problems solvable by families of polynomial-size circuits.For concreteness, we state this fact for decision problems.Theorem 3.6 A decision problem is in P=poly if and only if it can be solved by afamily of polynomial-size circuits.More generally, for any function t, the following proof establishes that equivalence ofthe power of polynomial-time machines that take advice of length t versus familiesof circuits of size polynomially related to t.Proof Sketch: Suppose that a problem can be solved by a polynomial-time al-gorithm A using the polynomially bounded advice sequence (an)n2N. We obtaina family of polynomial-size circuits that solves the same problem by adapting theproof of Theorem 2.21. Speci�cally, we observe that the computation of A(ajxj; x)can be emulated by a circuit of poly(jxj)-size, which incorporates ajxj and is givenx as input. That is, we construct a circuit Cn such that Cn(x) = A(an; x) holdsfor every x 2 f0; 1gn (analogously to the way Cx was constructed in the proofof Theorem 2.21, where it holds that Cx(y) = MR(x; y) for every y of adequatelength).3On the other hand, given a family of polynomial-size circuits, we obtain apolynomial-time advice-taking machine that emulates this family when using advicethat provide the description of the relevant circuits. Speci�cally, we transform theevaluation algorithm asserted in Theorem 3.1 into a machine that, given advice �and input x, treats � as a description of a circuit C and evaluates C(x). Indeed, weuse the fact that a circuit of size s can be described by a string of length O(s log s),where the log factor is due to the fact that a graph with v vertices and e edges canbe described by a string of length 2e log2 v.Another perspective. A set S is called sparse if there exists a polynomial p suchthat for every n it holds that jS \f0; 1gnj � p(n). We note that P=poly equals theclass of sets that are Cook-reducible to a sparse set (see Exercise 3.2). Thus, SATis Cook-reducible to a sparse set if and only if NP � P=poly. In contrast, SAT isKarp-reducible to a sparse set if and only if NP = P (see Exercise 3.12).3Advanced comment: Note that an is the only \non-uniform" part in the circuit Cn. Thus,if algorithm A takes no advice (i.e., an = � for every n) then we obtain a uniform family ofcircuits.

122 CHAPTER 3. VARIATIONS ON P AND NPThe power of P=poly. In continuation to Theorem 1.13 (which focuses on adviceand ignores the time-complexity of the machine that takes this advice), we provethe following (stronger) result.Theorem 3.7 (the power of advice, revisited): The class P=1 � P=poly containsP as well as some undecidable problems.Actually, P=1 � P=poly. Furthermore, by using a counting argument, one canshow that for any two polynomially bounded functions `1; `2 : N ! N such that`2 � `1 > 0 is unbounded, it holds that P=`1 is strictly contained in P=`2; seeExercise 3.3.Proof: Clearly, P = P=0 � P=1 � P=poly. To prove that P=1 contains someundecidable problems, we review the proof of Theorem 1.13. The latter proofestablished the existence of an uncomputable Boolean function that only dependon its input length. That is, there exists an undecidable set S � f0; 1g� such thatfor every pair (x; y) of equal length strings it holds that x 2 S if and only if y 2 S.In other words, for every x 2 f0; 1g� it holds that x 2 S if and only if 1jxj 2 S. Butsuch a set is easily decidable in polynomial-time by a machine that takes one bit ofadvice; that is, consider the algorithm A that satis�es A(a; x) = a (for a 2 f0; 1gand x 2 f0; 1g�) and the advice sequence (an)n2N such that an = 1 if and only if1n 2 S. Note that, indeed, A(ajxj; x) = 1 if and only if x 2 S.3.2 The Polynomial-time Hierarchy (PH)We start with an informal motivating discussion, which will be made formal inSection 3.2.1.Sets in NP can be viewed as sets of valid assertions that can be expressed asquanti�ed Boolean formulae using only existential quanti�ers. That is, a set S isin NP if there is a Karp-reduction of S to the problem of deciding whether or notan existentially quanti�ed Boolean formula is valid (i.e., an instance x is mappedby this reduction to a formula of the form 9y1 � � � 9ym(x)�x(y1; :::; ym(x))).The conjectured intractability of NP seems due to the long sequence of exis-tential quanti�ers. Of course, if somebody else (i.e., a \prover") were to provideus with an adequate assignment (to the yi's) whenever such an assignment existsthen we would be in good shape. That is, we can e�ciently verify proofs of validityof existentially quanti�ed Boolean formulae.But what if we want to verify the validity of a universally quanti�ed Booleanformulae (i.e., formulae of the form 8y1 � � � 8ym�(y1; :::; ym)). Here we seem toneed the help of a totally di�erent entity: we need a \refuter" that is guaranteedto provide us with a refutation whenever such exist, and we need to believe that ifwe were not presented with such a refutation then it is the case that no refutationexists (and hence the universally quanti�ed formula is valid). Indeed, this newsetting (of a \refutation system") is fundamentally di�erent from the setting of aproof system: In a proof system we are only convinced by proofs (to assertions)that we have veri�ed by ourselves, whereas in the \refutation system" we trust the

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 123\refuter" to provide evidence against false assertions.4 Furthermore, there seemsto be no way of converting one setting (e.g., the proof system) into another (resp.,the refutation system).Taking an additional step, we may consider a more complicated system in whichwe use two agents: a \supporter" that tries to provide evidence in favor of anassertion and an \objector" that tries to refute it. These two agents conduct adebate (or an argument) in our presence, exchanging messages with the goal ofmaking us (the referee) rule their way. The assertions that can be proven in thissystem take the form of general quanti�ed formulae with alternating sequences ofquanti�ers, where the number of alternating sequences equals the number of roundsof interaction in the said system. We stress that the exact length of each sequenceof quanti�ers of the same type does not matter, what matters is the number ofalternating sequences, denoted k.The aforementioned system of alternations can be viewed as a two-party game,and we may ask ourselves which of the two parties has a k-move winning strategy.In general, we may consider any (0-1 zero-sum) two-party game, in which the game'sposition can be e�ciently updated (by any given move) and e�ciently evaluated.For such a �xed game, given an initial position, we may ask whether the �rst partyhas a (k-move) winning strategy. It seems that answering this type of question forsome �xed k does not necessarily allow answering it for k + 1. We now turn toformalize the foregoing discussion.3.2.1 Alternation of quanti�ersIn the following de�nition, the aforementioned propositional formula �x is replacedby the input x itself. (Correspondingly, the combination of the Karp-reductionand a formula-evaluation algorithm is replaced by the veri�cation algorithm V (seeExercise 3.7).) This is done in order to make the comparison to the de�nitionof NP more transparent (as well as to �t the standard presentations). We alsoreplace a sequence of Boolean quanti�ers of the same type by a single correspondingquanti�er that quanti�es over all strings of the corresponding length.De�nition 3.8 (the class �k): For a natural number k, a decision problem S �f0; 1g� is in �k if there exists a polynomial p and a polynomial-time algorithm Vsuch that x 2 S if and only if9y12f0; 1gp(jxj)8y22f0; 1gp(jxj)9y32f0; 1gp(jxj) � � �Qkyk2f0; 1gp(jxj)s.t. V (x; y1; :::; yk) = 1where Qk is an existential quanti�er if k is odd and is a universal quanti�er oth-erwise.4More formally, in proof systems the soundness condition relies only on the actions of the ver-i�er, whereas completeness also relies on the prover's action (i.e., its using an adequate strategy).In contrast, in \refutation system" the soundness condition relies on the proper actions of therefuter, whereas completeness does not depend on the refuter's actions.

124 CHAPTER 3. VARIATIONS ON P AND NPNote that �1 = NP and �0 = P . The Polynomial-time Hierarchy, denoted PH,is the union of all the aforementioned classes (i.e., PH = [k�k), and �k is oftenreferred to as the kth level of PH. The levels of the Polynomial-time Hierarchycan also be de�ned inductively, by de�ning �k+1 based on �k def= co�k, whereco�k def= ff0; 1g� n S : S 2 �kg (cf. Eq. (2.4)).Proposition 3.9 For every k � 0, a set S is in �k+1 if and only if there exists apolynomial p and a set S0 2 �k such that S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g.Proof: Suppose that S is in �k+1 and let p and V be as in De�nition 3.8. Thende�ne S0 as the set of pairs (x; y) such that jyj = p(jxj) and8z12f0; 1gp(jxj)9z22f0; 1gp(jxj) � � �Qkzk2f0; 1gp(jxj) s.t. V (x; y; z1; :::; zk) = 1 :Note that x 2 S if and only if there exists y 2 f0; 1gp(jxj) such that (x; y) 2 S0, andthat S0 2 �k (see Exercise 3.6).On the other hand, suppose that for some polynomial p and a set S0 2 �k itholds that S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g. Then, for some p0 and V 0, itholds that (x; y) 2 S0 if and only if jyj = p(jxj) and8z12f0; 1gp0(jxj)9z22f0; 1gp0(jxj) � � �Qkzk2f0; 1gp0(jxj) s.t. V 0((x; y); z1; :::; zk) = 1(see Exercise 3.6 again). By using a suitable encoding of y and the zi's (as stringsof length max(p(jxj); p0(jxj))) and a trivial modi�cation of V 0, we conclude thatS 2 �k+1.Determining the winner in k-move games. De�nition 3.8 can be interpretedas capturing the complexity of determining the winner in certain e�cient two-partygame. Speci�cally, we refer to two-party games that satisfy the following threeconditions:1. The parties alternate in taking moves that e�ect the game's (global) position,where each move has a description length that is bounded by a polynomialin the length of the current position.2. The current position can be updated in polynomial-time based on the previ-ous position and the current party's move.53. The winner in each position can be determined in polynomial-time.5Note that, since we consider a constant number of moves, the length of all possible �nalpositions is bounded by a polynomial in the length of the initial position, and thus all items havean equivalent form in which one refers to the complexity as a function of the length of the initialposition. The latter form allows for a smooth generalization to games with a polynomial numberof moves (as in Section 5.4), where it is essential to state all complexities in terms of the lengthof the initial position.

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 125Note that the set of initial positions for which the �rst party has a k-move winningstrategy with respect to the foregoing game is in �k. Speci�cally, denoting thisset by G, note that an initial position x is in G if there exists a move y1 for the�rst party, such that for every response move y2 of the second party, there exists amove y3 for the �rst party, etc, such that after k moves the parties reach a positionin which the �rst party wins, where the �nal position is determined according tothe forgoing Item 2 and the winner in it is determined according to Item 3.6 Thus,G 2 �k. On the other hand, note that any set S 2 �k can be viewed as the set ofinitial positions (in a suitable game) for which the �rst party has a k-move winningstrategy. Speci�cally, x2S if starting at the initial position x, there exists a movey1 for the �rst party, such that for every response move y2 of the second party,there exists a move y3 for the �rst party, etc, such that after k moves the partiesreach a position in which the �rst party wins, where the �nal position is de�ned as(x; y1; :::; yk) and the winner is determined by the predicate V (as in De�nition 3.8).The collapsing e�ect of some equalities. Extending the intuition that un-derlies the NP 6= coNP conjecture, it is commonly conjectured that �k 6= �k forevery k 2 N . The failure of this conjecture causes the collapse of the Polynomial-time Hierarchy to the corresponding level.Proposition 3.10 For every k � 1, if �k = �k then �k+1 = �k, which in turnimplies PH = �k.The converse also holds (i.e., PH = �k implies �k+1 = �k and �k = �k). Needlessto say, Proposition 3.10 does not seem to hold for k = 0.Proof: Assuming that �k = �k, we �rst show that �k+1 = �k. For any set Sin �k+1, by Proposition 3.9, there exists a polynomial p and a set S0 2 �k suchthat S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g. Using the hypothesis, we infer thatS0 2 �k, and so (using Proposition 3.9 and k � 1) there exists a polynomial p0 anda set S00 2 �k�1 such that S0 = fx0 : 9y02f0; 1gp0(jx0j) s.t. (x0; y0)2S00g. It followsthat S = fx : 9y2f0; 1gp(jxj)9z2f0; 1gp0(j(x;y)j) s.t. ((x; y); z)2S00g:By collapsing the two adjacent existential quanti�ers (and using Proposition 3.9yet again), we conclude that S 2 �k. This proves the �rst part of the proposition.Turning to the second part, we note that �k+1 = �k (or, equivalently, �k+1 =�k) implies �k+2 = �k+1 (again by using Proposition 3.9), and similarly �j+2 =�j+1 for any j � k. Thus, �k+1 = �k implies PH = �k.6Let U be the update algorithm of Item 2 and W be the algorithm that decides the winneras in Item 3. Then the �nal position is given by computing xi U(xi�1; yi), for i = 1; :::; k(where x0 = x), and the winner is W (xk). Note that, by Item 1, there exists a polynomial psuch that jyij � p(jxij), for every i 2 [k], and it follows that jyij � poly(jxj). Using a suitableencoding, we obtain a polynomial-time algorithm V such that V (x; y1; :::; yk) = W (xk), wherexk = U(� � �U(U(U(x; y1); y2); y3) � � � ; yk).

126 CHAPTER 3. VARIATIONS ON P AND NPDecision problems that are Cook-reductions to NP. The Polynomial-timeHierarchy contains all decision problems that are Cook-reductions to NP (seeExercise 3.4). As shown next, the latter class contains many natural problems.Recall that in Section 2.2.2 we de�ned two types of optimization problems andshowed that under some natural conditions these two types are computationallyequivalent (under Cook reductions). Speci�cally, one type of problems referredto �nding solutions that have a value exceeding some given threshold, whereas thesecond type called for �nding optimal solutions. In Section 2.3 we presented severalproblems of the �rst type, and proved that they are NP-complete. We note thatcorresponding versions of the second type are believed not to be in NP. For example,we discussed the problem of deciding whether or not a given graph G has a cliqueof a given size K, and showed that it is NP-complete. In contract, the problem ofdeciding whether or not K is the maximum clique size of the graph G is not known(and quite unlikely) to be in NP , although it is Cook-reducible to NP . Thus, theclass of decision problems that are Cook-reducible to NP contains many naturalproblems that are unlikely to be in NP . The Polynomial-time Hierarchy containsall these problems.Complete problems and a relation to AC0. We note that quanti�ed Booleanformulae with a bounded number of quanti�er alternation provide complete prob-lems for the various levels of the Polynomial-time Hierarchy (see Exercise 3.7).We also note the correspondence between these formulae and (highly uniform)constant-depth circuits of unbounded fan-in that get as input the truth-table ofthe underlying (quanti�er-free) formula (see Exercise 3.8).3.2.2 Non-deterministic oracle machinesThe Polynomial-time Hierarchy is commonly de�ned in terms of non-deterministicpolynomial-time (oracle) machines that are given oracle access to a set in the lowerlevel of the same hierarchy. Such machines are de�ned by combining the de�nitionsof non-deterministic (polynomial-time) machines (cf. De�nition 2.7) and oraclemachines (cf. De�nition 1.11). Speci�cally, for an oracle f : f0; 1g� ! f0; 1g�, anon-deterministic oracle machine M , and a string x, one considers the question ofwhether or not there exists an accepting (non-deterministic) computation of M oninput x and access to the oracle f . The class of sets that can be accepted by non-deterministic polynomial-time (oracle) machines with access to f is denoted NPf .(We note that this notation makes sense because we can associate the class NPwith a collection of machines that lends itself to be extended to oracle machines.)For any class of decision problems C, we denote by NPC the union of NPf takenover all decision problems f in C. The following result provides an alternativede�nition of the Polynomial-time Hierarchy.Proposition 3.11 For every k � 1, it holds that �k+1 = NP�k .Proof: Containment in one direction (i.e., �k+1 � NP�k) is almost straight-forward: For any S 2 �k+1, let S0 2 �k and p be as in Proposition 3.9; that is,

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 127S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g. Consider the non-deterministic oracle ma-chine that, on input x, non-deterministically generates y 2 f0; 1gp(jxj) and acceptsif and only if (the oracle indicates that) (x; y) 2 S0. This machine demonstratesthat S 2 NP�k = NP�k , where the equality holds by letting the oracle machineip each (binary) answer that is provided by the oracle.7For the opposite containment (i.e., NP�k � �k+1), we generalize the main ideaunderlying the proof of Theorem 2.35 (which referred to PNP\coNP). Speci�cally,consider any S 2 NP�k , and let M be a non-deterministic polynomial-time oraclemachine that accepts S when given oracle access to S0 2 �k. Note that8 machineM may issue several queries to S0, and these queries may be determined basedon previous oracle answers. To simplify the argument, we assume, without loss ofgenerality, that at the very beginning of its execution machine M guesses (non-deterministic) all oracle answers and accepts only if the actual answers match itsguesses. Thus, M 's queries to the oracle are determined by its input, denoted x,and its non-deterministic choices, denoted y. We denote by q(i)(x; y) the ith querymade by M (on input x and non-deterministic choices y), and by a(i)(x; y) thecorresponding (a priori) guessed answer (which is a bit in y). Thus, x 2 S if andonly if there exists y 2 f0; 1gpoly(jxj) such that the following two conditions hold:1. Machine M accepts when it is invoked on input x, makes non-deterministicchoices y, and is given a(i)(x; y) as the answer to its ith oracle query. Wedenote the corresponding (\acceptance") predicate, which is polynomial-timecomputable, by A(x; y).We stress that we do not assume here that the a(i)(x; y)'s are consistent withanswers that would have been given by the oracle S0; this will be the subjectof the next condition. The current condition only refers to the decision of Mon a speci�c input, when M makes a speci�c sequence of non-deterministicchoices, and is provided with speci�c answers.2. Each bit a(i)(x; y) is consistent with S0; that is, for every i, it holds thata(i)(x; y)=1 if and only if q(i)(x; y)2S0.Denoting the number of queries made by M (on input x and non-deterministicchoices y) by q(x; y) � poly(jxj), it follows that x 2 S if and only if9y0@A(x; y) ^ q(x;y)î=1 �(a(i)(x; y)=1), (q(i)(x; y)2S0)�1A: (3.1)Denoting the veri�cation algorithm of S0 by V 0, Eq. (3.1) equals9y0@A(x; y) ^ q(x;y)î=1 �(a(i)(x; y)=1), 9y(i)1 8y(i)2 � � �Qky(i)k V 0(q(i)(x; y); y(i)1 ; :::; y(i)k)=1�1A:7Do not get confused by the fact that the class of oracles may not be closed under comple-mentation. From the point of view of the oracle machine, the oracle is merely a function, and themachine may do with its answer whatever it pleases (and in particular negate it).8Indeed, this is unlike the speci�c machine used towards proving that �k+1 � NP�k .

128 CHAPTER 3. VARIATIONS ON P AND NPThe proof is completed by observing that the foregoing expression can be rear-ranged to �t the de�nition of �k+1. Details follow.Starting with the foregoing expression, we �rst replace the sub-expression E1 ,E2 by (E1 ^ E2) _ (:E1 ^ :E2), and then pull all quanti�ers outside.9 This waywe obtain a quanti�ed expression with k + 1 alternating quanti�ers, starting withan existential quanti�er. (Note that we get k + 1 alternating quanti�ers ratherthan k, because the case of :a(i)(x; y) = 1 introduces an expression of the form:9y(i)1 8y(i)2 � � �Qky(i)k V 0(q(i)(x; y); y(i)1 ; :::; y(i)k) = 1, which in turn is equivalent tothe expression 8y(i)1 9y(i)2 � � �Qky(i)k :V 0(q(i)(x; y); y(i)1 ; :::; y(i)k) = 1.) Once this isdone, we may incorporate the computation of all the q(i)(x; y)'s (and a(i)(x; y)'s)as well as the polynomial number of invocations of V 0 (and other logical operations)into the new veri�cation algorithm V . It follows that S 2 �k+1.A general perspective { what does CC21 mean? By the foregoing discussion itshould be clear that the class CC21 can be de�ned for two complexity classes C1 andC2, provided that C1 is associated with a class of standard machines that generalizesnaturally to a class of oracle machines. Actually, the class CC21 is not de�ned basedon the class C1 but rather by analogy to it. Speci�cally, suppose that C1 is theclass of sets that are recognizable (or rather accepted) by machines of certain type(e.g., deterministic or non-deterministic) with certain resource bounds (e.g., timeand/or space bounds). Then, we consider analogous oracle machines (i.e., of thesame type and with the same resource bounds), and say that S 2 CC21 if there existsan adequate oracle machine M1 (i.e., of this type and resource bounds) and a setS2 2 C2 such that MS21 accepts the set S.Decision problems that are Cook-reductions to NP, revisited. Using theforegoing notation, the class of decision problems that are Cook-reductions to NPis denoted PNP , and thus is a subset of NPNP = �2 (see Exercise 3.9). Incontrast, recall that the class of decision problems that are Karp-reductions to NPequals NP .The world view. Using the foregoing notation and relying on Exercise 3.9, wenote that for every k � 1 it holds that �k [�k � P�k � �k+1 \ �k+1. SeeFigure 3.1 that depicts the situation, assuming that all the containments are strict.3.2.3 The P/poly-versus-NP Question and PHAs stated in Section 3.1, a main motivation for the de�nition of P=poly is thehope that it can serve to separate P from NP (by showing that NP is not even9For example, note that for predicates P1 and P2, the expression 9y (P1(y) , 9z P2(y; z)) isequivalent to the expression 9y ((P1(y) ^ 9z P2(y; z)) _ (:P1(y) ^ :9z P2(y; z))), which in turnis equivalent to the expression 9y9z08z00 ((P1(y) ^ P2(y; z0)) _ ((:P1(y) ^ :P2(y; z00))). Notethat pulling the quanti�ers outside in ^ti=19y(i)8z(i)P (y(i); z(i)) yields an expression of the type9y(1); :::; y(t)8z(1); :::; z(t) ^ti=1 P (y(i); z(i)).

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 129
Σk

Σk

Σk+1

Π

Π

k
P

k+1

Figure 3.1: Two levels of the Polynomial-time Hierarchy.contained in P=poly, which is a (strict) superset of P). In light of the fact thatP=poly extends far beyond P (and in particular contains undecidable problems),one may wonder if this approach does not run the risk of asking too much (becauseit may be that NP is in P=poly even if P 6= NP). The common feeling is that theadded power of non-uniformity is irrelevant with respect to the P-vs-NP Question.Ideally, we would like to know that NP � P=poly may occur only if P = NP ,which may be phrased as saying that the Polynomial-time Hierarchy collapses to itszero level. The following result seems to get close to such an implication, showingthat NP � P=poly may occur only if the Polynomial-time Hierarchy collapses toits second level.Theorem 3.12 If NP � P=poly then �2 = �2.Recall that �2 = �2 implies PH = �2 (see Proposition 3.10). Thus, an unexpectedbehavior of the non-uniform complexity class P=poly implies an unexpected behav-ior in the world of uniform complexity (which is the habitat of PH).Proof: Using the hypothesis (i.e., NP � P=poly) and starting with an arbitraryset S 2 �2, we shall show that S 2 �2. Let us describe, �rst, our high-levelapproach.Loosely speaking, S 2 �2 means that x 2 S if and only if for all y thereexists a z such that some (�xed) polynomial-time veri�able condition regarding(x; y; z) holds. Note that the residual condition regarding (x; y) is of the NP-type,and thus (by the hypothesis) it can be veri�ed by a polynomial-size circuit. Thissuggests saying that x 2 S if and only if there exists an adequate circuit C suchthat for all y it holds that C(x; y) = 1. Thus, we managed to switch the order ofthe universal and existential quanti�ers. Speci�cally, the resulting assertion is ofthe desired �2-type provided that we can either verify the adequacy condition incoNP (or even in �2) or keep out of trouble even in the case that x 62 S and Cis inadequate. In the following proof we implement the latter option by observing

130 CHAPTER 3. VARIATIONS ON P AND NPthat the hypothesis yields small circuits for NP-search problems (and not only forNP-decision problems). Speci�cally, we obtain (small) circuits that, given (x; y),�nd an NP-witness for (x; y) (whenever such a witness exists), and rely on thefact that we can e�ciently verify the correctness of NP-witnesses. (The alternativeapproach of providing a coNP-type procedure for verifying the adequacy of thecircuit is pursued in Exercise 3.11.)We now turn to a detailed implementation of the foregoing approach. Let S bean arbitrary set in �2. Then, by Proposition 3.9, there exists a polynomial p anda set S0 2 NP such that S = fx : 8y2f0; 1gp(jxj) (x; y)2S0g. Let R0 2 PC be thewitness-relation corresponding to S0; that is, there exists a polynomial p0, such thatx0 = hx; yi 2 S0 if and only if there exists z2f0; 1gp0(jx0j) such that (x0; z) 2 R0. Itfollows thatS = fx : 8y2f0; 1gp(jxj)9z2f0; 1gp0(jhx;yij) (hx; yi; z) 2 R0g: (3.2)Our argument proceeds essentially as follows. By the reduction of PC to NP(see Theorem 2.10), the theorem's hypothesis (i.e., NP � P=poly) implies theexistence of polynomial-size circuits for solving the search problem of R0. Usingthe existence of these circuits, it follows that for any x 2 S there exists a smallcircuit C 0 such that for every y it holds that C 0(x; y) 2 R0(x; y) (because hx; yi 2 S0and hence R0(x; y) 6= ;). On the other hand, for any x 62 S there exists a y suchthat hx; yi 62 S0, and hence for any circuit C 0 it holds that C 0(x; y) 62 R0(x; y)(for the trivial reason that R0(x; y) = ;). Thus, x 2 S if and only if there existsa poly(jxj + p(jxj))-size circuit C 0 such that for all y 2 f0; 1gp(jxj) it holds that(hx; yi; C 0(x; y)) 2 R0. Letting V (x;C 0; y) = 1 if and only if (hx; yi; C 0(x; y)) 2 R0,we infer that S 2 �2. Details follow.Let us �rst spell-out what we mean by polynomial-size circuits for solving asearch problem and further justify their existence for the search problem of R0.In Section 3.1, we have focused on polynomial-size circuits that solve decisionproblems. However, the de�nition sketched in Section 3.1.1 also applies to solvingsearch problems, provided that an appropriate convention is used for encodingsolutions of possibly varying lengths (for instances of �xed length) as strings of�xed length. Next, observe that combining the Cook-reduction of PC to NP withthe hypothesis NP � P=poly, implies that PC is Cook-reducible to P=poly. Inparticular, this implies that any search problem in PC can be solved by a familyof polynomial-size circuits. Note that the resulting circuit that solves n-bit longinstances of such a problem may incorporate polynomially (in n) many circuits,each solving a decision problem for m-bit long instances, where m 2 [poly(n)].Needless to say, the size of the resulting circuit that solves the search problemof the aforementioned R0 2 PC (for instances of length n) is upper-bounded bypoly(n) �Ppoly(n)m=1 poly(m).We next (revisit and) establish the claim that x 2 S if and only if there existsa poly(jxj + p(jxj))-size circuit C 0 such that for all y 2 f0; 1gp(jxj) it holds that(hx; yi; C 0(x; y)) 2 R0. Recall that x 2 S if and only if for every y 2 f0; 1gp(jxj)it holds that (x; y) 2 S0, which means that there exists z 2 f0; 1gp0(jxj) suchthat (hx; yi; z)) 2 R0. Also recall that (by the foregoing discussion) there exist

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 131polynomial-size circuits for solving the search problem of R0. Thus, in the casethat x 2 S, we just use the corresponding circuit C 0 that solves the search prob-lem of R0 on inputs of length jxj+ p(jxj). Indeed, this circuit C 0 only depends onn0 = jxj + p(jxj), which in turn is determined by jxj, and for every x0 2 f0; 1gn0it holds that (x0; C 0(x0)) 2 R0 if and only if x0 2 S0. Thus, for x 2 S, there existsa poly(jxj + p(jxj))-size circuit C 0 such that for every y 2 f0; 1gp(jxj) it holds that(hx; yi; C 0(x; y))) 2 R0. On the other hand, if x 62 S then there exists a y such thatfor all z it holds that (hx; yi; z)) 62 R0. It follows that, in this case, for every C 0there exists a y such that (hx; yi; C 0(x; y))) 62 R0. We conclude that x 2 S if andonly if 9C 02f0; 1gpoly(jxj+p(jxj))8y2f0; 1gp(jxj) (hx; yi; C 0(x; y)) 2 R0: (3.3)The key observation regarding the condition stated in Eq. (3.3) is that it is ofthe desired form (of a �2 statement). Speci�cally, consider the polynomial-timeveri�cation procedure V that given x; y and the description of the circuit C 0, �rstcomputes z C 0(x; y) and accepts if and only if (hx; yi; z) 2 R0, where the lattercondition can be veri�ed in polynomial-time (because R0 2 PC). Denoting thedescription of a potential circuit by hC 0i, the aforementioned (polynomial-time)computation of V is denoted V (x; hC 0i; y), and indeed x 2 S if and only if9hC 0i2f0; 1gpoly(jxj+p(jxj))8y2f0; 1gp(jxj) V (x; hC 0i; y) = 1:Having established that S 2 �2 for an arbitrary S 2 �2, we conclude that �2 � �2.The theorem follows (by applying Exercise 3.9.4).Chapter NotesThe class P=poly was de�ned by Karp and Lipton [132] as part of a general for-mulation of \machines which take advice" [132]. They also noted the equivalenceto the traditional formulation of polynomial-size circuits as well as the e�ect ofuniformity (Proposition 3.4).The Polynomial-Time Hierarchy (PH) was introduced by Stockmeyer [205]. Athird equivalent formulation of PH (via so-called \alternating machines") can befound in [49].The implication of the failure of the conjecture that NP is not contained inP=poly on the Polynomial-time Hierarchy (i.e., Theorem 3.12) was discovered byKarp and Lipton [132]. This interesting connection between non-uniform and uni-form complexity provides the main motivation for presenting P=poly and PH inthe same chapter.ExercisesExercise 3.1 (a small variation on the de�nitions of P=poly) Using an ad-equate encoding of strings of length smaller than n as n-bit strings (e.g., x 2

132 CHAPTER 3. VARIATIONS ON P AND NP[i<nf0; 1gi is encoded as x01n�jxj�1), de�ne circuits (resp., machines that takeadvice) as devices that can handle inputs of various lengths up to a given bound(rather than as devices that can handle inputs of a �xed length). Show that theclass P=poly remains invariant under this change (and Theorem 3.6 remains valid).Exercise 3.2 (sparse sets) A set S � f0; 1g� is called sparse if there exists apolynomial p such that jS \ f0; 1gnj � p(n) for every n.1. Prove that any sparse set is in P=poly. Note that a sparse set may beundecidable.2. Prove that a set is in P=poly if and only if it is Cook-reducible to some sparseset.Guideline: For the forward direction of Part 2, encode the advice sequence (an)n2Nas a sparse set f(1n; i; �n;i) : n 2N ; i � janjg, where �n;i is the ith bit of an. For theopposite direction, note that the emulation of a Cook-reduction to a set S, on input x,only requires knowledge of S \ [poly(jxj)i=1 f0; 1gi.Exercise 3.3 (advice hierarchy) Prove that for any two functions `; � : N ! Nsuch that `(n) < 2n�1 and � is unbounded, it holds that P=` is strictly containedin P=(`+ �).Guideline: For every sequence a = (an)n2N such that janj = `(n) + �(n) � 2n, considerthe set Sa that encodes a such that x 2 Sa \ f0; 1gn if and only if the idx(x)th bit in anequals 1 (and idx(x) � janj), where idx(x) denotes the index of x in f0; 1gn. For moredetails see Section 4.1.Exercise 3.4 Prove that �2 contains all sets that are Cook-reducible to NP .Guideline: This is quite obvious when using the de�nition of �2 as presented in Sec-tion 3.2.2; see Exercise 3.9. Alternatively, the fact can be proved by using some of theideas that underlie the proof of Theorem 2.35, while noting that a conjunction of NP andcoNP assertions forms an assertion of type �2 (see also the second part of the proof ofProposition 3.11).Exercise 3.5 Let � = NP \ coNP . Prove that � equals the class of decisionproblems that are Cook-reducible to � (i.e., � = P�).Guideline: See proof of Theorem 2.35.Exercise 3.6 (the class �k) Recall that �k is de�ned to equal co�k, which inturn is de�ned to equal ff0; 1g� n S : S 2 �kg. Prove that for any natural numberk, a decision problem S � f0; 1g� is in �k if there exists a polynomial p and apolynomial-time algorithm V such that x 2 S if and only if8y12f0; 1gp(jxj)9y22f0; 1gp(jxj)8y32f0; 1gp(jxj) � � �Qkyk2f0; 1gp(jxj)s.t. V (x; y1; :::; yk) = 1where Qk is a universal quanti�er if k is odd and is an existential quanti�er other-wise.

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 133Exercise 3.7 (complete problems for the various levels of PH) A k-alternatingquanti�ed Boolean formula is a quanti�ed Boolean formula with up to k alternat-ing sequences of existential and universal quanti�ers, starting with an existentialquanti�er. For example, 9z19z28z3�(z1; z2; z3) (where the zi's are Boolean vari-ables) is a 2-alternating quanti�ed Boolean formula. Prove that, for every k � 1,the problem of deciding whether or not a k-alternating quanti�ed Boolean formulais valid is �k-complete under Karp-reductions. That is, denoting the aforemen-tioned problem by kQBF, prove that kQBF is in �k and that every problem in �k isKarp-reducible to kQBF.Guideline: Start with the case of odd k. This allows to incorporate the existentialquanti�cation of the auxiliary variables (introduced by the reduction) in the last sequenceof quanti�ers. For even k > 1, consider �rst an analogous complete problem for �k, andthen consider its complement.Exercise 3.8 (on the relation between PH and AC0) Note that there is anobvious analogy between PH and constant-depth circuits of unbounded fan-in,where existential (resp., universal) quanti�ers are represented by \large" W (resp.,V) gates. To articulate this relationship, consider the following de�nitions.� A family of circuits fCNg is called highly uniform if there exists a polynomial-time algorithm that answers local queries regarding the structure of the rel-evant circuit. Speci�cally, on input (N; u; v), the algorithm determines thetype of gates represented by the vertices u and v in CN as well as whetherthere exists a directed edge from u to v. If the vertex represents a terminalthen the algorithm also indicates the index of the corresponding input-bit (oroutput-bit). Note that this algorithm operates in time that polylogarithmicin the size of CN .We focus on family of polynomial-size circuits, meaning that the size of CNis polynomial in N , which in turn represents the number of inputs to CN .� Fixing a polynomial p, a p-succinctly represented input Z 2 f0; 1gN is a circuitcZ of size at most p(log2N) such that for every i 2 [N] it holds that cZ(i)equals the ith bit of Z.� For a �xed family of highly uniform circuits fCNg and a �xed polynomial p,the problem of evaluating a succinctly represented input is de�ned as follows.Given p-succinct representation of an input Z 2 f0; 1gN , determine whetheror not CN (Z) = 1.Prove the following relationship between PH and the problem of evaluating asuccinctly represented input with respect to some families of highly uniform circuitsof bounded-depth.1. For every k and every S 2 �k, show that there exists a family of highlyuniform unbounded fan-in circuits of depth k and polynomial-size such thatS is Karp-reducible to evaluating a succinctly represented input (with respectto that family of circuits). That is, the reduction should map an instance

134 CHAPTER 3. VARIATIONS ON P AND NPx 2 f0; 1gn to a p-succinct representation of some Z 2 f0; 1gN such thatx 2 S if and only if CN (Z) = 1. (Note that Z is represented by a circuit cZsuch that log2N � jcZ j � poly(n), and thus N � exp(poly(n)).)10Guideline: Let S 2 �k and let V be the corresponding veri�cation algorithm asin De�nition 3.8. That is, x 2 S if and only if 9y18y2 � � �Qkyk, where each yi 2f0; 1gpoly(jxj) such that V (x; y1; :::; yk)=1. Then, for m = poly(jxj) and N = 2k�m,consider the �xed circuit CN (Z) = Wi12[2m]Vi22[2m] � � �Q0ik2[2m]Zi1;i2;:::;ik , andthe problem of evaluating CN at an input consisting of the truth-table of V (x; � � �)(i.e., when setting Zi1;i2;:::;ik = V (x; i1; :::; ik), where [2m] � f0; 1gm, which meansthat Z is essentially represented by x).11 Note that the size of CN is O(N).2. For every k and every �xed family of highly uniform unbounded fan-in cir-cuits of depth k and polynomial-size, show that the corresponding problemof evaluating a succinctly represented input is either in �k or in �k .Guideline: Given a succinct representation of Z, the value of CN (Z) can be cap-tured by a quanti�ed Boolean formula with k alternating quanti�er sequences. Thisformula quanti�es on certain paths from the output of CN to its input-terminals;for example, an _-gate (resp., ^-gate) evaluates to 1 if and only if one (resp., all)of its children evaluates to 1. The children of a vertex as well as the correspondinginput-bits can be e�ciently recognized based on the uniformity condition regardingCN . The value of the input-bit itself can be e�ciently computed from the succinctrepresentation of Z.Exercise 3.9 Verify the following facts:1. For every k � 1, it holds that �k � P�k � �k+1.(Recall that, for any complexity class C, the class PC denotes the class of setsthat are Cook-reducible to some set in C. In particular, PP = P .)2. For every k � 1, �k � P�k � �k+1.(Hint: For any complexity class C, it holds that PC = PcoC and PC = coPC.)3. For every k � 1, it holds that �k � �k+1 and �k � �k+1. Thus, PH = [k�k.4. For every k � 1, if �k � �k (resp., �k � �k) then �k = �k.(Hint: See Exercise 2.37.)Exercise 3.10 In continuation to Exercise 3.7, prove that following claims:10Assuming P 6= NP , it cannot be that N � poly(n) (because circuit evaluation can beperformed in time polynomial in the size of the circuit).11Advanced comment: Note that the computational limitations of AC0 circuits (see,e.g., [79, 111]) imply limitations on the functions of a generic input Z that the aforementionedcircuits CN can compute. More importantly, these limitations apply also to Z = h(Z0), whereZ0 2 f0; 1gN
(1) is generic and each bit of Z equals either some �xed bit in Z0 or its nega-tion. Unfortunately, these computational limitations do not seem to provide useful informationon the limitations of functions of inputs Z that have succinct representation (as obtained bysetting Zi1;i2;:::;ik = V (x; i1; :::; ik), where V is a �xed polynomial-time algorithm and onlyx 2 f0; 1gpoly(logN) varies). This fundamental problem is \resolved" in the context of \rel-ativization" by providing V with oracle access to an arbitrary input of length N
(1) (or so);cf. [79].

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 1351. SAT is computationally equivalent (under Karp-reductions) to 1QBF.2. For every k � 1, it holds that P�k = PkQBF and �k+1 = NPkQBF.Guideline: Prove that if S is C-complete then PC = PS. Note that PC � PSuses the polynomial-time reductions of C to S, whereas PS � PC uses S 2 C.Exercise 3.11 (an alternative proof of Theorem 3.12) In continuation to thediscussion in the proof of Theorem 3.12, use the following guidelines to provide analternative proof of Theorem 3.12.1. First, prove that if T is downwards self-reducible (as de�ned in Exercise 2.13)then the correctness of circuits deciding T can be decided in coNP . Speci�-cally, denoting by � the characteristic function of T , show that the setckt� def= f(1n; hCi) : 8w 2 f0; 1gn C(w) = �(w)gis in coNP . Note that you may assume nothing about T , except for thehypothesis that T is downwards self-reducible.Guideline: Using the more exible formulation suggested in Exercise 3.1, it suf-�ces to verify that, for every i < n and every i-bit string w, the value C(w) equalsthe output of the downwards self-reduction on input w when obtaining answersaccording to C. Thus, for every i < n, the correctness of C on inputs of lengthi follows from its correctness on inputs of length less than i. Needless to say, thecorrectness of C on the empty string (or on all inputs of some constant length) canbe veri�ed by comparison to the �xed value of � on the empty string (resp., thevalues of � on a constant number of strings).2. Recalling that SAT is downwards self-reducible and thatNP is Karp-reducibleto SAT, derive Theorem 3.12 as a corollary of Part 1.Guideline: Let S 2 �2 and S0 2 NP be as in the proof of Theorem 3.12. Lettingf denote a Karp-reduction of S0 to SAT, note that S = fx : 8y2f0; 1gp(jxj) f(x; y)2SATg. Using the hypothesis that SAT has polynomial-size circuits, note that x 2 Sif and only if there exists a poly(jxj)-size circuit C such that (1) C decides SATcorrectly on every inputs of length at most poly(jxj), and (2) for every y2f0; 1gp(jxj)it holds that C(f(x; y)) = 1. Infer that S 2 �2.Exercise 3.12 In continuation to Part 2 of Exercise 3.2, we consider the classof sets that are Karp-reducible to a sparse set. It can be proved that this classcontains SAT if and only if P = NP (see [77]). Here, we only consider the specialcase in which the sparse set is contained in a polynomial-time decidable set that isitself sparse (e.g., the latter set may be f1g�, in which case the former set may bean arbitrary unary set). Actually, prove the following seemingly stronger claim:If SAT is Karp-reducible to a set S � G such that G 2 P and G n S issparse then SAT 2 P .

136 CHAPTER 3. VARIATIONS ON P AND NPUsing the hypothesis, we outline a polynomial-time procedure for solving the searchproblem of SAT, and leave the task of providing the details as an exercise. Theprocedure conducts a DFS on the tree of all possible partial truth assignment to theinput formula,12 while truncating the search at nodes that correspond to partialtruth assignments that were already demonstrated to be useless.Guideline: The key observation is that each internal node (which yields a formula derivedfrom the initial formulae by instantiating the corresponding partial truth assignment) ismapped by the Karp-reduction either to a string not in G (in which case we concludethat the sub-tree contains no satisfying assignments and backtrack from this node) orto a string in G. In the latter case, unless we already know that this string is not inS, we start a scan of the sub-tree rooted at this node. However, once we backtrack fromthis internal node, we know that the corresponding element of G is not in S, and we willnever scan again a sub-tree rooted at a node that is mapped to this element. Also notethat once we reach a leaf, we can check by ourselves whether or not it corresponds to asatisfying assignment to the initial formula.(Hint: When analyzing the forgoing procedure, note that on input an n-variable formulae � thenumber of times we start to scan a sub-tree is at most n � j [poly(j�j)i=1 f0; 1gi \ (G n S)j.)

12For an n-variable formulae, the leaves of the tree correspond to all possible n-bit long strings,and an internal node corresponding to � is the parent of the nodes corresponding to �0 and �1.

Chapter 4More Resources, MorePower? More electricity, less toil.The Israeli Electricity Company, 1960sIs it indeed the case that the more resources one has, the more one can achieve?The answer may seem obvious, but the obvious answer (of yes) actually presumesthat the worker knows how much resources are at his/her disposal. In this case,when allocated more resources, the worker (or computation) can indeed achievemore. But otherwise, nothing may be gained by adding resources.In the context of computational complexity, an algorithm knows the amount ofresources that it is allocated if it can determine this amount without exceeding thecorresponding resources. This condition is satis�es in all \reasonable" cases, but itmay not hold in general. The latter fact should not be that surprising: we alreadyknow that some functions are not computable and if these functions are used todetermine resources then the algorithm may be in trouble. Needless to say, thisdiscussion requires some formalization, which is provided in the current chapter.Summary: When using \nice" functions to determine the algorithm'sresources, it is indeed the case that more resources allow for more tasksto be performed. However, when \ugly" functions are used for the samepurpose, increasing the resources may have no e�ect. By nice functionswe mean functions that can be computed without exceeding the amountof resources that they specify (e.g., t(n) = n2 or t(n) = 2n). Naturally,\ugly" functions do not allow to present themselves in such nice forms.The forgoing discussion refers to uniform models of computation and to(natural) resources such as time and space complexities. Thus, we getresults asserting, for example, that there are problems that are solvablein cubic-time but not in quadratic-time. In case of non-uniform models137

138 CHAPTER 4. MORE RESOURCES, MORE POWER?of computation, the issue of \nicety" does not arise, and it is easy toestablish separations between levels of circuit complexity that di�er byany unbounded amount.Results that separate the class of problems solvable within one resourcebound from the class of problems solvable within a larger resourcebound are called hierarchy theorems. Results that indicate the non-existence of such separations, hence indicating a \gap" in the growthof computing power (or a \gap" in the existence of algorithms that uti-lize the added resources), are called gap theorems. A somewhat relatedphenomenon, called speed-up theorems, refers to the inability to de�nethe complexity of some problems.Caveat: Uniform complexity classes based on speci�c resource bounds (e.g.,cubic-time) are model dependent. Furthermore, the tightness of separation results(i.e., how much \more time" is required for solving some additional computationalproblems) is also model dependent. Still the existence of such separations is aphenomenon common to all reasonable and general models of computation (as re-ferred to in the Cobham-Edmonds Thesis). In the following presentation, we willexplicitly di�erentiate model-speci�c e�ects from generic ones.Organization: We will �rst demonstrate the \more resources yield more power"phenomenon in the context of non-uniform complexity. In this case the issue of\knowing" the amount of resources allocated to the computing device does notarise, because each device is tailored to the amount of resources allowed for theinput length that it handles (see Section 4.1). We then turn to the time-complexityof uniform algorithms; indeed, hierarchy and gap theorems for time-complexity,presented in Section 4.2, constitute the main part of the current chapter. We endby mentioning analogous results for space-complexity (see Section 4.3, which mayalso be read after Section 5.1).4.1 Non-uniform complexity hierarchiesThe model of machines that use advice (cf. x1.2.4.2 and Section 3.1.2) o�ers a veryconvenient setting for separation results. We refer speci�cally, to classes of the formP=`, where ` : N ! N is an arbitrary function (see De�nition 3.5). Recall thatevery Boolean function is in P=2n, by virtue of a trivial algorithm that is given asadvice the truth-table of the function restricted to the relevant input length. Ananalogous algorithm underlies the following separation result.Theorem 4.1 For any two functions `0; � : N ! N such that `0(n) + �(n) � 2nand � is unbounded, it holds that P=`0 is strictly contained in P=(`0 + �).Proof: Let ` def= `0+�, and consider the following advice-taking algorithm A: Givenadvice an 2 f0; 1g`(n) and input i 2 f1; :::; 2ng (viewed as an n-bit long string),algorithm A outputs the ith bit of an if i � janj and zero otherwise. Clearly, for any

4.2. TIME HIERARCHIES AND GAPS 139a = (an)n2N such that janj = `(n), it holds that the function fa(x) def= A(ajxj; x) isin P=`. Furthermore, di�erent sequences a yield di�erent functions fa. We claimthat some of these functions fa are not in P=`0, thus obtaining a separation.The claim is proved by considering all possible (polynomial-time) algorithmsA0 and all possible sequences a0 = (a0n)n2N such that ja0nj = `0(n). Fixing anyalgorithm A0, we consider the number of n-bit long functions that are correctlycomputed by A0(a0n; �). Clearly, the number of these functions is at most 2`0(n),and thus A0 may account for at most 2��(n) fraction of the functions fa (evenwhen restricted to n-bit strings). Essentially, this consideration holds for everyn and every possible A0, and thus the measure of the set of functions that arecomputable by algorithms that take advice of length `0 is zero.Formally, for every n, we consider all advice-taking algorithms that have adescription of length shorter than �(n) � 2. (This guarantees that every advice-taking algorithm will be considered.) Coupled with all possible advice sequences oflength `0, these algorithms can compute at most 2(�(n)�2)+`0(n) di�erent functions ofn-bit long inputs. The latter number falls short of the 2`(n) corresponding functions(of n-bit long inputs) that are computable by A with advice of length `(n).A somewhat less tight bound can be obtained by using the model of Booleancircuits. In this case, some slackness is needed in order to account for the gapbetween the upper and lower bounds regarding the number of Boolean functionsover f0; 1gn that are computed by Boolean circuits of size s < 2n. Speci�cally(see Exercise 4.1), an obvious lower-bound on this number is 2s=O(log s) whereas anobvious upper-bound is s2s = 22s log2 s. Compare these bounds to the lower-bound2`0(n) and the upper-bound 2`0(n)+(�(n)=2) (on the number of functions computablewith advice of length `0(n)), which were used in the proof of Theorem 4.1.4.2 Time Hierarchies and GapsIn this section we show that in \reasonable cases" increasing the time-complexityallows for more problems to be solved, whereas in \pathological cases" it mayhappen that even a dramatic increase in the time-complexity provides no additionalcomputing power. As hinted in the introductory comments to the current chapter,the \reasonable cases" correspond to time bounds that can be determined by thealgorithm itself within the speci�ed time-complexity.We stress that also in the aforementioned \reasonable cases", the added powerdoes not necessarily refer to natural computational problems. That is, like in thecase of non-uniform complexity (i.e., Theorem 4.1), the hierarchy theorems areproved by introducing arti�cial computational problems. Needless to say, we donot know of natural problems in P that are unsolvable in cubic (or some other �xedpolynomial) time (on, say, a two-tape Turing machine). Thus, although P containsan in�nite hierarchy of computational problems, with each level requiring signi�-cantly more time than the previous level, we know of no such hierarchy of naturalcomputational problems. In contrast, so far it has been the case that any naturalproblem that was shown to be solvable in polynomial-time was eventually followed

140 CHAPTER 4. MORE RESOURCES, MORE POWER?by algorithms having running-time that is bounded by a moderate polynomial.4.2.1 Time HierarchiesNote that the non-uniform computing devices, considered in Section 4.1, were ex-plicitly given the relevant resource bounds (e.g., the length of advice). Actually,they were given the resources themselves (e.g., the advice itself) and did not needto monitor their usage of these resources. In contrast, when designing algorithmsof arbitrary time-complexity t : N ! N , we need to make sure that the algo-rithm does not exceed the time-bound. Furthermore, when invoked on input x,the algorithm is not given the time bound t(jxj) explicitly, and a reasonable designmethodology is to have the algorithm compute this bound (i.e., t(jxj)) before doinganything else. This, in turn, requires the algorithm to read the entire input (seeExercise 4.3) as well as to compute t(n) in O(t(n)) steps (as otherwise this prelim-inary stage already consumes too much time). The latter requirement motivatesthe following de�nition (which is related to the standard de�nition of \fully timeconstructibility" (cf. [119, Sec. 12.3])).De�nition 4.2 (time constructible functions): A function t : N ! N is calledtime constructible if there exists an algorithm that on input n outputs t(n) using atmost t(n) steps.Equivalently, we may require that the mapping 1n 7! t(n) be computable withintime complexity t. We warn that the foregoing de�nition is model dependent;however, typically nice functions are computable even faster (e.g., in poly(log t(n))steps), in which case the model-dependency is irrelevant (for reasonable and generalmodels of computation, as referred to in the Cobham-Edmonds Thesis). For ex-ample, in any reasonable and general model, functions like t1(n) = n2, t2(n) = 2n,and t3(n) = 22n are computable in poly(log ti(n)) steps.Likewise, for a �xed model of computation (to be understood from the context)and for any function t : N ! N , we denote by Dtime(t) the class of decisionproblems that are solvable in time complexity t. We call the reader's attention toExercise 4.4 that asserts that in many cases Dtime(t) = Dtime(t=2).4.2.1.1 The Time Hierarchy TheoremIn the following theorem (which separates Dtime(t1) from Dtime(t2)), we referto the model of two-tape Turing machines. In this case we obtain quite a tighthierarchy in terms of the relation between t1 and t2. We stress that, using theCobham-Edmonds Thesis, this results yields (possibly less tight) hierarchy theo-rems for any reasonable and general model of computation.Teaching note: The standard statement of Theorem 4.3 asserts that for any timeconstructible function t2 and every function t1 such that t2 = !(t1 log t1) and t1(n) > nit holds that Dtime(t1) is strictly contained in Dtime(t2). The current version is onlyslightly weaker, but it allows a somewhat simpler and more intuitive proof. We commenton the proof of the standard version of Theorem 4.3 in a teaching note following theproof of the current version.

4.2. TIME HIERARCHIES AND GAPS 141Theorem 4.3 (time hierarchy for two-tape Turing machines): For any time con-structible function t1 and every function t2 such that t2(n) � (log t1(n))2 � t1(n)and t1(n) > n it holds that Dtime(t1) is strictly contained in Dtime(t2).As will become clear from the proof, an analogous result holds for any model inwhich a universal machine can emulate t steps of another machine in O(t log t) time,where the constant in the O-notation depends on the emulated machine. Beforeproving Theorem 4.3, we derive the following corollary.Corollary 4.4 (time hierarchy for any reasonable and general model): For anyreasonable and general model of computation there exists a positive polynomial psuch that for any time-computable function t1 and every function t2 such thatt2 > p(t1) and t1(n) > n it holds that Dtime(t1) is strictly contained in Dtime(t2).It follows that, for every such model and every polynomial t (such that t(n) > n),there exist problems in P that are not in Dtime(t). It also follows that P isa strict subset of E and even of \quasi-polynomial time" (i.e., Dtime(q), whereq(n) = exp(poly(logn))); moreover, P is a strict subset of Dtime(q), for anysuper-polynomial function q (i.e., q(n) = n!(1)).Proof of Corollary 4.4: The underlying fact is that separation results regardingany reasonable and general model of computation can be \translated" to analo-gous results regarding any other such model. Such a translation may e�ect thetime-bounds as demonstrated next. Letting Dtime2 denote the classes that corre-spond to two-tape Turing machines (and recalling that Dtime denotes the classesthat correspond to the alternative model), we note that Dtime(t1) � Dtime2(t01)and Dtime2(t02) � Dtime(t2), where t01 = poly(t1) and t02 is de�ned such thatt2(n) = poly(t02(n)). The latter unspeci�ed polynomials, hereafter denoted p1and p2 respectively, are the ones guaranteed by the Cobham-Edmonds Thesis.Also, the hypothesis that t1 is time-constructible implies that t01 = p1(t1) is time-constructible with respect to the two-tape Turing machine model. Thus, for asuitable choice of the polynomial p (i.e., p(p�11 (m)) � p2(m2)), it holds thatt02(n) = p�12 (t2(n)) > p�12 (p(t1(n))) = p�12 (p(p�11 (t01(n)))) � t01(n)2 ;where the �rst inequality holds by the corollary's hypothesis (i.e., t2 > p(t1)) andthe last inequality holds by the choice of p. Invoking Theorem 4.3 (while notingthat t02(n) > t01(n)2), we obtain the strict inclusion Dtime2(t01) � Dtime2(t02).Combining the latter with Dtime(t1) � Dtime2(t01) andDtime2(t02) � Dtime(t2),the corollary follows.Proof of Theorem 4.3: The idea is constructing a Boolean function f suchthat all machines having time complexity t1 fail to compute f . This is done byassociating with each possible machine M a di�erent input xM (e.g., xM = hMi)and making sure that f(xM) 6= M 0(xM), where M 0(x) denotes an emulation ofM(x) that is suspended after t1(jxj) steps. For example, we may de�ne f(xM) =1 �M 0(xM). We note that M 0 is used instead of M in order to allow computingf in time that is related to t1. The point is that M may be an arbitrary machine

142 CHAPTER 4. MORE RESOURCES, MORE POWER?that is associated to the input xM , and so M does not necessarily run in time t1(but, by construction, the corresponding M 0 does run in time t1).Implementing the foregoing idea calls for an e�cient association of machines toinputs as well as for a relatively e�cient emulation of t1 steps of an arbitrary ma-chine. As shown next, both requirements can be met easily. Actually, we are goingto use a mapping � of inputs to machines (i.e., � will map the aforementioned xMto M) such that each machine is in the range of � and � is very easy to compute(e.g., indeed, for starters, assume that � is the identity mapping). Thus, by con-struction, f 62 Dtime(t1). The issue is presenting a relatively e�cient algorithmfor computing f ; that is, showing that f 2 Dtime(t2).The algorithm for computing f as well as the de�nition of f (sketched in the �rstparagraph) are straightforward: On input x, the algorithm computes t = t1(jxj),determines the machine M = �(x) that corresponds to x (outputting a defaultvalue if no such machine exists), emulates M(x) for t steps, and returns the value1�M 0(x). Recall that M 0(x) denotes the time-truncated emulation of M(x) (i.e.,the emulation of M(x) suspended after t steps); that is, if M(x) halts within tsteps then M 0(x) =M(x), and otherwise M 0(x) may be de�ned arbitrarily. Thus,f(x) = 1�M 0(x) if M = �(x) and (say) f(x) = 0 otherwise.In order to show that f 62 Dtime(t1), we show that each machine of time-complexity t1 fails to compute f . Fixing any such machine, M , we consider aninput xM such that M = �(xM), where such an input exists because � is onto.Now, on one hand, M 0(xM) =M(xM) (because M has time-complexity t1), whileon the other hand f(xM) = 1 �M 0(xM) (by the de�nition of f). It follows thatM(x) 6= f(x).We now turn to upper-bounding the time-complexity of f by analyzing thetime-complexity of the foregoing algorithm that computes f . Using the time-constructibility of t1 and ignoring the easy computation of �, we focus on thequestion of how much time is required for emulating t steps of machine M (oninput x). We should bear in mind that the time-complexity of our algorithm needsto be analyzed in the two-tape Turing-machine model, whereas M itself is a two-tape Turing-machine. We start by implementing our algorithm on a three-tapeTuring-machine, and next emulate this machine on a two-tape Turing-machine.The obvious implementation of our algorithm on a three-tape Turing-machineuses two tapes for the emulation itself and designates the third tape for the ac-tions of the emulation procedure (e.g., storing the code of the emulated machineand maintaining a step-counter). Thus, each step of the two-tape machine M isemulated using O(jhMij) steps on the three-tape machine.1 This includes also theamortized complexity of maintaining a step-counter for the emulation (see Exer-cise 4.5).Next, we need to emulate the foregoing three-tape machine on a two-tape ma-chine. This is done by using the fact (cf., e.g., [119, Thm. 12.6]) that t0 stepsof a three-tape machine can be emulated on a two-tape machine in O(t0 log t0)steps. Thus, the complexity of computing f on input x is upper-bounded by1This overhead accounts both for searching the code of M for the adequate action and for thee�ecting of this action (which may refer to a larger alphabet than the one used by the emulator).

4.2. TIME HIERARCHIES AND GAPS 143O(T�(x)(jxj) log T�(x)(jxj)), where TM (n) = O(jhMij � t1(n)) represents the cost ofemulating t1(n) steps of the two-tape machine M on a three-tape machine (as inthe foregoing discussion).It turns out that the quality of the separation result that we obtain dependson the choice of the mapping � (of inputs to machines). Using the naive (identity)mapping (i.e., �(x) = x) we can only establish the theorem for t2(n) = eO(n � t1(n))rather than t2(n) = eO(t1(n)), because in this case T�(x)(jxj) = O(jxj�t1(jxj)). (Notethat, in this case, xM = hMi is a description of �(xM) =M .) The theorem followsby associating the machine M with the input xM = hMi01m, where m = 2jhMij;that is, we may use the mapping � such that �(x) =M if x = hMi012jhMij and �(x)equals some �xed machine otherwise. In this case j�(x)j < log2 jxj < log t1(jxj) andso T�(x)(jxj) = O((log t1(jxj)) � t1(jxj)). The theorem follows.Teaching note: Proving the standard version of Theorem 4.3 cannot be done byassociating a su�ciently long input xM with each machine M , because this does notallow to get rid from an additional unbounded factor in T�(x)(jxj) (i.e., the j�(x)j factorthat multiplies t1(jxj)). Note that the latter factor needs to be computable (at thevery least) and thus cannot be accounted for by the generic !-notation that appears inthe standard version (cf. [119, Thm. 12.9]). Instead, a di�erent approach is taken (seeFootnote 2).Technical Comments. The proof of Theorem 4.3 associates with each poten-tial machine M some input xM and de�nes the computational problem such thatmachine M err on input xM . The association of machines with inputs is ratherexible: we can use any onto mapping of inputs to machines that is e�ciently com-putable and su�ciently shrinking. Speci�cally, in the proof, we used the mapping� such that �(x) = M if x = hMi012jhMij and �(x) equals some �xed machineotherwise. We comment that each machine can be made to err on in�nitely manyinputs by rede�ning � such that �(x) =M if hMi012jhMij is a su�x of x (and �(x)equals some �xed machine otherwise). We also comment that, in contrast to theproof of Theorem 4.3, the proof of Theorem 1.5 utilizes a rigid mapping of inputsto machines (i.e., there �(x) =M if x = hMi).Digest: Diagonalization. The last comment highlights the fact that the proofof Theorem 4.3 is merely a sophisticated version of the proof of Theorem 1.5. Bothproofs refer to versions of the universal function, which in the case of the proof of2In the standard proof the function f is not de�ned with reference to t1(jxM j) steps ofM(xM),but rather with reference to the result of emulating M(xM) while using a total of t2(jxM j) stepsin the emulation process (i.e., in the algorithm used to compute f). This guarantees that f is inDtime(t2), and \pushes the problem" to showing that f is not in Dtime(t1). It also explains whyt2 (rather than t1) is assumed to be time-constructible. As for the foregoing problem, it is resolvedby observing that for each relevant machine (i.e., having time complexity t1) the executions onany su�ciently long input will be fully emulated. Thus, we merely need to associate with eachM a disjoint set of in�nitely many inputs and make sure that M errs on each of these inputs.

144 CHAPTER 4. MORE RESOURCES, MORE POWER?Theorem 4.3 is (implicitly) de�ned such that its value at (hMi; x) equals M 0(x),where M 0(x) denotes an emulation of M(x) that is suspended after t1(jxj) steps.3Actually, both proofs refers to the \diagonal" of the aforementioned function, whichin the case of the proof of Theorem 4.3 is only de�ned implicitly. That is, thevalue of the diagonal function at x, denoted d(x), equals the value of the universalfunction at (h�(x)i; x). This is actually a de�nitional schema, as the choice of thefunction � remains unspeci�ed. Indeed, setting �(x) = x corresponds to a \real"diagonal in the matrix depicting the universal function, but any other choice of a1-1 mappings � also yields a \kind of diagonal" of the universal function. Eitherway, the function f is de�ned such that for every x it holds that f(x) 6= d(x).This guarantees that no machine of time-complexity t1 can compute f , and thefocus is on presenting an algorithm that computes f (which, needless to say, hastime-complexity greater than t1). Part of the proof of Theorem 4.3 is devoted toselecting � in a way that minimizes the time-complexity of computing f , whereasin the proof of Theorem 1.5 we merely need to guarantee that f is computable.4.2.1.2 Impossibility of speed-up for universal computationThe Time Hierarchy Theorem (Theorem 4.3) implies that the computation of auniversal machine cannot be signi�cantly sped-up. That is, consider the functionu0(hMi; x; t) def= y if on input x machine M halts within t steps and outputs thestring y, and u0(hMi; x; t) def= ? if on input x machine M makes more than t steps.Recall that the value of u0(hMi; x; t) can be computed in eO(jxj + jhMij � t) steps.As shown next, Theorem 4.3 implies that this value (i.e., u0(hMi; x; t)) cannot becomputed within signi�cantly less steps.Theorem 4.5 There exists no two-tape Turing machine that, on input hMi; x andt, computes u0(hMi; x; t) in o((t + jxj) � f(M)= log2(t + jxj)) steps, where f is anarbitrary function.A similar result holds for any reasonable and general model of computation (cf.,Corollary 4.4). In particular, it follows that u0 is not computable in polynomialtime (because the input t is presented in binary). In fact, one can show that thereexists no polynomial-time algorithm for deciding whether or not M halts on input xin t steps (i.e., the set f(hMi; x; t) : u0(hMi; x; t) 6= ?g is not in P); see Exercise 4.6.Proof: Suppose (towards the contradiction) that, for every �xed M , given xand t > jxj, the value of u0(hMi; x; t) can be computed in o(t= log2 t) steps, wherethe o-notation hides a constant that may depend on M . We shall show that thishypothesis implies that for any time-constructible t1 and t2(n) = t1(n) � log2 t1(n)it holds that Dtime(t2) = Dtime(t1), which (strongly) contradicts Theorem 4.3.Consider an arbitrary time-constructible t1 (s.t. t1(n) > n) and an arbitraryset S 2 Dtime(t2), where t2(n) = t1(n) � log2 t1(n). Let M be a machine of3Needless to say, in the proof of Theorem 1.5, M 0 =M .

4.2. TIME HIERARCHIES AND GAPS 145time-complexity t2 that decides membership in S, and consider the following algo-rithm: On input x, the algorithm �rst computes t = t1(jxj), and then computes(and outputs) the value u0(hMi; x; t log2 t). By the time-constructibility of t1, the�rst computation can be implemented in t steps, and by the contradiction hy-pothesis the same holds for the second computation. Thus, S can be decided inDtime(2t1) = Dtime(t1), implying that Dtime(t2) = Dtime(t1), which in turncontradicts Theorem 4.3. We conclude that the contradiction hypothesis is wrong,and the theorem follows.4.2.1.3 Hierarchy theorem for non-deterministic timeAnalogously to Dtime, for a �xed model of computation (to be understood fromthe context) and for any function t : N ! N , we denote by Ntime(t) the classof sets that are accepted by some non-deterministic machine of time complexityt. Indeed, this de�nition extends the traditional formulation of NP (as presentedin De�nition 2.7). Alternatively, analogously to our preferred de�nition of NP(i.e., De�nition 2.5), a set S � f0; 1g� is in Ntime(t) if there exists a linear-timealgorithm V such that the two conditions hold:1. For every x 2 S there exists y 2 f0; 1gt(jxj) such that V (x; y) = 1.2. For every x 62 S and every y 2 f0; 1g� it holds that V (x; y) = 0.We warn that the two formulations are not identical, but in su�ciently strong mod-els (e.g., two-tape Turing machines) they are related up to logarithmic factors (seeExercise 4.8). The hierarchy theorem itself is similar to the one for deterministictime, except that here we require that t2(n) � (log t1(n + 1))2 � t1(n + 1) (ratherthan t2(n) � (log t1(n))2 � t1(n)). That is:Theorem 4.6 (non-deterministic time hierarchy for two-tape Turing machines):For any time-constructible and monotonicly non-decreasing function t1 and everyfunction t2 such that t2(n) � (log t1(n+1))2 � t1(n+1) and t1(n) > n it holds thatNtime(t1) is strictly contained in Ntime(t2).Proof: We cannot just apply the proof of Theorem 4.3, because the Booleanfunction f de�ned there requires the ability to determine whether there exists acomputation of M that accepts the input xM in t1(jxM j) steps. In the currentcontext, M is a non-deterministic machine and so the only way we know howto determine this question (both for a \yes" and \no" answers) is to try all the(2t1(jxM j)) relevant executions.4 But this would put f in Dtime(2t1), rather thanin Ntime(eO(t1)), and so a di�erent approach is needed.We associate with each (non-deterministic) machine M , a large interval ofstrings (viewed as integers), denoted IM = [�M ; �M], such that the various inter-vals do not intersect and such that it is easy to determine for each string x in whichinterval it resides. For each x 2 [�M ; �M�1], we de�ne f(x) = 1 if and only if there4Indeed, we can non-deterministically recognize \yes" answers in eO(t1(jxM j)) steps, but wecannot do so for \no" answers.

146 CHAPTER 4. MORE RESOURCES, MORE POWER?exists a non-deterministic computation of M that accepts the input x0 def= x + 1in t1(jx0j) � t1(jxj + 1) steps. Thus, if M has time-complexity t1 and (non-deterministically) accepts fx : f(x) = 1g, then either M (non-deterministically)accepts each string in the interval IM or M (non-deterministically) accepts nostring in IM , because M must non-deterministically accept x if and only if it non-deterministically accepts x0 = x + 1. So, it is left to deal with the case that M isinvariant on IM , which is where the de�nition of the value of f(�M) comes intoplay: We de�ne f(�M) to equal zero if and only if there exists a non-deterministiccomputation of M that accepts the input �M in t1(j�M j) steps. We shall select�M to be large enough relative to �M such that we can a�ord to try all possiblecomputations of M on input �M . Details follow.Let us �rst recapitulate the de�nition of f : f0; 1g�!f0; 1g, focusing on thecase that the input is in some interval IM . We de�ne a Boolean function AM suchthat AM (z) = 1 if and only if there exists a non-deterministic computation of Mthat accepts the input z in t1(jzj) steps. Then, for x 2 IM we havef(x) = � AM (x+ 1) if x 2 [�M ; �M � 1]1�AM (�M) if x = �MNext, we present the following non-deterministic machine for accepting the setfx : f(x) = 1g. We assume that, on input x, it is easy to determine the machineM that corresponds to the interval [�M ; �M] in which x reside.5 We distinguishtwo cases:1. On input x 2 [�M ; �M � 1], our non-deterministic machine emulates t1(jx0j)steps of a (single) non-deterministic computation of M on input x0 = x+ 1,and decides accordingly (i.e., our machine accepts if and only if the said emu-lation has accepted). Indeed (as in the proof of Theorem 4.3), this emulationcan be performed in time (log t1(jx + 1j))2 � t1(jx + 1j) � t2(jxj).2. On input x = �M , our machine just tries all 2t1(j�M j) executions of M oninput �M and decides in a suitable manner; that is, our machine emulatest1(j�M j) steps in each of the 2t1(j�M j) possible executions of M(�M) andaccepts �M if and only if none of the emulated executions ended accepting�M . Note that this part of our machine is deterministic, and it amountsto emulating TM def= 2t1(j�M j) � t1(j�M j) steps of M . By a suitable choice ofthe interval [�M ; �M] (e.g., j�M j > TM), this number of steps (i.e., TM) issmaller than j�M j � t1(j�M j), and it follows that these TM steps of M canbe emulated in time (log2 t1(j�M j))2 � t1(j�M j) � t2(j�M j).Thus, our non-deterministic machine has time-complexity t2, and it follows that fis in Ntime(t2). It remains to show that f is not in Ntime(t1).Suppose on the contrary, that some non-deterministic machine M of time-complexity t1 accepts the set fx : f(x) = 1g; that is, for every x it holds that5For example, we may partition the strings to consecutive intervals such that the ith interval,denoted [�i; �i], corresponds to the ith machine and for T1(m) = 22t1(m) it holds that �i =1T1(j�ij) and �i+1 = 0T1(j�ij)+1. Note that j�ij = T1(j�ij), and thus t1(j�ij) > t1(j�ij) �2t1(j�ij).

4.2. TIME HIERARCHIES AND GAPS 147AM (x) = f(x), where AM is as de�ned in the foregoing (i.e., AM (x) = 1 if andonly if there exists a non-deterministic computation of M that accepts the inputx in t1(jxj) steps). Focusing on the interval [�M ; �M], we have AM (x) = f(x)for every x 2 [�M ; �M], which (combined with the de�nition of f) implies thatAM (x) = f(x) = AM (x + 1) for every x 2 [�M ; �M � 1] and AM (�M) = f(�M) =1 � AM (�M). Thus, we reached a contraction (because we got AM (�M) = � � � =AM (�M) = 1�AM (�M)).4.2.2 Time Gaps and Speed-UpIn contrast to Theorem 4.3, there exists functions t : N ! N such that Dtime(t) =Dtime(t2) (or even Dtime(t) = Dtime(2t)). Needless to say, these functionsare not time-constructible (and thus the aforementioned fact does not contradictTheorem 4.3). The reason for this phenomenon is that, for such functions t, thereexist not algorithms that have time-complexity above t but below t2 (resp., 2t).Theorem 4.7 (the time gap theorem): For every non-decreasing computable func-tion g : N ! N there exists a non-decreasing computable function t : N ! N suchthat Dtime(t) = Dtime(g(t)).The forgoing examples referred to g(m) = m2 and g(m) = 2m. Since we aremainly interested in dramatic gaps (i.e., super-polynomial functions g), the modelof computation does not matter here (as long as it is reasonable and general).Proof: Consider an enumeration of all possible algorithms (or machines), whichalso includes machines that do not halt on some inputs. (Recall that we cannotenumerate the set of all machines that halt on every input.) Let ti denote the timecomplexity of the ith algorithm; that is, ti(n) =1 if the ith machine does not halton some n-bit long input and otherwise ti(n) = maxx2f0;1gnfTi(x)g, where Ti(x)denotes the number of steps taken by the ith machine on input x.The basic idea is to de�ne t such that no ti is \sandwiched" between t and g(t),and thus no algorithm will have time-complexity between t and g(t). Intuitively, ifti(n) is �nite, then we may de�ne t such that t(n) > ti(n) and thus guarantee thatti(n) 62 [t(n); g(t(n))], whereas if ti(n) = 1 then any �nite value of t(n) will do(because then ti(n) > g(t(n))). Thus, for every m and n, we can de�ne t(n) suchthat ti(n) 62 [t(n); g(t(n))] for every i 2 [m] (e.g., t(n) = maxi2[m]:ti(n)6=1fti(n)g+1).6 This yields a weaker version of the theorem in which the function t is neithercomputable nor non-decreasing. It is easy to modify t such that it is non-decreasing(e.g., t(n) = max(t(n � 1);maxi2[m]:ti(n)6=1fti(n)g) + 1) and so the real challengeis to make t computable.The problem is that we want t to be computable, whereas given n we cannottell whether or not ti(n) is �nite. However, we do not really need to make the latterdecision: for each candidate value v of t(n), we should just determine whether ornot ti(n) 2 [v; g(v)], which can be decided by running the ith machine for at most6We may assume, without loss of generality, that t1(n) = 1 for every n; e.g., by letting themachine that always halts after a single step be the �rst machine in our enumeration.

148 CHAPTER 4. MORE RESOURCES, MORE POWER?g(v) + 1 steps (on each n-bit long string). That is, as far as the ith machine isconcerned, we should just �nd a value v such that either v > ti(n) or g(v) < ti(n)(which includes the case ti(n) = 1). This can be done by starting with v = v0(where, say, v0 = t(n�1)+1), and increasing v until either v > ti(n) or g(v) < ti(n).The point is that if ti(n) is in�nite then we may output v = v0 after emulating2n �(g(v0)+1) steps, and otherwise we reach a safe value v > ti(n) after performingat most Pti(n)j=v0 2n � j emulation steps. Bearing in mind that we should deal withall possible machines, we obtain the following procedure for setting t(n).

v
t (n)i

t (n)j

t(n-1)

v
current v

g(v)

t (n)k

0Figure 4.1: The Gap Theorem { determining the value of t(n).Let � : N ! N be any unbounded and computable function (e.g., �(n) = n willdo). Starting with v = t(n�1)+1, we keep incrementing v until v satis�es, for everyi 2 f1; :::; �(n)g, either ti(n) < v or ti(n) > g(v). This condition can be veri�edby computing �(n) and g(v), and emulating the execution of each of the �rst �(n)machines on each of the n-bit long strings for g(v) + 1 steps. The procedure setst(n) to equal the �rst value v satisfying the aforementioned condition, and halts.(Figure 4.1 depicts the search for a good value v for t(n).)To show that the foregoing procedure halts on every n, consider the set Hn �f1; :::; �(n)g of the indices of the (relevant) machines that halt on all inputs of lengthn. Then, the procedure de�nitely halts before reaching the value v = max(Tn; t(n�1))+2, where Tn = maxi2Hnfti(n)g. (Indeed, the procedure may halt with a valuev � Tn, but this will happen only if g(v) < Tn.)Finally, for the foregoing function t, we prove that Dtime(t) = Dtime(g(t))holds. Indeed, consider an arbitrary S 2 Dtime(g(t)), and suppose that the ithalgorithm decides S in time at most g(t); that is, for every n, it holds that ti(n) �g(t(n)). Then (by the construction of t), for every n satisfying �(n) � i, it holds

4.2. TIME HIERARCHIES AND GAPS 149that ti(n) < t(n). It follows that the ith algorithm decides S in time at most ton all but �nitely many inputs. Combining this algorithm with a \look-up table"machine that handles the exceptional inputs, we conclude that S 2 Dtime(t). Thetheorem follows.Comment: The function t de�ned by the foregoing proof is computable in timethat exceeds g(t). Speci�cally, the presented procedure computes t(n) (as well asg(f(n))) in time eO(2n � g(t(n)) + Tg(t(n))), where Tg(m) denotes the number ofsteps required to compute g(m) on input m.Speed-up Theorems. Theorem 4.7 can be viewed as asserting that some timecomplexity classes (i.e., Dtime(g(t)) in the theorem) collapse to lower classes (i.e.,to Dtime(t)). A conceptually related phenomenon is of problems that have nooptimal algorithm (not even in a very mild sense); that is, every algorithm forthese (\pathological") problems can be drastically sped-up. It follows that thecomplexity of these problems can not be de�ned (i.e., as the complexity of the bestalgorithm solving this problem). The following drastic speed-up theorem shouldnot be confused with the linear speed-up that is an artifact of the de�nition of aTuring machine (see Exercise 4.4).7Theorem 4.8 (the time speed-up theorem): For every computable (and super-linear) function g there exists a decidable set S such that if S 2 Dtime(t) thenS 2 Dtime(t0) for t0 satisfying g(t0(n)) < t(n).Taking g(n) = n2 (or g(n) = 2n), the theorem asserts that, for every t, if S 2Dtime(t) then S 2 Dtime(pt) (resp., S 2 Dtime(log t)). Note that Theorem 4.8can be applied any (constant) number of times, which means that we cannot givea reasonable estimate to the complexity of deciding membership in S. In contrast,recall that in some important cases, optimal algorithms for solving computationalproblems do exist. Speci�cally, algorithms solving (candid) search problems in NPcannot be speed-up (see Theorem 2.33), nor can the computation of a universalmachine (see Theorem 4.5).We refrain from presenting a proof of Theorem 4.8, but comment on the com-plexity of the sets involved in this proof. The proof (presented in [119, Sec. 12.6])provides a construction of a set S in Dtime(t0)nDtime(t00) for t0(n) = h(n�O(1))and t00(n) = h(n � !(1)), where h(n) denoted g iterated n times on 2 (i.e.,h(n) = g(n)(2), where g(i+1)(m) = g(g(i)(m)) and g(1) = g). The set S is con-structed such that for every i > 0 there exists a j > i and an algorithm thatdecides S in time ti but not in time tj , where tk(n) = h(n� k).7Advanced comment: We note that the linear speed-up phenomenon was implicitly ad-dressed in the proof of Theorem 4.3, by allowing an emulation overhead that depends on thelength of the description of the emulated machine.

150 CHAPTER 4. MORE RESOURCES, MORE POWER?4.3 Space Hierarchies and GapsHierarchy and Gap Theorems analogous to Theorem 4.3 and Theorem 4.7, respec-tively, are known for space complexity. In fact, since space-e�cient emulation ofspace-bounded machines is simpler than time-e�cient emulations of time-boundedmachines, the results tend to be sharper (and their proofs tend to be simpler).This is most conspicuous in the case of the separation result (stated next), whichis optimal (in light of the corresponding linear speed-up result; see Exercise 4.10).Before stating the separation result, we need a few preliminaries. We referthe reader to x1.2.3.5 for a de�nition of space-complexity (and to Chapter 5 forfurther discussion). As in the case of time-complexity, we consider a speci�c modelof computation, but the results hold for any other reasonable and general model.Speci�cally, we consider three-tape Turing machines, because we designate twospecial tapes for input and output. For any function s : N ! N , we denote byDspace(s) the class of decision problems that are solvable in space-complexity s.Analogously to De�nition 4.2, we call a function s : N ! N space constructible ifthere exists an algorithm that on input n outputs s(n) while using at most s(n)cells of the work-tape. Actually, functions like s1(n) = logn, s2(n) = (logn)2, ands3(n) = 2n are computable using O(log si(n)) space.Theorem 4.9 (space hierarchy for three-tape Turing machines): For any spaceconstructible function s2 and every function s1 such that s2 = !(s1) and s1(n) >logn it holds that Dspace(s1) is strictly contained in Dspace(s2).Theorem 4.9 is analogous to the traditional version of Theorem 4.3 (rather tothe one we presented), and is proven using the alternative approach sketched inFootnote 2. The details are left as an exercise (see Exercise 4.11).Chapter NotesThe material presented in this chapter predates the theory of NP-completeness andthe dominant stature of the P-vs-NP Question. At these early days, the �eld (to beknown as complexity theory) did not yet develop an independent identity and itsperspectives were dominated by two classical theories: the theory of computabil-ity (and recursive function) and the theory of formal languages. Nevertheless, webelieve that the results presented in this chapter are interesting for two reasons.Firstly, as stated up-front, these results address the natural question of under whatconditions is it the case that more computational resources help. Secondly, theseresults demonstrate the type of results that one can get with respect to \generic"questions regarding computational complexity; that is, questions that refer to ar-bitrary resource bounds (e.g., the relation between Dtime(t1) and Dtime(t2) forarbitrary t1 and t2).We note that, in contrast to the \generic" questions considered in this chapter,the P-vs-NP Question as well as the related questions that will be addressed in therest of this book are not \generic" since they refer to speci�c classes (which capturenatural computational issues). Furthermore, whereas time- and space-complexity

4.3. SPACE HIERARCHIES AND GAPS 151behave in similar manner with respect to hierarchies and gaps, they behave quitedi�erently with respect to other questions. The interested reader is referred toSections 5.1 and 5.3.Getting back to the concrete contents of the current chapter, let us brieymentioned the most relevant credits. The hierarchy theorems (e.g., Theorem 4.3)were proved by Hartmanis and Stearns [110]. Gap theorems (e.g., Theorem 4.7)were proven by Borodin [44] (and are often referred to as Borodin's Gap Theorem).An axiomatic treatment of complexity measures was developed by Blum [36], whoalso proved corresponding speed-up theorems (e.g., Theorem 4.8, which is oftenreferred to as Blum's Speed-up Theorem). A traditional presentation of all theaforementioned topics is provided in [119, Chap. 12], which also presents relatedtechniques (e.g., \translation lemmas").ExercisesExercise 4.1 Let Fn(s) denote the number of di�erent Boolean functions overf0; 1gn that are computed by Boolean circuits of size s. Prove that, for any s < 2n,it holds that Fn(s) � 2s=O(log s) and Fn(s) � s2s.Guideline: Any Boolean function f : f0; 1g` ! f0; 1g can be computed by a circuit ofsize s` = O(` � 2`). Thus, for every ` � n, it holds that Fn(s`) � 22` > 2s`=O(log s`). Onthe other hand, the number of circuits of size s is less than 2s � �s2s �, where the secondfactor represents the number of possible choices of pair of gates that feed any gate in thecircuit.Exercise 4.2 (advice can speed-up computation) For every time-constructiblefunction t, show that there exists a set S in Dtime(t2) nDtime(t) that can be de-cided in linear-time using an advice of linear length (i.e., S 2 Dtime(`)=` where`(n) = O(n)).Guideline: Starting with a set S0 2 Dtime(T 2) n Dtime(T), where T (m) = t(2m),consider the set S = fx02jxj�jxj : x2S0g.Exercise 4.3 Referring to any reasonable model of computation (and assumingthat the input length is not given explicitly (unlike as in, e.g., De�nition 10.10)),prove that any algorithm that has sub-linear time-complexity actually has constanttime-complexity.Guideline: Consider the question of whether or not there exists an in�nite set of stringsS such that when invoked on any input x 2 S the algorithm reads all of x. Note that ifS is in�nite then the algorithm cannot have sub-linear time-complexity, and prove that ifS is �nite then the algorithm has constant time-complexity.Exercise 4.4 (linear speed-up of Turing machine) Prove that any problemthat can be solved by a two-tape Turing machine that has time-complexity t canbe solved by another two-tape Turing machine having time-complexity t0, wheret0(n) = O(n) + (t(n)=2).

152 CHAPTER 4. MORE RESOURCES, MORE POWER?Guideline: Consider a machine that uses a larger alphabet, capable of encoding a con-stant (denoted c) number of symbols of the original machine, and thus capable of emu-lating c steps of the original machine in O(1) steps, where the constant in the O-notationis a universal constant (independent of c). Note that the O(n) term accounts to a pre-processing that converts the binary input to work-alphabet of the new machine (whichencoding c input bits in one alphabet symbol). Thus, a similar result for one-tape Turingmachine seems to require an additive O(n2) term.Exercise 4.5 (constant amortized-time step-counter) A step-counter is analgorithm that runs for a number of steps that is speci�ed in its input. Actually,such an algorithm may run for a somewhat larger number of steps but halt after is-suing a number of \signals" as speci�ed in its input, where these signals are de�nedas entering (and leaving) a designated state (of the algorithm). A step-counter maybe run in parallel to another procedure in order to suspend the execution after apredetermined number of steps (of the other procedure) has elapsed. Show thatthere exists a simple deterministic machine that, on input n, halts after issuing nsignals while making O(n) steps.Guideline: A slightly careful implementation of the straightforward algorithm will do,when coupled with an \amortized" time-complexity analysis.Exercise 4.6 (a natural set in E n P) In continuation to the proof of Theorem 4.5,prove that the set f(hMi; x; t) : u0(hMi; x; t) 6= ?g is in E n P , where E def=[cDtime(ec) and ec(n) = 2cn.Exercise 4.7 (EXP-completeness) In continuation to Exercise 4.6, prove thatevery set in EXP is Karp-reducible to the set f(hMi; x; t) : u0(hMi; x; t) 6= ?g.Exercise 4.8 Prove that the two de�nitions of Ntime, presented in x4.2.1.3, arerelated up to logarithmic factors. Note the importance of condition that V haslinear (rather than polynomial) time-complexity.Guideline: When emulating a non-deterministic machine by the veri�cation procedureV , encode the non-deterministic choices in a \witness" string y such that jyj is slightlylarger than the number of steps taken by the original machine. Speci�cally, having jyj =O(t log t), where t denotes the number of steps taken by the original machine, allows toemulate the latter computation in linear time (i.e., linear in jyj).Exercise 4.9 In continuation to Theorem 4.7, prove that for every computablefunction t0 : N ! N and every non-decreasing computable function g : N ! Nthere exists a non-decreasing computable function t : N ! N such that t > t0 andDtime(t) = Dtime(g(t)).Exercise 4.10 In continuation to Exercise 4.4, state and prove a linear speed-upresult for space complexity, when using the standard de�nition of space as recalledin Section 4.3. (Note that this result does not hold with respect to \binary spacecomplexity" as de�ned in Section 5.1.1.)

4.3. SPACE HIERARCHIES AND GAPS 153Exercise 4.11 Prove Theorem 4.9. As a warm-up, prove �rst a space-complexityversion of Theorem 4.3.Guideline: Note that providing a space-e�cient emulation of one machine by anothermachine is easier than providing an analogous time-e�cient emulation.Exercise 4.12 (space gap theorem) In continuation to Theorem 4.7, state andprove a gap theorem for space complexity.

154 CHAPTER 4. MORE RESOURCES, MORE POWER?

Chapter 5Space ComplexityOpen are the double doors of the horizon; unlockedare its bolts. Philip Glass, Akhnaten, PreludeWhereas the number of steps taken during a computation is the primary measureof its e�ciency, the amount of temporary storage used by the computation is alsoa major concern. Furthermore, in some settings, space is even more scarce thantime.In addition to the intrinsic interest in space-complexity, its study provides aninteresting perspective on the study of time-complexity. For example, in contrastto the common conjecture by which NP 6= coNP , we shall see that analogousspace complexity classes (e.g., NL) are closed under complementation (e.g., NL =coNL).Summary: This chapter is devoted to the study of the space complex-ity of computations, while focusing on two rather extreme cases. The�rst case is that of algorithms having logarithmic space complexity.We view such algorithms as utilizing the naturally minimal amount oftemporary storage, where the term \minimal" is used here in an intu-itive (but somewhat inaccurate) sense, and note that logarithmic spacecomplexity seems a more stringent requirement than polynomial time.The second case is that of algorithms having polynomial space com-plexity, which seems a strictly more liberal restriction than polynomialtime complexity. Indeed, algorithms utilizing polynomial space can per-form almost all the computational tasks considered in this book (e.g.,the class PSPACE contains almost all complexity classes considered inthis book).We �rst consider algorithms of logarithmic space complexity. Such al-gorithms may be used for solving various natural search and decision155

156 CHAPTER 5. SPACE COMPLEXITYproblems, for providing reductions among such problems, and for yield-ing a strong notion of uniformity for Boolean circuits. The climax ofthis part is a log-space algorithm for exploring (undirected) graphs.We then turn to non-deterministic computations, focusing on the com-plexity class NL that is captured by the problem of deciding directedconnectivity of (directed) graphs. The climax of this part is a proofthat NL = coNL, which may be paraphrased as a log-space reductionof directed unconnectivity to directed connectivity.We conclude with a short discussion of the class PSPACE, proving thatthe set of satis�able quanti�ed Boolean formulae is PSPACE-complete(under polynomial-time reductions). We mention the similarity be-tween this proof and the proof that Nspace(s) � Dspace(O(s2)).We stress that, as in the case of time complexity, the main results presented in thischapter hold for any reasonable model of computation.1 In fact, when properlyde�ned, space complexity is even more robust than time complexity. Still, for sakeof clarity, we often refer to the speci�c model of Turing machines.Organization. Space complexity seems to behave quite di�erently from timecomplexity, and seems to require a di�erent mind-set as well as auxiliary conven-tions. Some of the relevant issues are discussed in Section 5.1. We then turn tothe study of logarithmic space complexity (see Section 5.2) and the correspondingnon-deterministic version (see Section 5.3). Finally, we consider polynomial spacecomplexity (see Section 5.4).5.1 General preliminaries and issuesWe start by discussing several very important conventions regarding space com-plexity (see Section 5.1.1). Needless to say, reading Section 5.1.1 is essential forthe understanding of the rest of this chapter. (In contrast, the rather parentheticalSection 5.1.2 can be skipped with no signi�cant loss.) We then discuss a variety ofissues, highlighting the di�erences between space-complexity and time-complexity(see Section 5.1.3). In particular, we call the reader's attention to the compositionlemmas (x5.1.3.1) and related reductions (x5.1.3.3) as well as to the obvious sim-ulation result presented in x5.1.3.2 (i.e., Dspace(s) � Dtime(2O(s))). Lastly, inSection 5.1.4 we relate circuit size to space complexity by considering the space-complexity of circuit evaluation.1The only exceptions appear in Exercises 5.4 and 5.18, which refer to the notion of a crossingsequence. The use of this notion in these proofs presumes that the machine scans its storagedevices in a serial manner. In contrast, we stress that the various notions of an instantaneouscon�guration do not assume such a machine model.

5.1. GENERAL PRELIMINARIES AND ISSUES 1575.1.1 Important conventionsSpace complexity is meant to measure the amount of temporary storage (i.e., com-puter's memory) used when performing a computational task. Since much of ourfocus will be on using an amount of memory that is sub-linear in the input length,it is important to use a model in which one can di�erentiate memory used forcomputation from memory used for storing the initial input and/or the �nal out-put. That is, we do not want to count the input and output themselves withinthe space of computation, and thus formulate that they are delivered on specialdevices that are not considered memory. On the other hand, we have to makesure that the input and output devices cannot be abused for providing work space(which is uncounted for). This leads to the convention by which the input device(e.g., a designated input-tape of a multi-tape Turing machine) is read-only, whereasthe output device (e.g., a designated output-tape of a such machine) is write-only.With this convention in place, we de�ne space-complexity as accounting only forthe use of space on the other (storage) devices (e.g., the work-tapes of a multi-tapeTuring machine).Fixing a concrete model of computation (e.g., multi-tape Turing machines),we denote by Dspace(s) the class of decision problems that are solvable in spacecomplexity s. The space complexity of search problems is de�ned analogously.Speci�cally, the standard de�nition of space complexity (see x1.2.3.5) refers to thenumber of cells of the work-tape scanned by the machine on each input. We prefer,however, an alternative de�nition, which provides a more accurate account of theactual storage. Speci�cally, the binary space complexity of a computation refers tothe number of bits that can be stored in these cells, thus multiplying the number ofcells by the logarithm of the �nite set of work-symbols of the machine.2The di�erence between the two aforementioned de�nitions is mostly immaterial,because it amounts to a constant factor and we will usually discard such factors.Nevertheless, aside from being conceptually right, using the de�nition of binaryspace complexity facilitates some technical details (because the number of possi-ble \instantaneous con�gurations" is explicitly upper-bounded in terms of binaryspace complexity whereas its relation to the standard de�nition depends on themachine in question). Towards such applications, we also count the �nite state ofthe machine in its space complexity. Furthermore, for sake of simplicity, we alsoassume that the machine does not scan the input-tape beyond the boundaries ofthe input, which are indicated by special symbols.3We stress that individual locations of the (read-only) input-tape (or device) maybe read several times. This is essential for many algorithms that use a sub-linearamount of space (because such algorithms may need to scan their input more thanonce while they cannot a�ord copying their input to their storage device). In con-trast, rewriting on (the same location of) the write-only output-tape is inessential,2We note that, unlike in the context of time-complexity, linear speed-up (as in Exercise 4.10)does not seem to represent an actual saving in space resources. Indeed, time can be sped-up byusing stronger hardware (i.e., a Turing machine with a bigger work alphabet), but the actualspace is not really a�ected by partitioning it into bigger chunks (i.e., using bigger cells). This factis demonstrated when considering the binary space complexity of the two machines.3As indicated by Exercise 5.1, little is lost by this natural assumption.

158 CHAPTER 5. SPACE COMPLEXITYand in fact can be eliminated at a relatively small cost (see Exercise 5.2).Summary. Let us compile a list of the foregoing conventions. As stated, the�rst two items on the list are of crucial importance, while the rest are of technicalnature (but do facilitate our exposition).1. Space complexity discards the use of the input and output devices.2. The input device is read-only and the output device is write-only.3. We will usually refer to the binary space complexity of algorithms, wherethe binary space complexity of a machine M that uses the alphabet �, �nitestate set Q, and has standard space complexity SM is de�ned as (log2 jQj) +(log2 j�j)�SM . (Recall that SM measures the number of cells of the temporarystorage device that are used by M during the computation.)4. We will assume that the machine does not scan the input-device beyond theboundaries of the input.5. We will assume that the machine does not rewrite to locations of its output-device (i.e., it write to each cell of the output-device at most once).5.1.2 On the minimal amount of useful computation spaceBearing in mind that one of our main objectives is identifying natural sub-classesof P , we consider the question of what is the minimal amount of space that al-lows for meaningful computations. We note that regular sets [119, Chap. 2] aredecidable by constant-space Turing machines and that this is all that the lattercan decide (see, e.g., [119, Sec. 2.6]). It is tempting to say that sub-logarithmicspace machines are not more useful than constant-space machines, because it seemsimpossible to allocate a sub-logarithmic amount of space. This wrong intuition isbased on the presumption that the allocation of a non-constant amount of spacerequires explicitly computing the length of the input, which in turn requires loga-rithmic space. However, this presumption is wrong: the input itself (in case it isof a proper form) can be used to determine its length (and/or the allowed amountof space).4 In fact, for `(n) = log logn, the class Dspace(O(`)) is a proper su-perset of Dspace(O(1)); see Exercise 5.3. On the other hand, it turns out thatdouble-logarithmic space is indeed the smallest amount of space that is more usefulthan constant space (see Exercise 5.4); that is, for `(n) = log logn, it holds thatDspace(o(`)) = Dspace(O(1)).In spite of the fact that some non-trivial things can be done in sub-logarithmicspace-complexity, the lowest space-complexity class that we shall study in depth islogarithmic space (see Section 5.2). As we shall see, this class is the natural habitatof several fundamental computational phenomena.4Indeed, for this approach to work, we should be able to detect the case that the input is notof the proper form (and do so within sub-logarithmic space).

5.1. GENERAL PRELIMINARIES AND ISSUES 159A parenthetical comment (or a side lesson). Before proceeding, let us high-light the fact that a naive presumption about arbitrary algorithms (i.e., that theuse of a non-constant amount of space requires explicitly computing the length ofthe input) could have led us to a wrong conclusion. This demonstrates the dangerin making \reasonably looking" (but unjusti�ed) presumptions about arbitrary al-gorithms. We need to be fully aware of this danger whenever we seek impossibilityresults and/or complexity lower-bounds.5.1.3 Time versus SpaceSpace-complexity behaves very di�erent from time-complexity and indeed di�erentparadigms are used in studying it. One notable example is provided by the contextof algorithmic composition, discussed next.5.1.3.1 Two composition lemmasUnlike time, space can be re-used; but, on the other hand, intermediate resultsof a computation cannot be recorded for free. These two conicting aspects arecaptured in the following composition lemma.Lemma 5.1 (naive composition): Let f1 : f0; 1g� ! f0; 1g� and f2 : f0; 1g� �f0; 1g� ! f0; 1g� be computable in space s1 and s2, respectively.5 Then f de�nedby f(x) def= f2(x; f1(x)) is computable in space s such thats(n) = max(s1(n); s2(n+ `(n))) + `(n) + �(n) ;where `(n) = maxx2f0;1gnfjf1(x)jg and �(n) = O(log(`(n) + s2(n + `(n)))) =o(s(n)).Lemma 5.1 is useful when ` is relatively small, but in many cases `� max(s1; s2).In these cases, the following composition lemma is more useful.Proof: Indeed, f(x) is computed by �rst computing and storing f1(x), and then re-using the space (used in the �rst computation) when computing f2(x; f1(x)). Thisexplains the dominant terms in s(n); that is, the term max(s1(n); s2(n + `(n)))accounts for the computations themselves (which re-use the same space), whereasthe term `(n) accounts for storing the intermediate result (i.e., f1(x)). The extraterm is due to implementation details. Speci�cally, the same storage device is usedboth for storing f1(x) and for providing work-space for the computation of f2,which means that we need to maintain our location each of these two parts (i.e.,5Here (and throughout the chapter) we assume, for simplicity, that all complexity boundsare monotonically non-decreasing. Another minor inaccuracy (in the text) is that we stated thecomplexity of the algorithm that computes f2 in a somewhat non-standard way. Recall thatby the standard convention, the complexity of an algorithm should be stated in terms of thelength of its input, which in this case is a pair (x; y) that may be encoded as a string of lengthjxj+ jyj+ 2 log2 jxj (but not as a string of length jxj+ jyj). An alternative convention is to statethe complexity of such computations in terms of the length of both parts of the input (i.e., haves : N � N ! N rather than s : N ! N), but we did not do this either.

160 CHAPTER 5. SPACE COMPLEXITYthe location of the algorithm (that computes f2) on f1(x) and its location on itsown work-space). (See further discussion at end of the proof of Lemma 5.2.) Theextra O(1) term accounts for the overhead involved in emulating two algorithms.
x

A2

f(x)

A1

x

A2

f(x)

A1

x

A2

f(x)

A1

f (x)1 f (x)1 f (x)1

counters

The leftmost �gure shows the trivial composition (which just invokesA1 and A2 without attempt to economize storage), the middle �gureshows the naive composition (of Lemma 5.1), and the rightmost �g-ure shows the emulative composition (of Lemma 5.2). In all �guresthe �lled rectangles represent designated storage spaces. The dottedrectangle represents a virtual storage device.Figure 5.1: Algorithmic composition for space-bounded computationLemma 5.2 (emulative composition): Let f1; f2; s1; s2; ` and f be as in Lemma 5.1.Then f is computable in space s such thats(n) = s1(n) + s2(n+ `(n)) +O(log(n+ `(n))) + �(n) ;where �(n) = O(log(s1(n) + s2(n+ `(n)))) = o(s(n)).The alternative compositions are depicted in Figure 5.1 (which also shows the moststraightforward composition that makes no attempt to economize space).Proof: The idea is avoiding the storage of the temporary value of f1(x) by com-puting each of its bits (\on the y") whenever this bit is needed for the computationof f2. That is, we do not start by computing f1(x), but rather start by computingf2(x; f1(x)) although we do not have some of the bits of the relevant input (i.e.,the bits of f1(x)). The missing bits will be computed (and re-computed) wheneverwe need them in the computation of f2(x; f1(x)). Details follow.

5.1. GENERAL PRELIMINARIES AND ISSUES 161Let A1 and A2 be the algorithms (for computing f1 and f2, respectively) guar-anteed in the hypothesis.6 Then, on input x 2 f0; 1gn, we invoke algorithm A2 (forcomputing f2). Algorithm A2 is invoked on a virtual input, and so when emulatingeach of its steps we should provide it with the relevant bit. Thus, we should alsokeep track of the location of A2 on the imaginary (virtual) input tape. WheneverA2 seeks to read the ith bit of its input, where i 2 [n+ `(n)], we provide A2 withthis bit by reading it from x if i � n and invoke A1(x) otherwise. When invokingA1(x) we provide it with a virtual output tape, which means that we get the bitsof its output one-by-one and do not record them anywhere. Instead, we countuntil reaching the (i� n)th output bit, which we then pass to A2 (as the ith bit ofhx; f1(x)i).Note that while invoking A1(x), we suspend the execution of A2 but keep itscurrent con�guration such that we can resume the execution (of A2) once we getthe desired bit. Thus, we need to allocate separate space for the computation of A2and for the computation of A1. In addition, we need to allocate separate storagefor maintaining the aforementioned counters (i.e., we use log2(n+`(n)) bits to holdthe location of the input-bit currently read by A2, and log2 `(n) bits to hold theindex of the output-bit currently produced in the current invocation of A1).A �nal (and tedious) issue is that our description of the composed algorithmrefers to two storage devices, one for emulating the computation of A1 and theother for emulating the computation of A2. The issue is not the fact that thestorage (of the composed algorithm) is partitioned between two devices, but ratherthat our algorithm uses two pointers (one per each of the two storage devices). Incontrast, a (\fair") composition result should yield an algorithm (like A1 and A2)that uses a single storage device with a single pointer to locations on this device.Indeed, such an algorithm can be obtained by holding the two original pointers inmemory; the additional �(n) term accounts for this additional storage.Reection: The algorithm presented in the proof of Lemma 5.2 is wasteful interms of time: it re-computes f1(x) again and again (i.e., once per each access ofA2 to the second part of its input). Indeed, our aim was economizing on space andnot on time (and the two goals may be conicting (see, e.g., [56, Sec. 4.3])).5.1.3.2 An obvious boundThe time complexity of an algorithm is essentially upper-bounded by an exponentialfunction in its space complexity. This is due to an upper-bound on the numberof possible instantaneous \con�gurations" of the algorithm (as formulated in theproof of Theorem 5.3), and to the fact that if the computation passes through thesame con�guration twice then it must loop forever.6We assume, for simplicity, that algorithm A1 never rewrites on (the same location of) itswrite-only output-tape. As shown in Exercise 5.2, this assumption can be justi�ed at an additivecost of O(log `(n)). Alternatively, the idea presented in Exercise 5.2 can be incorporated directlyin the current proof.

162 CHAPTER 5. SPACE COMPLEXITYTheorem 5.3 If an algorithm A has binary space complexity s and halts on everyinput then it has time complexity t such that t(n) � n � 2s(n)+log2 s(n).Note that for s(n) =
(logn), the factor of n can be absorbed by 2O(s(n)), and so wemay just write t(n) = 2O(s(n)). Indeed, throughout this chapter (as in most of thisbook), we will consider only algorithms that halt on every input (see Exercise 5.5for further discussion).Proof: The proof refers to the notion of an instantaneous con�guration (in acomputation). Before starting, we warn the reader that this notion may be givendi�erent de�nitions, each tailored to the application at hand. All these de�nitionsshare the desire to specify variable information that together with some �xed infor-mation determines the next step of the computation being analyzed. In the currentproof, we �x an algorithm A and an input x, and consider as variable the contentsof the storage device (e.g., work-tape of a Turing machine as well as its �nite state)and the machine's location on the input device and on the storage device. Thus,an instantaneous con�guration of A(x) consists of the latter three objects (i.e., thecontents of the storage device and a pair of locations), and can be encoded by abinary string of length `(jxj) = s(jxj) + log2 jxj+ log2 s(jxj).7The key observation is that the computation A(x) cannot pass through the sameinstantaneous con�guration twice, because otherwise the computation A(x) passesthrough this con�guration in�nitely many times, which means that this computa-tion does not halt. This observation is justi�ed by noting that the instantaneouscon�guration, together with the �xed information (i.e., A and x), determines thenext step of the computation. Thus, whatever happens (i steps) after the �rsttime that the computation A(x) passes through con�guration , will also happen(i steps) after the second time that the computation A(x) passes through .By the forgoing observation, we infer that the number of steps taken by A oninput x is at most 2`(jxj), because otherwise the same con�guration will appeartwice in the computation (which contradicts the halting hypothesis). The theoremfollows.5.1.3.3 Subtleties regarding space-bounded reductionsLemmas 5.1 and 5.2 su�ce for the analysis of the e�ect of many-to-one reductionsin the context of space-bounded computations. (By a many-to-one reduction ofthe function f to the function g, we mean a mapping � such that for every x itholds that f(x) = g(�(x)).)81. (In spirit of Lemma 5.1:) If f is reducible to g via a many-to-one reductionthat can be computed in space s1, and g is computable in space s2, then f iscomputable in space s such that s(n) = max(s1(n); s2(`(n))) + `(n) + �(n),7Here we rely on the fact that s is the binary space complexity (and not the standard spacecomplexity); see summary item Nr. 3 in Section 5.1.1.8This is indeed a special case of the setting of Lemmas 5.1 and 5.2 (obtained by letting f1 = �and f2(x; y) = g(y)). However, the results claimed for this special case are better than thoseobtained by invoking the corresponding lemma (i.e., s2 is applied to `(n) rather than to n+ `(n)).

5.1. GENERAL PRELIMINARIES AND ISSUES 163where `(n) denotes the maximum length of the image of the reduction whenapplied to some n-bit string and �(n) = O(log(`(n) + s2(`(n)))) = o(s(n)).2. (In spirit of Lemma 5.2:) For f and g as in Item 1, it follows that f iscomputable in space s such that s(n) = s1(n)+ s2(`(n))+O(log `(n))+ �(n),where �(n) = O(log(s1(n) + s2(`(n)))) = o(s(n)).Note that by Theorem 5.3, it holds that `(n) � 2s1(n)+log2 s1(n)�n. We stress the factthat ` is not upper-bounded by s1 itself (as in the analogous case of time-boundedcomputation), but rather by exp(s1).Things get much more complicated when we turn to general (space-bounded) re-ductions, especially when referring to general reductions that make a non-constantnumber of queries. A preliminary issue is de�ning the space-complexity of gen-eral reductions (i.e., of oracle machines). In the standard de�nition, the length ofthe queries and answers is not counted in the space-complexity, but the queriesof the reduction (resp., answers given to it) are written on (resp., read from) aspecial device that is write-only (resp., read-only) for the reduction (and read-only(resp., write-only) for the invoked oracle). Note that these convention are analo-gous to the conventions regarding input and output (as well as �t the de�nitions ofspace-bounded many-to-one reductions that were outlined in the foregoing items).The foregoing conventions su�ce for de�ning general space-bounded reductions.They also su�ce for obtaining appealing composition results in some cases (e.g., forreductions that make a single query or, more generally, for the case of non-adaptivequeries). But more di�culties arise when seeking composition results for generalreductions, which may make several adaptive queries (i.e., queries that depend onthe answers to prior queries). As we shall show next, in this case it is essential toupper-bound the length of every query and/or every answer in terms of the lengthof the initial input.Teaching note: The rest of the discussion is quite advanced and laconic (but is inessen-tial to the rest of the chapter).Recall that the complexity of the algorithm resulting from the composition ofan oracle machine and an actual algorithm (which implements the oracle) dependson the length of the queries made by the oracle machine. For example, the space-complexity of the foregoing compositions, which referred to single-query reductions,had an s2(`(n)) term (where `(n) represents the length of the query). In general,the length of the �rst query is upper-bounded by an exponential function in thespace complexity of the oracle machine, but the same does not necessarily hold forsubsequent queries, unless some conventions are added to enforce it. For example,consider a reduction that, on input x and access to an oracle f such that jf(z)j =2jzj, invokes the oracle jxj times, where each time it uses as a query the answerobtained to the previous query. This reduction uses constant space, but producesqueries that are exponentially longer than the input, whereas the �rst query of anyconstant-space reduction has length that is linear in its input. This problem can beresolved by placing explicit bounds on the length of the queries that space-boundedreductions are allowed to make; for example, we may bound the length of all queries

164 CHAPTER 5. SPACE COMPLEXITYby the obvious bound that holds for the length of the �rst query (i.e., a reductionof space complexity s is allowed to make queries of length at most 2s(n)+log2 s(n) �n).With the aforementioned convention (or restriction) in place, let us considerthe composition of general space-bounded reductions with a space-bounded imple-mentation of the oracle. Speci�cally, we say that a reduction is (`; `0)-restricted if,on input x, all oracle queries are of length at most `(jxj) and the correspondingoracle answers are of length at most `0(jxj). It turns out that naive composition(in the spirit of Lemma 5.1) remains useful, whereas the emulative composition ofLemma 5.2 breaks down (in the sense that it yield very weak results).1. Following Lemma 5.1, we claim that if � can be solved in space s1 when given(`; `0)-restricted oracle access to �0 and �0 is solvable is space s2, then � issolvable in space s such that s(n) = s1(n)+s2(`(n))+`(n)+`0(n)+�(n), where�(n) = O(log(`(n)+`0(n)+s1(n)+s2(`(n)))) = o(s(n)). This claim is provedby using a naive emulation that allocates separate space for the reduction (i.e.,oracle machine) itself, for the emulation of its query and answer devices, andfor the algorithm solving �0. Note, however, that here we cannot re-use thespace of the reduction when running the algorithm that solves �0, because thereduction's computation continues after the oracle answer is obtained. Theadditional �(n) term accounts for the various pointers of the oracle machine,which need to be stored when algorithm that solves �0 is invoked (cf. lastparagraph in the proof of Lemma 5.2).A related composition result is presented in Exercise 5.7. This compositionrefrains from storing the current oracle query (but does store the correspond-ing answer). It yields s(n) = O(s1(n)+ s2(`(n))+ `0(n)+ log `(n)), which for`(n) < 2O(s1(n)) means s(n) = O(s1(n) + s2(`(n)) + `0(n)).2. Turning to the approach underlying the proof of Lemma 5.2, we get intomore serious trouble. Speci�cally, note that recomputing the answer to theith query requires recomputing the query itself, which unlike in Lemma 5.2is not the input to the reduction but rather depends on the answers to priorqueries, which need to be recomputed as well. Thus, the space required forsuch an emulation is at least linear in the number of queries.We note that one should not expect a general composition result (i.e., in the spirit ofthe foregoing Item 1) in which s(n) = F (s1(n); s2(`(n)))+o(min(`(n); `0(n))), whereF is any function. One demonstration of this fact is implied by the observationthat any computation of space-complexity s can be emulated by a constant-space(2s; 2s)-restricted reduction to a problem that is solvable in constant-space (seeExercise 5.9).Non-adaptive reductions. Composition is much easier in the special case ofnon-adaptive reductions. Loosely speaking, the queries made by such reductionsdo not depend on the answers obtained to previous queries. Formulating thisnotion is not straightforward in the context of space-bounded computation. Inthe context of time-bounded computations, non-adaptive reductions are viewed

5.1. GENERAL PRELIMINARIES AND ISSUES 165as consisting of two algorithms: a query generating algorithm, which generatesa sequence of queries, and an evaluation algorithm, which given the input and asequence of answers (obtained from the oracle) produces the actual output. Thereduction is then viewed as invoking the query generating algorithm (and recordingthe sequence of generated queries), making the designated queries (and recordingthe answers obtained), and �nally invoking the evaluation algorithm on the se-quence of answers. Using such a formulation raises the question of how to describenon-adaptive reductions of small space-complexity. This question is revolved bydesignated special storage devices for the aforementioned sequences (of queries andanswers) and postulating that these devices can be used only as described. Fordetails, see Exercise 5.8. Note that non-adaptivity resolves most of the di�cultiesdiscussed in the foregoing. In particular, the length of each query made by a non-adaptive reduction is upper-bounded by an exponential in the space-complexity ofthe reduction (just as in the case of single-query reductions). Furthermore, com-posing such reductions with an algorithm that implements the oracle is not moreinvolved than doing the same for single-query reductions. Thus, as shown in Ex-ercise 5.8, if � is reducible to �0 via a non-adaptive reduction of space-complexitys1 that makes queries of length at most ` and �0 is solvable is space s2, then � issolvable in space s such that s(n) = O(s1(n)+s2(`(n))). (Indeed `(n) < 2O(s1(n)) �nalways hold.)Reductions to decision problems. Composition in the case of reductions todecision problems is also easier, because also in this case the length of each querymade by the reduction is upper-bounded by an exponential in the space-complexityof the reduction (see Exercise 5.10). Thus, applying the semi-naive compositionresult of Exercise 5.7 (mentioned in the foregoing Item 1) is very appealing. Itfollows that if � can be solved in space s1 when given oracle access to a decisionproblem that is solvable is space s2, then � is solvable in space s such that s(n) =O(s1(n) + s2(2s1(n)+log(n�s1(n)))). Indeed, if the length of each query in such areduction is upper-bounded by `, then we may use s(n) = O(s1(n) + s2(`(n))).These results, however, are of limited interest, because it seems di�cult to constructsmall-space reductions of search problems to decision problems (see x5.1.3.4).We mention that an alternative notion of space-bounded reductions is discussedin x5.2.4.2. This notion is more cumbersome and more restricted, but in somecases it allows recursive composition with a smaller overhead than o�ered by theaforementioned composition results.5.1.3.4 Search versus decisionRecall that in the setting of time-complexity we allowed ourselves to focus ondecision problems, since search problems could be e�ciently reduced to decisionproblems. Unfortunately, these reductions (e.g., the ones underlying Theorem 2.10and Proposition 2.15) are not adequate for the study of (small) space-complexity.Recall that these reduction extend the currently stored pre�x of a solution bymaking a query to an adequate decision problem. Thus, these reductions have

166 CHAPTER 5. SPACE COMPLEXITYspace-complexity that is lower-bounded by the length of the solution, which makesthem irrelevant for the study of small space-complexity.In light of the foregoing, the study of the space-complexity of search problemscannot be \reduced" to the study of the space-complexity of decision problems.Thus, while much of our exposition will focus on decision problems, we will keepan eye on the corresponding search problems. Indeed, in many cases, the ideasdeveloped in the study of the decision problems can be adapted to the study of thecorresponding search problems (see, e.g., Exercise 5.17).5.1.3.5 Complexity hierarchies and gapsRecall that more space allows for more computation (see Theorem 4.9), providedthat the space-bounding function is \nice" in an adequate sense. Actually, theproofs of space-complexity hierarchies and gaps are simpler than the analogousproofs for time-complexity, because emulations are easier in the context of space-bounded algorithms (cf. Section 4.3).5.1.3.6 Simultaneous time-space complexityRecall that, for space complexity that is at least logarithmic, the time of a compu-tation is always upper-bounded by an exponential function in the space complexity(see Theorem 5.3). Thus, polylogarithmic space complexity may extend beyondpolynomial-time, and it make sense to de�ne a class that consists of all decisionproblems that may be solved by a polynomial-time algorithm of polylogarithmicspace complexity. This class, denoted SC, is indeed a natural sub-class of P (andcontains the class L, which is de�ned in Section 5.2.1).9In general, one may de�ne DTiSp(t; s) as the class of decision problems solvableby an algorithm that has time complexity t and space complexity s. Note thatDTiSp(t; s) � Dtime(t) \ Dspace(s) and that a strict containment may hold.We mention that DTiSp(�; �) provides the arena for the only known absolute (andhighly non-trivial) lower-bound regarding NP ; see [75]. We also note that lowerbounds on time-space trade-o�s (see, e.g., [56, Sec. 4.3]) may be stated as referringto the classes DTiSp(�; �).5.1.4 Circuit EvaluationRecall that Theorem 3.1 asserts the existence of a polynomial-time algorithm that,given a circuit C : f0; 1gn ! f0; 1gm and an n-bit long string x, returns C(x). Forcircuits of bounded fan-in, the space complexity of such an algorithm can be madelinear in the depth of the circuit (which may be logarithmic in its size). This isobtained by the following DFS-type algorithm.The algorithm (recursively) determines the value of a gate in the circuit by�rst determining the value of its �rst in-coming edge and next determining thevalue of the second in-coming edge. Thus, the recursive procedure, started at each9We also mention that BPL � SC, where BPL is de�ned in x6.1.4.1 and the result is provedin Section 8.4 (see Theorem 8.23).

5.2. LOGARITHMIC SPACE 167output terminal of the circuit, needs only store the path that leads to the currentlyprocessed vertex as well as the temporary values computed for each ancestor. Notethat this path is determined by indicating, for each vertex on the path, whether wecurrently process its �rst or second in-coming edge. In the case that we currentlyprocess the vertex's second in-coming edge, we need also store the value computedfor its �rst in-coming edge.The temporary storage used by the foregoing algorithm, on input (C; x), is thus2dC + O(log jxj+ log jC(x)j), where dC denotes the depth of C. The �rst term inthe space-bound accounts for the core activity of the algorithm (i.e., the recursion),whereas the other terms account for the overhead involved in manipulating theinitial input and �nal output (i.e., assigning the bits of x to the correspondinginput terminals of C and scanning all output terminals of C).Note: Further connections between circuit-complexity and space-complexity arementioned in Section 5.2.3 and x5.3.2.2.5.2 Logarithmic SpaceAlthough Exercise 5.3 asserts that \there is life below log-space," logarithmic spaceseems to be the smallest amount of space that supports interesting computationalphenomena. In particular, logarithmic space is required for merely maintainingan auxiliary counter that holds a position in the input, which seems required inmany computations. On the other hand, logarithmic space su�ces for solving manynatural computational problems, for establishing reductions among many naturalcomputational problems, and for a stringent notion of uniformity (of families ofBoolean circuits). Indeed, an important feature of logarithmic-space computationsis that they are a natural subclass of the polynomial-time computations (see The-orem 5.3).5.2.1 The class LFocusing on decision problems, we denote by L the class of decision problemsthat are solvable by algorithms of logarithmic space complexity; that is, L =[cDspace(`c), where `c(n) def= c log2 n. Note that, by Theorem 5.3, L � P . Ashinted, many natural computational problems are in L (see Exercises 5.6 and 5.12as well as Section 5.2.4). On the other hand, it is widely believed that L 6= P .5.2.2 Log-Space ReductionsAnother class of important log-space computations is the class of logarithmic spacereductions. In light of the subtleties discussed in x5.1.3.3, we focus on the case ofmany-to-one reductions. Analogously to the de�nition of Karp-reductions (De�ni-tion 2.11), we say that f is a log-space (many-to-one) reduction of S to S0 if f islog-space computable and, for every x, it holds that x 2 S if and only if f(x) 2 S0.By Lemma 5.2 (and Theorem 5.3), if S is log-space reducible to some set in L

168 CHAPTER 5. SPACE COMPLEXITYthen S 2 L. Similarly, one can de�ne a log-space variant of Levin-reductions (Def-inition 2.12). Both types of reductions are transitive (see Exercise 5.11). Notethat Theorem 5.3 applies in this context and implies that these reductions runin polynomial-time. Thus, the notion of a log-space many-to-one reduction is aspecial case of a Karp-reduction.We observe that all known Karp-reductions establishing NP-completeness re-sults are actually log-space reductions. This is easily veri�able in the case of thereductions presented in Section 2.3.3 (as well as in Section 2.3.2). For example,consider the generic reduction to CSAT presented in the proof of Theorem 2.21: Theconstructed circuit is \highly uniform" and can be easily constructed in logarithmic-space (see also Section 5.2.3). A degeneration of this reduction su�ces for provingthat every problem in P is log-space reducible to the problem of evaluating a givencircuit on a given input. Recall that the latter problem is in P , and thus we maysay that it is P-complete under log-space reductions.Theorem 5.4 (The complexity of Circuit Evaluation): Let CEVL denote the set ofpairs (C;�) such that C is a Boolean circuit and C(�) = 1. Then CEVL is in Pand every problem in P is log-space Karp-reducible to CEVL.Proof Sketch: Recall that the observation underlying the proof of Theorem 2.21(as well as the proof of Theorem 3.6) is that the computation of a Turing machinecan be emulated by a (\highly uniform") family of circuits. In the proof of The-orem 2.21, we hardwired the input to the reduction (denoted x) into the circuit(denoted Cx) and introduced input terminals corresponding to the bits of the NP-witness (denoted y). In the current context we leave x as an input to the circuit,while noting that the auxiliary NP-witness does not exists (or has length zero).Thus, the reduction from S 2 P to CEVL maps the instance x (for S) to the pair(Cjxj; x), where Cjxj is a circuit that emulates the computation of the machine thatdecides membership in S (on any jxj-bit long input). For the sake of future use (inSection 5.2.3), we highlight the fact that Cjxj can be constructed by a log-spacemachine that is given the input 1jxj.The impact of P-completeness under log-space reductions. Indeed, The-orem 5.4 implies that L 6= P if any only if CEVL 62 L. Other natural problemswere proved to have the same property (i.e., being P-complete under log-spacereductions; cf. [57]).Log-space reductions are used to de�ne completeness with respect to otherclasses that are assumed to extend beyond L. This restriction of the power of thereduction is de�nitely needed when the class of interest is contained in P (e.g.,NL, see Section 5.3.2). In general, we say that a problem � is C-complete underlog-space reductions if � is in C and every problem in C is log-space (many-to-one)reducible to �. In such a case, if � 2 L then C � L.As in the case of polynomial-time reductions, we wish to stress that the relevanceof log-space reductions extends beyond being a tool for de�ning complete problems.

5.2. LOGARITHMIC SPACE 1695.2.3 Log-Space uniformity and stronger notionsRecall that a basic notion of uniformity of a family of circuits (Cn)n, introduced inDe�nition 3.3, requires the existence of an algorithm that on input n outputs thedescription of Cn, while using time that is polynomial in the size of Cn. Strengthen-ing De�nition 3.3, we say that a family of circuits (Cn)n is log-space uniform if thereexists an algorithm that on input n outputs Cn while using space that is logarithmicin the size of Cn. As implied by the following Theorem 5.5 (and implicitly provedin the foregoing Theorem 5.4), the computation of any polynomial-time algorithmcan be emulated by a log-space uniform family of (bounded fan-in) polynomial-sizecircuits. On the other hand, in continuation to Section 5.1.4, we note that log-space uniform circuits of bounded fan-in and logarithmic depth can be emulated byan algorithm of logarithmic space complexity (i.e., \log-space uniform NC1" is inL; see Exercise 5.12).As mentioned in Section 3.1.1, stronger notions of uniformity have also been con-sidered. Speci�cally, in analogy to the discussion in xE.2.1.2, we say that (Cn)n hasa strongly explicit construction if there exists an algorithm that runs in polynomial-time and linear-space such that, on input n and v, the algorithm returns the labelof vertex v in Cn as well as the list of its children (or an indication that v is nota vertex in Cn). Note that if (Cn)n has a strongly explicit construction then itis log-space uniform, because the length of the description of a vertex in Cn islogarithmic in the size of Cn. The proof of Theorem 5.4 actually establishes thefollowing.Theorem 5.5 (strongly uniform circuits emulating P): For every polynomial-time algorithm A there exists a strongly explicit construction of a family of polynomial-size circuits (Cn)n such that for every x it holds that Cjxj(x) = A(x).Proof Sketch: As noted already, the circuits (Cjxj)jxj (considered in the proof ofTheorem 5.4) are highly uniform. In particular, the underlying (directed) graphconsists of constant-size gadgets that are arranged in an array and are only con-nected to adjacent gadgets (see the proof of Theorem 2.21).5.2.4 Undirected ConnectivityExploring a graph (e.g., towards determining its connectivity) is one of the mostbasic and ubiquitous computational tasks regarding graphs. The standard graphexploration algorithms (e.g., BFS and DFS) require temporary storage that is linearin the number of vertices. In contrast, the algorithm presented in this section usestemporary storage that is only logarithmic in the number of vertices. In additionto demonstrating the power of log-space computation, this algorithm (or rather itsactual implementation) provides a taste of the type of issues arising in the designof sophisticated log-space algorithms.The intuitive task of \exploring a graph" is captured by the task of decidingwhether a given graph is connected.10 In addition to the intrinsic interest in this10See Appendix G.1 for basic terminology.

170 CHAPTER 5. SPACE COMPLEXITYnatural computational problem, we mention that it is computationally equivalent(under log-space reductions) to numerous other computational problems (see, e.g.,Exercise 5.16). We note that some related computational problems seem actuallyharder; for example, determining directed connectivity (in directed graphs) cap-tures the essence of the class NL (see Section 5.3.2). In view of this state of a�airs,we emphasize the fact that the computational problem considered here refers toundirected graphs by calling it undirected connectivity.Theorem 5.6 Deciding undirected connectivity (UCONN) is in LThe algorithm is based on the fact that UCONN is easy in the special case that thegraph consists of a collection of constant degree expanders.11 In particular, if thegraph has constant degree and logarithmic diameter then it can be explored usinga logarithmic amount of space (which is used for determining a generic path froma �xed starting vertex).12Needless to say, the input graph does not necessarily consist of a collection ofconstant degree expanders. The main idea is then to transform the input graph intoone that does satisfy the aforementioned condition, while preserving the numberof connected components of the graph. Furthermore, the key point is performingsuch a transformation in logarithmic space. The rest of this section is devoted tothe description of such a transformation. We �rst present the basic approach andnext turn to the highly non-trivial implementation details.Teaching note: We recommend leaving the actual proof of Theorem 5.6 (i.e., therest of this section) for advanced reading. The main reason is its heavy dependence ontechnical material that is beyond the scope of a course in complexity theory.Getting started. We �rst note that it is easy to transform the input graph G0 =(V0; E0) into a constant-degree graph G1 that preserves the number of connectedcomponents in G0. Speci�cally, each vertex v 2 V having degree d(v) (in G0) isrepresented by a cycle Cv of d(v) vertices (in G1), and each edge fu; vg 2 E0 isreplaced by an edge having one end-point on the cycle Cv and the other end-pointon the cycle Cu such that each vertex in G1 has degree three (i.e., has two cycleedges and a single intra-cycle edge). This transformation can be performed usinglogarithmic space, and thus (relying on Lemma 5.2) we assume that the inputgraph has degree three.Our goal is to transform this graph into a collection of expanders, while main-taining the number of connected components. In fact, we shall describe the trans-formation while pretending that the graph is connected, while noting that otherwisethe transformation acts separately on each connected component.11At this point, the reader may think that expanders are merely graphs of logarithmic diameter.At a later stage, we will rely on a basic familiarity with a speci�c de�nition of expanders aswell as with a speci�c technique for constructing them. The relevant material is contained inAppendix E.2.12Indeed, this is analogous to the circuit evaluation algorithm of Section 5.1.4, where the circuitdepth corresponds to the diameter and the bounded fan-in corresponds to the constant degree.For further details, see Exercise 5.13.

5.2. LOGARITHMIC SPACE 171A couple of technicalities. For a constant integer d > 2 determined so as tosatisfy some additional condition, we may assume that the input graph is actuallyd2-regular (albeit is not necessarily simple). Furthermore, we shall assume thatthis graph is not bipartite. Both assumptions can be justi�ed by augmenting theaforementioned construction of a 3-regular graph by adding d2 � 3 self-loops toeach vertex.Prerequisites: Evidently, the notion of an expander graph plays a key role inthe aforementioned transformation. For a brief review of this notion, the reader isreferred to Appendix E.2. In particular, we assume familiarity with the algebraicde�nition of expanders (as presented in xE.2.1.1). Furthermore, the transforma-tion relies heavily on the zig-zag product, de�ned in xE.2.2.2, and the followingexposition assume familiarity with this de�nition.5.2.4.1 The basic approachRecall that our goal is to transform G1 into an expander. The transformation isgradual and consists of logarithmically many iterations, where in each iteration anadequate expansion parameter doubles while the graph becomes a constant factorlarger and maintains the degree bound. The (expansion) parameter of interest isthe gap between the relative second eigenvalue of the graph and 1 (see xE.2.1.1). Aconstant value of this parameter indicates that the graph is an expander. Initially,this parameter is lower-bounded by
(n�2), where n is the size of the graph. Sincethis parameter doubles in each iteration, after logarithmically many iterations thisparameter is lower-bounded by a constant (and hence the current graph is anexpander).The crux of the aforementioned gradual transformation is the transformationthat takes place in each single iteration. This transformation is supposed to doublethe expansion parameter while maintaining the graph's degree and increasing thenumber of vertices by a constant factor. The transformation combines the (stan-dard) graph powering operation and the zig-zag product presented in xE.2.2.2.Speci�cally, for adequate positive integers d and c, we start with the d2-regulargraph G1 = (V1; E1), and go through a logarithmic number of iterations lettingGi+1 = Gciz G for i = 1; :::; t � 1, where G is a �xed d-regular graph with d2cvertices. That is, in each iteration, we raise the current graph (i.e., Gi) to thepower c and combine the resulting graph (d2c-regular) with the �xed (d2c-vertex)graph G using the zig-zag product. Thus, Gi+1 is a d2-regular graph with di�2c � jV1jvertices, where this invariant is preserved by de�nition of the zig-zag product (i.e.,the zig-zag product of a d2c-regular graph G0 = (V 0; E0) with the d-regular graphG (which has d2c vertices) yields a d2-regular graph with d2c � jV 0j vertices).The analysis of the improvement in the expansion parameter, denoted �2(�) def=1� ��2(�), relies on Eq. (E.10). Recall that Eq. (E.10) implies that if ��2(G) < 1=2then 1 � ��2(G0z G) > (1 � ��2(G0))=3. Thus, the �xed graph G is selected such

172 CHAPTER 5. SPACE COMPLEXITYthat ��2(G) < 1=2, which requires a su�ciently large constant d. Thus, we have�2(Gi+1) = 1� ��2(Gciz G) > 1� ��2(Gci)3 = 1� ��2(Gi)c3whereas, for a su�ciently large constant integer c > 0, it holds that 1� ��2(Gi)c >min(6 � (1 � ��2(Gi)); 1=2).13 It follows that that �2(Gi+1) > min(2�2(Gi); 1=6).Thus, setting t = O(log jV1j) and using �2(G1) = 1 � ��2(G1) =
(jV1j�2), weobtain �2(Gt) > 1=6 as desired.Needless to say, a \detail" of crucial importance is the ability to transform G1into Gt via a log-space computation. Indeed, the transformation of Gi to Gi+1can be performed in logarithmic space (see Exercise 5.14), but we need to composea logarithmic number of such transformations. Unfortunately, the standard com-position lemmas for space-bounded algorithms involve overhead that we cannota�ord.14 Still, taking a closer look at the transformation of Gi to Gi+1, one maynote that it is highly structured and in some sense it can be implemented in con-stant space and supports a stronger composition result that incurs only a constantamount of storage per iteration. The resulting implementation (of the iterativetransformation of G1 to Gt) and the underlying formalism will be the subject ofx5.2.4.2. (An alternative implementation, provided in [183], can be obtained byunraveling the composition.)5.2.4.2 The actual implementationThe space-e�cient implementation of the iterative transformation outlined in x5.2.4.1is based on the observation that we do not need to explicitly construct the variousgraphs but merely provide \oracle access" to them. This observation is crucialwhen applied to the intermediate graphs; that is, rather than constructing Gi+1,when given Gi as input, we show how to provide oracle access to Gi+1 (i.e., an-swer \neighborhood queries" regarding Gi+1) when given oracle access to Gi (i.e.,an oracle that answers neighborhood queries regarding Gi). This means that weview Gi and Gi+1 (or rather their incidence lists) as functions (to be evaluated)rather than as strings (to be printed), and show how to reduce the task of �ndingneighbors in Gi+1 (i.e., evaluating the \incidence function" at a given vertex) tothe task of �nding neighbors in Gi.A clarifying discussion. Note that here we are referring to oracle machinesthat access a �nite oracle, which represents a �nite variable object (which, in turn,is an instance of some computational problem). Such a machine provides access toa complex object by using its access to a more basic object, which is represented bythe oracle. Speci�cally, such a machine get an input, which is a \query" regarding13Consider the following two cases: In the case that �2(Gi) < (1 � (1=c)), show that 1 ��2(Gi)c > 1=2. Otherwise, let " def= 1� �2(Gi), and using " � 1=c show that 1� �2(Gi)c > c"=2.14We cannot a�ord the naive composition (of Lemma 5.1), because it causes an overhead linearin the size of the intermediate result. As for the emulative composition (of Lemma 5.2), it sumsup the space complexities of the composed algorithms (not to mention adding another logarithmicterm), which would result in a log-squared bound on the space complexity.

5.2. LOGARITHMIC SPACE 173the complex object (i.e, the object that the machine tries to emulate), and producean output (which is the answer to the query). Analogously, these machines makequeries, which are queries regarding another object (i.e., the one represented in theoracle), and obtain corresponding answers.15Like in x5.1.3.3, queries are made via a special write-only device and the answersare read from a corresponding read-only device, where the use of these devices isnot charged in the space complexity. With these conventions in place, we claimthat neighborhoods in the d2-regular graph Gi+1 can be computed by a constant-space oracle machine that is given oracle access to the d2-regular graph Gi. Thatis, letting gi : Vi � [d2] ! Vi � [d2] (resp., gi+1 : Vi+1 � [d2] ! Vi+1 � [d2]) denotethe edge-rotation function16 of Gi (resp., Gi+1), we have:Claim 5.7 There exists a constant-space oracle machine that evaluates gi+1 whengiven oracle access to gi, where the state of the machine is counted in the spacecomplexity.Proof Sketch: We �rst show that the two basic operation that underly the def-inition of Gi+1 (i.e., powering and zig-zag product with a constant graph) can beperformed in constant-space.The edge-rotation function of G2i (i.e., the square of the graph Gi) can beevaluated at any desired pair, by evaluating the edge-rotation function of Gi twice,and using a constant amount of space. Speci�cally, given v 2 Vi and j1; j2 2 [d2],we compute gi(gi(v; j1); j2), which is the edge-rotation of (v; hj1; j2i) in G2i , asfollows. First, making the query (v; j1), we obtain the edge-rotation of (v; j1),denoted (u; k1). Next, making the query (u; j2), we obtain (w; k2), and �nally weoutput (w; hk2; k1i). We stress that we only use the temporary storage to recordk1, whereas u is directly copied from the oracle answer device to the oracle querydevice. Accounting also for a constant number of states needed for the variousstages of the foregoing activity, we conclude that graph squaring can be performedin constant-space. The argument extends to the task of raising the graph to anyconstant power.Turning to the zig-zag product (of an arbitrary regular graph G0 with a �xedgraph G), we note that the corresponding edge-rotation function can be evaluatedin constant-space (given oracle access to the edge-rotation function of G0). Thisfollows directly from Eq. (E.8), noting that the latter calls for a single evaluationof the edge-rotation function of G0 and two simple modi�cations that only dependon the constant-size graph G (and a�ect a constant number of bits of the relevant15Indeed, the current setting (in which the oracle represents a �nite variable object, which inturn is an instance of some computational problem) is di�erent from the standard setting, wherethe oracle represents a �xed computational problem. Still the mechanism (and/or operations)of these two types of oracle machines is the same: They both get an input (which here is a\query" regarding a variable object rather than an instance of a �xed computational problem),and produce an output (which here is the answer to the query rather than a \solution" for thegiven instance). Analogously, these machines make queries (which here are queries regardinganother variable object rather than queries regarding another �xed computational problem), andobtain corresponding answers.16Recall that the edge-rotation function of a graph maps the pair (v; j) to the pair (u; k) ifvertex u is the jth neighbor of vertex v and v is the kth neighbor of u (see xE.2.2.2).

174 CHAPTER 5. SPACE COMPLEXITYstrings). Again, using the fact that it su�ces to copy vertex names from the inputto the oracle query device (or from the oracle answer device to the output), weconclude that the aforementioned activity can be performed using constant space.The argument extends to a sequential composition of a constant number ofoperations of the aforementioned type (i.e., graph squaring and zig-zag productwith a constant graph).Recursive composition. Using Claim 5.7, we wish to obtain a O(t)-space oraclemachine that evaluates gt by making oracle calls to g1, where t = O(log jV1j). Suchan oracle machine will yield a log-space transformation of G1 to Gt (by evaluatinggt at all possible values). It is tempting to hope that an adequate compositionlemma, when applied to Claim 5.7, will yield the desired O(t)-space oracle machine(reducing the evaluation of gt to g1). This is indeed the case, except that theadequate composition lemma is still to be developed (as we do next).We �rst note that applying a naive composition (as in Lemma 5.1) amountsto an additive overhead of O(log jV1j) per each composition. But we cannot a�ordmore than an amortized constant additive overhead per composition. Applying theemulative composition (as in Lemma 5.2) causes a multiplicative overhead per eachcomposition, which is certainly una�ordable. The composition developed next is avariant of the naive composition, which is bene�cial in the context of recursive calls.The basic idea is deviating from the paradigm that allocates separate input/outputand query devices to each level in the recursion, and combining all these devicesin a single (\global") device which will be used by all levels of the recursion. Thatis, rather than following the \structured programming" methodology of using lo-cally designated space for passing information to the subroutine, we use the \badprogramming" methodology of passing information through global variables. (Asusual, this notion is formulated by referring to the model of multi-tape Turingmachine, but it can be formulated in any other reasonable model of computation.)De�nition 5.8 (global-tape oracle machines): A global-tape oracle machine is de-�ned as an oracle machine (cf. De�nition 1.11), except that the input, output andoracle tapes are replaced by a single global-tape. In addition, the machine has aconstant number of work tapes, called the local-tapes. The machine obtains its inputfrom the global-tape, writes each query on this very tape, obtains the correspondinganswer from this tape, and writes its �nal output on this tape. (We stress that, asa result of invoking the oracle f , the contents of the global-tape changes from q tof(q).)17 The space complexity of such a machine is stated when referring separatelyto its use of the global-tape and to its use of the local-tapes.Clearly, any ordinary oracle machine can be converted into an equivalent global-tape oracle machine. The resulting machine uses a global-tape of length at mostn + ` + m, where n denotes the length of the input, ` denote the length of the17This means that the prior contents of the global-tape (i.e., the query q) is lost (i.e., it isreplaced by the answer f(q)). Thus, if we wish to keep such prior contents then we need to copyit to a local-tape. We also stress that, according to the standard oracle invocation conventions,the head location after the oracle responds is at the left-most cell of the global-tape.

5.2. LOGARITHMIC SPACE 175longest query or oracle answer, and m denotes the length of the output. However,combining these three di�erent tapes into one global-tape seems to require holdingseparate pointers for each of the original tapes, which means that the local-tape hasto store three corresponding counters (in addition to storing the original work-tape).Thus, the resulting machine uses a local-tape of length w+log2 n+log2 `+log2m,where w denotes the space complexity of the original machine and the additionallogarithmic terms (which are logarithmic in the length of the global-tape) accountfor the aforementioned counters.Fortunately, the aforementioned counters can be avoided in the case that theoriginal oracle machine can be described as an iterative sequence of transformations(i.e., the input is transformed to the �rst query, and the ith answer is transformedto the i+1st query or to the output, all while maintaining auxiliary information onthe work-tape). Indeed, the machine presented in the proof of Claim 5.7 has thisform, and thus it can be implemented by a global-tape oracle machine that usesa global-tape not longer than its input and a local-tape of constant length (ratherthan a local-tape of length that is logarithmic in the length of the global-tape).Claim 5.9 (Claim 5.7, revisited): There exists a global-tape oracle machine thatevaluates gi+1 when given oracle access to gi, while using global-tape of lengthlog2(d2 � jVi+1j) and a local-tape of constant length.Proof Sketch: Following the proof of Claim 5.7, we merely indicate the exactuse of the two tapes. For example, recall that the edge-rotation function of thesquare of Gi is evaluated at (v; hj1; j2i) by evaluating the edge-rotation functionof the original graph �rst at (v; j1) and then at (u; j2), where (u; k1) = gi(v; j1).This means the global-tape machine �rst reads (v; hj1; j2i) from the global-tapeand replaces it by the query (v; j1), while storing j2 on the local-tape. Thus,the machine merely deletes a constant number of bits from the global-tape (andleaves its pre�x intact). After invoking the oracle, the machine copies k1 fromthe global-tape (which currently holds (u; k1)) to its local-tape, and copies j2 fromits local-tape to the global-tape (such that it contains (u; j2)). After invoking theoracle for the second time, the global-tape contains (w; k2) = gi(u; j2), and themachine merely modi�es it to (w; hk2; k1i), which is the desired output.Similarly, note that the edge-rotation function of the zig-zag product of thevariable graph G0 with the �xed graph G is evaluated at (hu; ii; h�; �i) by queryingG0 at (u;E�(i)) and outputting (hv; E�(j0)i; h�; �i), where (v; j0) denotes the oracleanswer (see Eq. (E.8)). This means that the global-tape oracle machine �rst copies�; � from the global-tape to the local-tape, transforms the contents of the global-tape from (hu; ii; h�; �i) to (u;E�(i)), and makes an analogous transformation afterthe oracle is invoked.Composing global-tape oracle machines. In the proof of Claim 5.9, we im-plicitly used sequential composition of computations conducted by global-tape or-acle machines.18 In general, when sequentially composing such computations the18A similar composition took place in the proof of Claim 5.7, but in Claim 5.9 we asserted astronger feature of this speci�c computation.

176 CHAPTER 5. SPACE COMPLEXITYlength of the global-tape (resp., local-tape) is the maximum among all composedcomputations; that is, the current formalism o�ers a tight bound on naive sequentialcomposition (as opposed to Lemma 5.1). Furthermore, global-tape oracle machinesare bene�cial in the context of recursive composition, as indicated by Lemma 5.10(which relies on this model in a crucial way). The key observation is that all levelsin the recursive composition may re-use the same global storage, and only the localstorage gets added. Consequently, we have the following composition lemma.Lemma 5.10 (recursive composition in the global-tape model): Suppose that thereexists a global-tape oracle machine that, for every i = 1; :::; t�1, computes fi+1 bymaking oracle calls to fi while using a global-tape of length L and a local-tape oflength li, which also accounts for the machine's state. Then ft can be computed by astandard oracle machine that makes calls to f1 and uses space L+Pt�1i=1(li+log2 li).We shall apply this lemma with fi = gi and t = O(log jV1j) = O(log jVtj), using thebounds L = log2(d2 � jVtj) and li = O(1) (as guaranteed by Claim 5.9). Indeed, inthis application L equals the length of the input to ft = gt.Proof Sketch: We compute ft by allocating space for the emulation of the global-tape and the local-tapes of each level in the recursion. We emulate the recursivecomputation by capitalizing on the fact that all recursive levels use the same global-tape (for making queries and receiving answers). Recall that in the actual recursion,each level may use the global-tape arbitrarily as long as when it returns controlto the invoking machine the global-tape contains the right answer. Thus, theemulation may do the same, and emulate each recursive call by using the spaceallocated for the global-tape as well as the space designated for the local-tapeof this level. The emulation should also store the locations of the other levelsof the recursion on the corresponding local-tapes, but the space needed for this(i.e.,Pt�1i=1 log2 li) is clearly smaller than the length of the various local-tapes (i.e.,Pt�1i=1 li).Conclusion. Combining Claim 5.9 and Lemma 5.10, we conclude that the evalu-ation of gO(log jV1j) can be reduced to the evaluation of g1 in space O(log jV1j); thatis, gO(log jV1j) can be computed by a standard oracle machine that makes calls tog1 and uses space O(log jV1j). Recalling that G1 can be constructed in log-space(based on the input graph G0), we infer that G0 = GO(log jV1j) can be constructedin log-space. Theorem 5.6 follows by recalling that G0 (which has constant degreeand logarithmic diameter) can be tested for connectivity in log-space (see Exer-cise 5.13). Using a similar argument, we can test whether a given pair of verticesare connected in the input graph (see Exercise 5.15). Furthermore, a correspondingpath can be found within the same complexity (see Exercise 5.17).5.3 Non-Deterministic Space ComplexityThe di�erence between space-complexity and time-complexity is quite striking inthe context of non-deterministic computations. One phenomenon is the huge gap

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 177between the power of two formulation of non-deterministic space-complexity (seeSection 5.3.1), which stands in contrast to the fact that the analogous formulationsare equivalent in the context of time-complexity. We also highlight the contrastbetween various results regarding (the standard model of) non-deterministic space-bounded computation (see Section 5.3.2) and the analogous questions in the con-text of time-complexity; one good example is the \question of complementation"(cf. x5.3.2.3).5.3.1 Two modelsRecall that non-deterministic time-bounded computations were de�ned via twoequivalent models. In the o�-line model (underlying the de�nition of NP as aproof system (see De�nition 2.5)) non-determinism is captured by reference to theexistential choice of an auxiliary (\non-deterministic") input. In contrast, in theon-line model (underlying the traditional de�nition of NP (see De�nition 2.7))non-determinism is captured by reference to the non-deterministic choices of themachine itself. In the context of time-complexity, these models are equivalentbecause the latter on-line choices can be recorded (almost) for free (see the proofof Theorem 2.8). However, such a recording is not free of charge in the context ofspace-complexity.Let us take a closer look at the relation between the o�-line and on-line models.The fact that the o�-line model can emulate the on-line model is almost generic;that is, it holds for any reasonable notion of complexity, because it is based onthe fact that the o�-line machine can emulate on-line choices by using its non-deterministic input (and without signi�cantly e�ecting the complexity measure).In contrast, the emulation of the o�-line model by the on-line model is enabledby the fact that in the context of time-complexity an on-line machine may store(and re-use) a sequence of non-deterministic (on-line) choices without signi�cantlye�ecting the running-time (i.e., almost \free of charge"). This naive emulation (ofthe o�-line model on the on-line model) is not free of charge in the context of space-bounded computation. Furthermore, typically the number of non-deterministicchoices is much larger than the space-bound, and thus the naive emulation is notpossible in the context of space-complexity (because it is prohibitively expensive interms of space-complexity). Let us recapitulate the two models and consider therelation between them in the context of space-complexity.In the standard model, called the on-line model, the machine makes non-deterministicchoices \on the y" (as in De�nition 2.7).19 Thus, if the machine may need to re-fer to such a non-deterministic choice at a latter stage in its computation, then itmust store this choice on its storage device (and be charged for it). In contrast,in the so-called o�-line model the non-deterministic choices are provided from theoutside as the bits of a special non-deterministic input. This non-deterministic19An alternative but equivalent de�nition is obtained by considering machines that read a non-deterministic input from a special read-only tape that can be read only in one direction. Thisstands in contrast to the o�-line model, where the non-deterministic input is presented on aread-only tape that can be scanned freely.

178 CHAPTER 5. SPACE COMPLEXITYinput is presented on a special read-only device (or tape) that can be scanned inboth directions like the main input.We denote by Nspaceon-line(s) (resp., Nspaceo�-line(s)) the class of sets thatare acceptable by an on-line (resp., o�-line) non-deterministic machine having spacecomplexity s. We stress that, as in De�nition 2.7, the set accepted by a non-deterministic machineM is the set of strings x such that there exists a computationofM on input x that is accepting. (In the case of an on-line machine this existentialstatement refers to possible non-deterministic choices of the machine itself, whereasin the case of an o�-line machine we refer to a possible choice of a correspondingnon-deterministic input.)The relationship between these two types of classes is not obvious. Indeed,Nspaceon-line(s) � Nspaceo�-line(s), but (in general) containment does not holdin the opposite direction. In fact, for s that is at least logarithmic, not only thatNspaceon-line(s) 6= Nspaceo�-line(s) but ratherNspaceon-line(s) � Nspaceo�-line(s0),where s0(n) = O(log s(n)) = o(s(n)). Furthermore, for s that is at least linear, itholds that Nspaceon-line(s) = Nspaceo�-line(�(log s)); see Exercise 5.18.Before proceeding any further, let us justify the focus on the on-line model inthe rest of this section. Indeed, the o�-line model �ts better the motivations toNP (as presented in Section 2.1.2), but the on-line model seems more adequatefor the study of non-deterministic in the context of space complexity. One reasonis that an o�-line non-deterministic input can be used to code computations (seeExercise 5.18), and in a sense allows to \cheat" with respect to the \actual" spacecomplexity of the computation. This is reected in the fact that the o�-line modelcan emulate the on-line model while using space that is logarithmic in the spaceused by the on-line model. A related phenomenon is that Nspaceo�-line(s) is onlyknown to be contained in Dtime(22s), whereas Nspaceon-line(s) � Dtime(2s).This fact motivates the study of NL = Nspaceon-line(log), as a study of a (nat-ural) sub-class of P . Indeed, the various results regarding NL justify its study inretrospect.In light of the foregoing, we adopt the standard conventions and letNspace(s) =Nspaceon-line(s). Our main focus will be the study of NL = Nspace(log). Afterstudying this class in Section 5.3.2, we shall return to the \question of modeling"in Section 5.3.3.5.3.2 NL and directed connectivityThis section is devoted to the study of NL, which we view as the non-deterministicanalogue of L. Speci�cally, NL = [cNspace(`c), where `c(n) = c log2 n. (We referthe reader to the de�nitional issues pertaining Nspace = Nspaceon-line, which arediscussed in Section 5.3.1.)We �rst note that the proof of Theorem 5.3 can be easily extended to the(on-line) non-deterministic context. The reason being that moving from the de-terministic model to the current model does not a�ect the number of instanta-neous con�gurations (as de�ned in the proof of Theorem 5.3), whereas this numberbounds the time complexity. Thus, NL � P .

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 179The following problem, called directed connectivity (st-CONN), captures theessence of non-deterministic log-space computations (and, in particular, is com-plete for NL under log-space reductions). The input to st-CONN consists of adirected graph G = (V;E) and a pair of vertices (s; t), and the task is to determinewhether there exists a directed path from s to t (in G).20 Indeed, the study ofNL is often conducted via st-CONN. For example, note that NL � P follows easilyfrom the fact that st-CONN is in P (and the fact that NL is log-space reducible tost-CONN).5.3.2.1 Completeness and beyondClearly, st-CONN is inNL (see Exercise 5.19). As shown next, theNL-completenessof st-CONN under log-space reductions follows by noting that the computation ofany non-deterministic space-bounded machine yields a directed graph in whichvertices correspond to possible con�gurations and edges represent the \successive"relation of the computation. In particular, for log-space computations the graphhas polynomial size, but in general the relevant graph is strongly explicit (in anatural sense; see Exercise 5.21).Theorem 5.11 Every problem in NL is log-space reducible to st-CONN (via amany-to-one reduction).Proof Sketch: Fixing a non-deterministic (on-line) machineM and an input x, weconsider the following directed graphGx = (Vx; Ex). The vertices of Vx are possibleinstantaneous con�gurations of M(x), where each con�guration consists of thecontents of the work-tape (and the machine's �nite state), the machine's locationon it, and the machine's location on the input. The directed edges represent singlepossible moves in such a computation. We stress that such a move depends on themachine M as well as on the (single) bit of x that resides in the location speci�edby the �rst con�guration (i.e., the con�guration corresponding to the start-point ofthe potential edge).21 Note that (for a �xed machineM), given x, the graphGx canbe constructed in log-space (by scanning all pairs of vertices and outputting onlythe pairs that are valid edges (which, in turn, can be tested in constant-space)).By de�nition, the graph Gx represents the possible computations ofM on inputx. In particular, there exists an accepting computation ofM on input x if and onlyif there exists a directed path, in Gx, starting at the vertex s that corresponds tothe initial con�guration and ending at the vertex t that corresponds to a canonicalaccepting con�guration. Thus, x 2 S if and only if (Gx; s; t) is a yes-instance ofst-CONN.20See Appendix G.1 for basic graph theoretic terminology. We note that, here (and in thesequel), s stands for start and t stands for terminate.21Thus, the actual input x only a�ects the set of edges of Gx (whereas the set of vertices is onlya�ected by jxj). A related construction is obtained by incorporating in the con�guration also the(single) bit of x that resides in the machine's location on the input. In the latter case, x itselfa�ects Vx (but not Ex, except for Ex � Vx�Vx).

180 CHAPTER 5. SPACE COMPLEXITYReection: We believe that the proof of Theorem 5.11 (see also Exercise 5.21)justi�es saying that st-CONN captures the essence of non-deterministic space-boundedcomputations. Note that this (intuitive and informal) statement goes beyond say-ing that st-CONN is NL-complete under log-space reductions.We note the discrepancy between the space-complexity of undirected connectiv-ity (see Theorem 5.6 and Exercise 5.15) and directed connectivity (see Theorem 5.11and Exercise 5.23). In this context it is worthwhile to note that determining theexistence of relatively short paths (rather than arbitrary paths) in undirected (ordirected) graphs is also NL-complete under log-space reductions; see Exercise 5.24.On the search version of stCONN: We mention that the search problemcorresponding to st-CONN is log-space reducible to NL (by a Cook-reduction);see Exercise 5.20. Also note that accepting computations of any log-space non-deterministic machine can be found by �nding directed paths in directed graphs;indeed, this is a simple demonstration of the thesis that st-CONN captures non-deterministic log-space computations.5.3.2.2 Relating NSPACE to DSPACERecall that in the context of time-complexity, the only known conversion of non-deterministic computation to deterministic computation comes at the cost of anexponential blow-up in the complexity. In contrast, space-complexity allows sucha conversion at the cost of a polynomial blow-up in the complexity.Theorem 5.12 (Non-deterministic versus deterministic space): For any space-constructible s : N ! N that is at least logarithmic, it holds that Nspace(s) �Dspace(O(s2)).In particular, non-deterministic polynomial-space is contained in deterministic polynomial-space (and non-deterministic poly-logarithmic space is contained in deterministicpoly-logarithmic space).Proof Sketch: We focus on the special case of NL and the argument extendseasily to the general case. Alternatively, the general statement can be derived fromthe special case by using a suitable upwards-translation lemma (see, e.g., [119,Sec. 12.5]). The special case boils down to presenting an algorithm for decidingdirected connectivity that has log-square space-complexity.The basic idea is that checking whether or not there is a path of length atmost 2` from u to v in G, reduces (in log-space) to checking whether there is anintermediate vertex w such that there is a path of length at most ` from u to wand a path of length at most ` from w to v. That is, let �G(u; v; `) def= 1 if there isa path of length at most ` from u to v in G, and �G(u; v; `) def= 0 otherwise. Then�G(u; v; 2`) can be computed by scanning all vertices w in G, and checking for eachw whether both �G(u;w; `) = 1 and �G(w; v; `) = 1 hold.22 Hence, we can compute22Similarly, �G(u; v; 2`+ 1) can be computed by scanning all vertices w in G, and checking foreach w whether both �G(u;w; `+ 1) = 1 and �G(w; v; `) = 1 hold.

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 181�G(u; v; 2`) by a log-space algorithm that makes oracle calls to �G(�; �; `), which inturn can be computed recursively in the same manner. Note that the originalcomputational problem (i.e., st-CONN) can be cast as computing �G(s; t; jV j) (or�G(s; t; 2dlog2 jV je)) for a given directed graph G = (V;E) and a given pair of vertices(s; t). Thus, the foregoing recursive procedure yields the theorem's claim, providedthat we use adequate composition results. We take a technically di�erent approachby directly analyzing the recursive procedure at hand.Recall that given a directed graph G = (V;E) and a pair of vertices (s; t), weshould merely compute �G(s; t; 2dlog2 jV je). This is done by invoking a recursiveprocedure that computes �G(u; v; 2`) by scanning all vertices in G, and computingfor each vertex w the values of �G(u;w; `) and �G(w; v; `). The punch-line is thatall these computations may re-use the same space, while we need only store oneadditional bit representing the results of all prior computations. We return thevalue 1 if and only if for some w it holds that �G(u;w; `) = �G(w; v; `) = 1 (seeFigure 5.2). Needless to say, �G(u; v; 1) can be decided easily in logarithmic space.Recursive computation of �G(u; v; 2`), for ` � 1.For w = 1; :::; jV j do begin (storing the vertex name)Compute � �G(u;w; `) (by a recursive call)Compute � � ^ �G(w; v; `) (by a second recursive call)If � = 1 then return 1. (success: an intermediate vertex was found)End (of scan).return 0. (reached only if the scan was completed without success).Figure 5.2: The recursive procedure in NL � Dspace(O(log2)).We consider an implementation of the foregoing procedure (of Figure 5.2) inwhich each level of the recursion uses a designated portion of the entire storage formaintaining the local variables (i.e., w and �). The amount of space taken by eachlevel of the recursion is essentially log2 jV j (for storing the current value of w), andthe number of levels is log2 jV j. We stress that when computing �G(u; v; 2`), wemake many recursive calls, but all these calls re-use the same work space (i.e., theportion that is designated to that level). That is, when we compute �G(u;w; `) were-use the space that was used for computing �G(u;w0; `) for the previous w0, andwe re-use the same space when we compute �G(w; v; `). Thus, the space-complexityof our algorithm is merely the sum of the amount of space used by all recursionlevels. It follows that st-CONN has log-square (deterministic) space-complexity, andthe same follows for all of NL (either by noting that st-CONN actually representsany NL computation or by using the log-space reductions of NL to st-CONN).Digest. The proof of Theorem 5.12 relies on two main observations. The �rstobservation is that a conjunction (resp., disjunction) of two Boolean conditions

182 CHAPTER 5. SPACE COMPLEXITYcan be veri�ed using space s + O(1), where s is the space complexity of verifyinga single condition. This follows by applying naive composition (i.e., Lemma 5.1).Actually, the second observation is merely a generalization of the �rst observation:It asserts that an existential claim (resp., a universally quanti�ed claim) can beverifying by scanning all possible values in the relevant domain (and testing theclaim for each value), which in terms of space-complexity has an additive cost thatis logarithmic in the size of the domain.The proof of Theorem 5.12 is facilitated by the fact that we may consider aconcrete and simple computational problem such as st-CONN. Nevertheless, thesame ideas can be applied directly to NL (or any Nspace class).Placing NL in NC2. The simple formulation of st-CONN facilitates placing NLin complexity classes such as NC2 (i.e., decidability by uniform families of circuitsof log-square depth and bounded fan-in). All that is needed is observing thatst-CONN can be solved by raising the adequate matrix (i.e., the adjacency matrixof the graph augmented with 1-entries on the diagonal) to the adequate power(i.e., its dimension). Squaring a matrix can be done by a uniform family circuits oflogarithmic depth and bounded fan-in (i.e., in NC1), and by repeated squaring thenth power of an n-by-n matrix can be computed by a uniform family of boundedfan-in circuits of polynomial size and depth O(log2 n); thus, st-CONN 2 NC2.Indeed, NL � NC2 follows by noting that st-CONN actually represents any NLcomputation (or by noting that any log-space reduction can be computed by auniform family of logarithmic depth and bounded fan-in circuits).5.3.2.3 Complementation or NL=coNLRecall that (reasonable) non-deterministic time-complexity classes are not knownto be closed under complementation. Furthermore, it is widely believed that NP 6=coNP . In contrast, (reasonable) non-deterministic space-complexity classes areclosed under complementation, as captured by the result NL = coNL, wherecoNL def= ff0; 1g� n S : S 2 NLg.Before proving that NL = coNL, we note that proving this result is equivalentto presenting a log-space Karp-reduction of st-CONN to its complement (or, equiv-alently, a reduction in the opposite direction, see Exercise 5.26). Our proof utilizesa di�erent perspective on the NL-vs-coNL question, by rephrasing this question asreferring to the relation between NL and NL \ coNL (see Exercise 2.37), and byo�ering an \operational interpretation" of the class NL \ coNL.Recall that a set S is inNL if there exists a non-deterministic log-space machineM that accepts S, and that the acceptance condition of non-deterministic machinesis asymmetric in nature. That is, x 2 S implies the existence of an acceptingcomputation of M on input x, whereas x 62 S implies that all computations of Mon input x are non-accepting. Thus, the existence of a accepting computation ofM on input x is an absolute indication for x 2 S, but the existence of a rejectingcomputation of M on input x is not an absolute indication for x 62 S. In contrast,for S 2 NL\ coNL, there exist absolute indications both for x 2 S and for x 62 S

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 183(or, equivalently for x 2 S def= f0; 1g�nS), where each of the two types of indicationis provided by a di�erent non-deterministic machine (i.e., either the one acceptingS or the one accepting S). Combining both machines, we obtain a single non-deterministic machine that, for every input, sometimes outputs the correct answerand always outputs either the correct answer or a special (\don't know") symbol.This yields the following de�nition, which refers to Boolean functions as a specialcase.De�nition 5.13 (non-deterministic computation of functions): We say that anon-deterministic machine M computes the function f : f0; 1g� ! f0; 1g� if forevery x 2 f0; 1g� the following two conditions hold.1. Every computation of M on input x yields an output in ff(x);?g, where? 62 f0; 1g� is a special symbol (indicating \don't know").2. There exists a computation of M on input x that yields the output f(x).Note that S 2 NL\ coNL if and only if there exists a non-deterministic log-spacemachine that computes the characteristic function of S (see Exercise 5.25). Recallthat the characteristic function of S, denoted �S , is the Boolean function satisfying�S(x) = 1 if x 2 S and �S(x) = 0 otherwise. It follows that NL = coNL if andonly if for every S 2 NL there exists a non-deterministic log-space machine thatcomputes �S .Theorem 5.14 (NL = coNL): For every S 2 NL there exists a non-deterministiclog-space machine that computes �S.As in the case of Theorem 5.12, the result extends to any space-constructible s :N ! N that is at least logarithmic; that is, for such s and every S 2 Nspace(s),it holds that f0; 1g� n S 2 Nspace(O(s)). This extension can be proved eitherby generalizing the following proof or by using an adequate upwards-translationlemma.Proof Sketch: As in the proof of Theorem 5.12, it su�ces to present a non-deterministic (on-line) log-space machine that computes the characteristic functionof st-CONN, denoted � (i.e., �(G; s; t) = 1 if there is a directed path from s to t inG and �(G; s; t) = 0 otherwise).We �rst show that the computation of � is log-space reducible to determiningthe number of vertices that are reachable (via a directed path) from a given vertexin a given graph. On input (G; s; t), the reduction computes the number of verticesthat are reachable from s in the graph G and compares this number to the numberof vertices reachable from s in the graph G0 obtained by omitting t from G. Clearly,these two numbers are di�erent if and only if vertex t is reachable from vertex v(in the graph G). An alternative reduction that uses a single query is presented inExercise 5.28. Combining either of these reductions with a non-deterministic log-space machine that computes the number of reachable vertices, we obtain a non-deterministic log-space machine that computes �. This can be shown by relyingeither on the non-adaptivity of these reductions or on the fact that the solutions

184 CHAPTER 5. SPACE COMPLEXITYfor the target problem have logarithmic length; see Exercise 5.29. Thus, we focuson providing a non-deterministic log-space machine for computing the number ofvertices that are reachable from a given vertex in a given graph.Fixing an n-vertex graph G = (V;E) and a vertex v, we consider the set ofvertices that are reachable from v by a path of length at most i. We denote thisset by Ri, and observe that R0 = fvg and that for every i = 1; 2; :::, it holds thatRi = Ri�1 [fu : 9w 2 Ri�1 s.t. (w; u) 2 Eg (5.1)Our aim is to (non-deterministically) compute jRnj in log-space. This will be donein n iterations such that at the ith iteration we compute jRij. When computingjRij we rely on the fact that jRi�1j is known to us, which means that we shall storejRi�1j in memory. We stress that we discard jRi�1j from memory as soon as wecomplete the computation of jRij, which we store instead. Thus, at each iterationi, our record of past iterations only contains jRi�1j.Computing jRij. Given jRi�1j, we non-deterministically compute jRij by making aguess (for jRij), denoted g, and verifying its correctness as follows:1. We verify that jRij � g in a straightforward manner. That is, scanning V insome canonical order, we verify for g vertices that they are each in Ri. Thatis, during the scan, we select non-deterministically g vertices, and for eachselected vertex w we verify that w is reachable from v by a path of length atmost i, where this veri�cation is performed by just guessing and verifying anadequate path (see Exercise 5.19).We use log2 n bits to store the number of vertices that were already veri�edto be in Ri, another log2 n bits to store the currently scanned vertex (i.e., w),and another O(log n) bits for implementing the veri�cation of the existenceof a path of length at most i from v to w.2. The veri�cation of the condition jRij � g (equivalently, jV n Rij � n � g)is the interesting part of the procedure. Indeed, as we saw, demonstratingmembership in Ri is easy, but here we wish to demonstrate non-membershipin Ri. We do so by relying on the fact that we know jRi�1j, which allowsfor a non-deterministic enumeration of Ri�1 itself, which in turn allows forproofs of non-membership in Ri (via the use of Eq. (5.1)). Details follows(and an even more structured description is provided in Figure 5.3).Scanning V (again), we verify for n�g (guessed) vertices that they are not inRi (i.e., are not reachable from v by paths of length at most i). By Eq. (5.1),verifying that u 62 Ri amounts to proving that for every w 2 Ri�1, it holdsthat u 6= w and (w; u) 62 E. As hinted, the knowledge of jRi�1j allows for theenumeration of Ri�1, and thus we merely check the aforementioned conditionon each vertex in Ri�1. Thus, verifying that u 62 Ri is done as follows.(a) We scan V guessing jRi�1j vertices that are in Ri�1, and verify eachsuch guess in the straightforward manner (i.e., as in Step 1).2323Note that implicit in Step 2a is a non-deterministic procedure that computes the mapping

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 185(b) For each w 2 Ri�1 that was guessed and veri�ed in Step 2a, we verifythat both u 6= w and (w; u) 62 E.By Eq. (5.1), if u passes the foregoing veri�cation then indeed u 62 Ri.We use log2 n bits to store the number of vertices that were already veri�edto be in V n Ri, another log2 n bits to store the current vertex u, anotherlog2 n bits to count the number of vertices that are currently veri�ed to bein Ri�1, another log2 n bits to store such a vertex w, and another O(log n)bits for verifying that w 2 Ri�1 (as in Step 1).If any of the foregoing veri�cations fails, then the procedure halts outputting the\don't know" symbol ?. Otherwise, it outputs g.Given jRi�1j and a guess g, the claim g � jRij is veri�ed as follows.Set c 0. (initializing the main counter)For u = 1; :::; n do begin (the main scan)Guess whether or not u 2 Ri.For a negative guess (i.e., u 62 Ri), do begin(Verify that u 62 Ri via Eq. (5.1).)Set c0 0. (initializing a secondary counter)For w = 1; :::; n do begin (the secondary scan)Guess whether or not w 2 Ri�1.For a positive guess (i.e., w 2 Ri�1), do beginVerify that w 2 Ri�1 (as in Step 1).Verify that u 6= w and (w; u) 62 E.If some veri�cation failedthen halt with output ? otherwise increment c0.End (of handling a positive guess for w 2 Ri�1).End (of secondary scan). (c0 vertices in Ri�1 were checked)If c0 < jRi�1j then halt with output ?.Otherwise (c0 = jRi�1j), increment c. (u veri�ed to be outside of Ri)End (of handling a negative guess for u 62 Ri).End (of main scan). (c vertices were shown outside of Ri)If c < n� g then halt with output ?.Otherwise g � jRij is veri�ed (since n� jRij � c � n� g).Figure 5.3: The main step in proving NL = coNL.Clearly, the foregoing non-deterministic procedure uses a logarithmic amount ofspace. It can be veri�ed that, when given the correct value of jRi�1j, this procedurenon-deterministically computes the value of jRij. That is, if all veri�cations are(G; v; i; jRi�1j)! Ri�1, where Ri�1 denotes the set of vertices that are reachable in G by a pathof length at most i from v.

186 CHAPTER 5. SPACE COMPLEXITYsatis�ed then it must hold that g = jRij, and if g = jRij then there exist adequatenon-deterministic choices that satisfy all veri�cations.Recall that Rn is computed iteratively, starting with jR0j = 1, and computingjRij based on jRi�1j. Each iteration i = 1; :::; n is non-deterministic, and is eithercompleted with the correct value of jRij (at which point jRi�1j is discarded) orhalts in failure (in which case we halt the entire process and output ?). Thisyields a non-deterministic log-space machine for computing jRnj, and the theoremfollows.Digest. Step 2 is the heart of the proof (of Theorem 5.14). In this step anon-deterministic procedure is used to verify non-membership in an NL-type set.Indeed, verifying membership in NL-type sets is the archetypical task of non-deterministic procedures (i.e., they are de�ned so to �t these tasks), and thus Step 1is straightforward. In contrast, non-deterministic veri�cation of non-membershipis not a common phenomenon, and thus Step 2 is not straightforward at all. Nev-ertheless, in the current context (of Step 2), the veri�cation of non-membership isperformed by an iterative (non-deterministic) process that consumes an admissibleamount of resources (i.e., a logarithmic amount of space).5.3.3 A retrospective discussionThe current section may be viewed as a study of the \power of non-determinism incomputation" (which is a somewhat contradictory term). Recall that we view non-deterministic processes as �ctitious abstractions aimed at capturing fundamentalphenomena such as the veri�cation of proofs (cf., Section 2.1.4). Since these �cti-tious abstractions are fundamental in the context of time-complexity, we may hopeto gain some understanding by a comparative study; speci�cally, a study of non-deterministic in the context of space-complexity. Furthermore, we may discoverthat non-deterministic space-bounded machines give rise to interesting computa-tional phenomena.The aforementioned hopes seems to come true in the current section. For exam-ple, the fact that NL = coNL, while the common conjecture is that NP 6= coNP ,indicates that the latter conjecture is less generic than sometimes stated. It is notthat an existential quanti�er cannot be \feasibly replaced" by a universal quanti-�er, but it is rather the case that the feasibility of such a replacement depends verymuch on the speci�c notion of feasibility used. Turning to the other type of bene-�ts, we learned that st-CONN can be Karp-reduced in log-space to st-unCONN (i.e.,the set of graphs in which there is no directed path between the two designatedvertices; see Exercise 5.26).Still, one may ask what does the class NL actually represent (beyond st-CONN,which seems actually more than merely a complete problem for this class; seex5.3.2.1). Turning back to Section 5.3.1, we recall that the class Nspaceo�-linecaptures the straightforward notion of space-bounded veri�cation. In this model(called the o�-line model), the alleged proof is written on a special device (similarlyto the assertion being established by it), and this device is being read freely. In

5.4. PSPACE AND GAMES 187contrast, underlying the alternative class Nspaceon-line is a notion of proofs thatare veri�ed by reading them sequentially (rather than scanning them back andforth). In this case, if the veri�cation procedure may need to re-examine thecurrently read part of the proof (in the future), then it must store the relevant part(and be charged for this storage). Thus, the on-line model underlyingNspaceon-linerefers to the standard process of reading proofs in a sequential manner and takingnotes for future veri�cation, rather than repeatedly scanning the proof back andforth. The on-line model reects the true space-complexity of taking such notesand hence of sequential veri�cation of proofs. Indeed (as stated in Section 5.3.1),our feeling is that the o�-line model allows for an unfair accounting of temporaryspace as well as for unintendedly long proofs.5.4 PSPACE and GamesAs stated in Section 5.2, we rarely encounter computational problems that requireless than logarithmic space. On the other hand, we will rarely treat computationalproblems that require more than polynomial space. The class of decision prob-lems that are solvable in polynomial-space is denoted PSPACE def= [cDspace(pc),where pc(n) = nc.To get a sense of the power of PSPACE , we observe that PH � PSPACE ; forexample, a polynomial-space algorithm can easily verify the quanti�ed conditionunderlying De�nition 3.8. In fact, such an algorithm can handle an unboundednumber of alternating quanti�ers (see the following Theorem 5.15). On the otherhand, by Theorem 5.3, PSPACE � EXP , where EXP = [cDtime(2pc) for pc(n) =nc. The class PSPACE can be interpreted as capturing the complexity of deter-mining the winner in certain e�cient two-party game; speci�cally, the very gamesconsidered in Section 3.2.1 (modulo Footnote 5 there). Recall that we refer totwo-party games that satisfy the following three conditions:1. The parties alternate in taking moves that e�ect the game's (global) position,where each move has a description length that is bounded by a polynomialin the length of the initial position.2. The current position is updated based on the previous position and the cur-rent party's move. This updating can be performed in time that is poly-nomial in the length of the initial position. (Equivalently, we may requirea polynomial-time updating procedure and postulate that the length of thecurrent position be bounded by a polynomial in the length of the initial po-sition.)3. The winner in each position can be determined in polynomial-time.Recall that, for every �xed k, we showed (in Section 3.2.1) a correspondence be-tween �k and the problem of determining the existence of a k-move winning strat-egy (for the �rst party) in games of the foregoing type. The same correspondence

188 CHAPTER 5. SPACE COMPLEXITYexists between PSPACE and the problem of determining the existence of a win-ning strategy with polynomially many moves (in games of the foregoing type). Thatis, on the one hand, the set of initial positions x for which the �rst party has apoly(xj)-move winning strategy with respect to the foregoing game is in PSPACE.On the other hand, by the following Theorem 5.15, every set in PSPACE can beviewed as the set of initial positions (in a suitable game) for which the �rst partyhas a winning strategy consisting of a polynomial number of moves. Actually, thecorrespondence is between determining the existence of such winning strategies anddeciding the satis�ability of quanti�ed Boolean formulae (QBF); see Exercise 5.30.QBF and PSPACE. A quanti�ed Boolean formula is a Boolean formula (as inSAT) augmented with quanti�ers that refer to each variable appearing in the for-mula. (Note that, unlike in Exercise 3.7, we make no restrictions regarding thenumber of alternations between existential and universal quanti�ers. For furtherdiscussion, see Appendix G.2.) As noted before, deciding the satis�ability of quan-ti�ed Boolean formulae (QBF) in in PSPACE . We next show that every problemin PSPACE is Karp-reducible to QBF.Theorem 5.15 QBF is complete for PSPACE under polynomial-time many-to-onereductions.Proof: As note before, QBF is solvable by a polynomial-space algorithm thatjust evaluates the quanti�ed formula. Speci�cally, consider a recursive procedurethat eliminates a Boolean quanti�er by evaluating the value of the two residualformulae, and note that the space used in the �rst (recursive) evaluation can bere-used in the second evaluation. (Alternatively, consider a DFS-type procedure asin Section 5.1.4.) Note that the space used is linear in the depth of the recursion,which in turn is linear in the length of the input formula.We now turn to show that any set S 2 PSPACE is many-to-one reducible toQBF. The proof is similar to the proof of Theorem 5.12 (which establishes NL �Dspace(log2)), except that here we work with an implicit graph (see Exercise 5.21,rather than with an explicitly given graph). Speci�cally, we refer to the directedgraph of instantaneous con�gurations (of the algorithm A deciding membershipin S), where here we use a di�erent notion of a con�guration that includes alsothe entire input. That is, in the rest of this proof, a con�guration consists of thecontents of all storage devices of the algorithm (including the input device) as wellas the location of the algorithm on each device. Thus, on input x (to the reduction),we shall consider the directed graph G = Gx;A = (Vx; EA), where Vx represents allpossible con�gurations with input x and EA represents the transition function ofalgorithm A (i.e., the e�ect of a single computation step of A).As in the proof of Theorem 5.12, for a graph G, we de�ned �G(u; v; `) = 1 ifthere is a path of length at most ` from u to v in G (and �G(u; v; `) = 0 otherwise).We need to determine �G(s; t; 2m) for s that encodes the initial con�guration ofA(x) and t that encodes the canonical accepting con�guration, where G dependson the algorithm A and m = poly(jxj) is such that A(x) uses at most m spaceand runs for at most 2m steps. By the speci�c de�nition of a con�guration (which

5.4. PSPACE AND GAMES 189contains all relevant information including the input x), the value of �G(u; v; 1)can be determined easily based solely on the �xed algorithm A (i.e., either u = vor v is a con�guration following u). Recall that �G(u; v; 2`) = 1 if and only if thereexists a con�guration w such that both �G(u;w; `) = 1 and �G(w; v; `) = 1 hold.Thus, we obtain the recursion�G(u; v; 2`) = 9w 2 f0; 1gm�G(u;w; `) ^ �G(w; v; `); (5.2)where the bottom of the recursion (i.e., �G(u; v; 1)) is a simple propositional formula(see the foregoing comment). The problem with Eq. (5.2) is that the expression for�G(�; �; 2`) involves two occurrences of �G(�; �; `), which doubles the length of therecursively constructed formula (yielding an exponential blow-up).Our aim is to express �G(�; �; 2`) while using �G(�; �; `) only once. This extrarestriction, which prevents an exponential blow-up, corresponds to the re-usingof space in the two evaluations of �G(�; �; `) that take place in the computationof �G(u; v; 2`). The main idea is replacing the condition �G(u;w; `) ^ �G(w; v; `)by the condition \8(u0v0)2f(u;w); (w; v)g�G(u0; v0; `)" (where we quantify over atwo-element set that is not the Boolean set f0; 1g). Next, we reformulate the non-standard quanti�er (which ranges over a speci�c pair of strings) by using additionalquanti�ers as well as some simple Boolean conditions. That is, the non-standardquanti�er 8(u0v0) 2 f(u;w); (w; v)g is replaced by the standard quanti�ers 8� 2f0; 1g9u0; v0 2 f0; 1gm and the auxiliary condition[(�=0)) (u0=u ^ v0=w)] ^ [(�=1)) (u0=w ^ v0=v)]: (5.3)Thus, �G(u; v; 2`) holds if and only if there exist w such that for every � thereexists (u0; v0) such that both Eq. (5.3) and �G(u0; v0; `) hold. Note that the lengthof this expression for �G(�; �; 2`) equals the length of �G(�; �; `) plus an additiveoverhead term of O(m). Thus, using a recursive construction, the length of theformula grows only linearly in the number of recursion steps.The reduction itself maps an instance x (of S) to the quanti�ed Boolean formula�(sx; t; 2m), where sx denotes the initial con�guration of A(x), (t andm = poly(jxj)are as in the foregoing discussion), and � is recursively de�ned as follows�(u; v; 2`) def= 9w2f0; 1gm 8�2f0; 1g9u0; v02f0; 1gm[(�=0)) (u0=u ^ v0=w)]^ [(�=1)) (u0=w ^ v0=v)]^ �(u0; v0; `) (5.4)with �(u; v; 1) = 1 if and only if either u = v or there is an edge from u to v. Notethat �(u; v; 1) is a (�xed) propositional formula with Boolean variables representingthe bits of the variables u and v such that �(u; v; 1) is satis�es if and only if eitheru = v or v is a con�guration that follows the con�guration u in a computation ofA. On the other hand, note that �(sx; t; 2m) is a quanti�ed formula in which sx; tand m are �xed and the quanti�ed variables are not shown in the notation.We stress that the mapping of x to �(sx; t; 2m) can be computed in polynomial-time. Firstly, note that the propositional formula �(u; v; 1), having Boolean vari-ables representing the bits of u and v, expresses extremely simple conditions and

190 CHAPTER 5. SPACE COMPLEXITYcan certainly be constructed in polynomial-time (i.e., polynomial in the number ofBoolean variables, which in turn equals 2m). Next note that, given �(u; v; `), which(for ` > 1) contains quanti�ed variables that are not shown in the notation, we canconstruct �(u; v; 2`) by merely replacing variables names and adding quanti�ersand Boolean conditions as in the recursive de�nition of Eq. (5.4). This is certainlydoable in polynomial-time. Lastly, note that the construction of �(sx; t; 2m) de-pends mainly on the length of x, where x itself only a�ects sx (and does so in atrivial manner). Recalling that m = poly(jxj), it follows that everything is com-putable in time polynomial in jxj. Thus, given x, the formula �(sx; t; 2m) can beconstructed in polynomial-time.Finally, note that x 2 S if and only if the formula �(sx; t; 2m) is satis�able.The theorem follows.Other PSPACE-complete problems. As stated in the beginning of this sec-tion, there is a close relationship between PSPACE and determining winningstrategies in various games. This relationship was established by considering thegeneric game that corresponds to the satis�ability of general QBF (see Exer-cise 5.30). The connection between PSPACE and determining winning strate-gies is games is closer than indicated by this generic game: Determining winningstrategies in several (generalizations of) natural games is also PSPACE-complete(see [200, Sec. 8.3]). This further justi�es the title of the current section.Chapter NotesThe material presented in the current chapter is based on a mix of \classical" results(proven in the 1970's if not earlier) and \modern" results (proven in the late 1980'sand even later). We wish to emphasize the time gap between the formulation ofsome questions and their resolution. Details follow.We �rst mention the \classical" results. These include the NL-completenessof st-CONN, the emulation of non-deterministic space-bounded machines by deter-ministic space-bounded machines (i.e., Theorem 5.12 due to Savitch [190]), thePSPACE-completeness of QBF, and the connections between circuit depth andspace complexity (see Section 5.1.4 and Exercise 5.12 due to Borodin [45]).Before turning to the \modern" results, we mention that some researchers tendto be discouraged by the impression that \decades of research have failed to an-swer any of the famous open problems of complexity theory." In our opinion thisimpression is fundamentally mistaken. Speci�cally, in addition to the fact thatsubstantial progress towards the understanding of many fundamental issues hasbeen achieved, these researchers tend to forget that some famous open problemswere actually resolved. Two such examples were presented in this chapter.The question of whether NL = coNL was a famous open problem for almosttwo decades. Furthermore, this question is related to an even older open prob-lem dating to the early days of research in the area of formal languages (i.e., to

5.4. PSPACE AND GAMES 191the 1950's).24 This open problem was resolved in 1988 by Immerman [121] andSzelepcsenyi [211], who (independently) proved Theorem 5.14 (i.e., NL = coNL).For more than two decades, undirected connectivity (UCONN) was one of themost appealing examples of the computational power of randomness. Recall thatthe classical linear-time (deterministic) algorithms (e.g., BFS and DFS) require anextensive use of temporary storage (i.e., linear in the size of the graph). On theother hand, it was known (since 1979, see x6.1.4.2) that, with high probability,a random walk of polynomial length visits all vertices (in the corresponding con-nected component). Thus, the resulting randomized algorithm for UCONN uses aminimal amount of temporary storage (i.e., logarithmic in the size of the graph).In the early 1990's, this algorithm (as well as the entire class BPL (see De�ni-tion 6.11)) was derandomized in polynomial-time and poly-logarithmic space (seeTheorem 8.23), but despite more than a decade of research attempts, a signi�-cant gap remained between the space complexity of randomized and deterministicpolynomial-time algorithms for this natural and ubiquitous problem. This gap wasclosed by Reingold [183], who established Theorem 5.6 in 2004.25 Our presentation(in Section 5.2.4) follows Reingold's ideas, but the speci�c formulation in x5.2.4.2does not appear in [183].ExercisesExercise 5.1 (scanning the input-tape beyond the input) Let A be an ar-bitrary algorithm of space-complexity s. Show that there exists a functionallyequivalent algorithm A0 that has space-complexity s0(n) = O(s(n) + logn) anddoes not scan the input-tape beyond the boundaries of the input.Guideline: Prove that on input x, algorithm A does not scan the input-tape beyonddistance 2O(s(jxj)) from the input. (Extra hint: Consider instantaneous con�gurations ofA(x) that refer to the case that A reads a generic location on the input-tape that is not part ofthe input.)Exercise 5.2 (rewriting on the write-only output-tape) Let A be an arbi-trary algorithm of space complexity s. Show that there exists a functionallyequivalent algorithm A0 that never rewrites on (the same location of) its output-device and has space complexity s0 such that s0(n) = s(n) + O(log `(n)), where`(n) = maxx2f0;1gn jA(x)j.Guideline: Algorithm A0 proceeds in iterations, where in the ith iteration it outputs theith bit of A(x) by emulating the computation of A on input x. The ith emulation of Aavoids printing A(x), but rather keeps a records of the ith location of A(x)'s output-tape(and terminates by outputting the �nal value of this bit). Indeed, this emulation requires24Speci�cally, the class of sets recognized by linear-space non-deterministic machines equals theclass of context-sensitive languages (see, e.g., [119, Sec. 9.3]), and thus Theorem 5.14 resolves thequestion of whether the latter class is closed under complementation.25We mention that an almost-logarithmic space algorithm was discovered independently andconcurrently by Trifonov [215], using a very di�erent approach.

192 CHAPTER 5. SPACE COMPLEXITYmaintaining the current value of i as well as the current location of the emulated machine(i.e., A) on its output-tape.Exercise 5.3 (on the power of double-logarithmic space) For any k 2 N ,let wk denote the concatenation of all k-bit long strings (in lexicographic order)separated by �'s (i.e., wk = 0k�200 � 0k�201 � 0k�210 � 0k�211 � � � � � 1k). Showthat the set S def= fwk : k 2 Ng � f0; 1; �g is not regular and yet is decidable indouble-logarithmic space.Guideline: The non-regularity of S can be shown using standard techniques. Towardsdeveloping an algorithm, note that jwkj > 2k, and thus O(log k) = O(log log jwkj). Mem-bership of x in S is determined by iteratively checking whether x = wi, for i = 1; 2; :::,while stopping when detecting an obvious case (i.e., either verifying that x = wi or de-tecting evidence that x 6= wk for every k � i). By taking advantage of the �'s (in wi), theith iteration can be implemented in space O(log i). Furthermore, on input x 62 S, we haltand reject after at most log jxj iterations. Actually, it is slightly simpler to handle therelated set fw1 � �w2 � � � � � � �wk : k 2 Ng; moreover, in this case the �'s can be omittedfrom the wi's (as well as from between them).Exercise 5.4 (on the weakness of less than double-logarithmic space) Provethat for `(n) = log logn, it holds that Dspace(o(`)) = Dspace(O(1)).Guideline: Let s denote the machine's (binary) space complexity. Show that if s isunbounded then it must hold that s(n) =
(log log n) in�nitely often. Speci�cally, forevery integer m, consider a shortest string x such that on input x the machine usesspace at least m. Consider, for each location on the input, the sequence of the residualcon�gurations of the machine (i.e., the contents of its temporary storage)26 such thatthe ith element in the sequence represents the residual con�guration of the machine atthe ith time that the machine crosses (or rather passes through) this input location. Forstarters, note that the length of this \crossing sequence" is upper-bounded by the numberof possible residual con�gurations, which is at most t def= 2s(jxj) � s(jxj). Thus, the numberof such crossing sequences is upper-bounded by tt. Now, if tt < jxj=2 then there existthree input locations that have the same crossing sequence, and two of them hold thesame bit value. Contracting the string at these two locations, we get a shorter input onwhich the machine behaves in exactly the same manner, contradicting the hypothesis thatx is the shortest input on which the machine uses space at least m. We conclude thattt � jxj=2 must hold, and s(jxj) =
(log log jxj) holds for in�nitely many x's.Exercise 5.5 (space-complexity and halting) In continuation to Theorem 5.3,prove that for every algorithm A of (binary) space-complexity s there exists an al-gorithm A0 of space-complexity s0(n) = O(s(n) + logn) that halts on every inputsuch that for every x on which A halts it holds that A0(x) = A(x).Guideline: On input x, algorithm A0 emulates the execution of A(x) for at most t(jxj)+1steps, where t(n) = n � 2s(n)+log2 s(n).26Note that, unlike in the proof of Theorem 5.3, the machine's location on the input is not partof the notion of a con�guration used here. On the other hand, although not stated explicitly, thecon�guration also encodes the machine's location on the storage tape.

5.4. PSPACE AND GAMES 193Exercise 5.6 (some log-space algorithms) Present log-space algorithms for thefollowing computational problems.1. Addition and multiplication of a given pair of integers.Guideline: Relying on Lemma 5.2, �rst transform the input to a more convenientformat, then perform the operation, and �nally transform the result to the adequateformat. For example, when adding x =Pn�1i=0 xi2i and y =Pn�1i=0 yi2i, a convenientformat is ((x0; y0); :::; (xn�1; yn�1)).2. Deciding whether two given strings are identical.3. Finding occurrences of a given pattern p 2 f0; 1g� in a given string s 2 f0; 1g�.4. Transforming the adjacency matrix representation of a graph to its incidencelist representation, and vice versa.5. Deciding whether the input graph is acyclic (i.e., has no simple cycles).Guideline: Consider a scanning of the graph that proceeds as follows. Uponentering a vertex v via the ith edge incident at it, we exit this vertex using its i+1stedge if v has degree at least i + 1 and exit via the �rst edge otherwise. Note thatwhen started at any vertex of any tree, this scanning performs a DFS. On the otherhand, for every cyclic graph there exists a vertex v and an edge e incident to v suchthat if this scanning is started by traversing the edge e from v then it returns to vvia an edge di�erent from e.6. Deciding whether the input graph is a tree.Guideline: Use the fact that a graph G = (V;E) is a tree if and only if it isacyclic and jEj = jV j � 1.Exercise 5.7 (another composition result) In continuation to the discussionin x5.1.3.3, prove that if � can be solved in space s1 when given an (`; `0)-restrictedoracle access to �0 and �0 is solvable is space s2, then � is solvable in space s suchthat s(n) = 2s1(n) + s2(`(n)) + 2`0(n) + �(n), where �(n) = O(log(`(n) + `0(n) +s1(n) + s2(`(n)))). In particular, if s1; s2 and `0 are at most logarithmic, thens(n) = O(log n), because (by Exercise 5.10) in this case ` is at most polynomial.Guideline: View the oracle-aided computation of � as consisting of iterations suchthat in the ith iteration the ith query (denoted qi) is determined based on the initialinput (denoted x), the i � 1st oracle answer (denoted ai�1), and the contents of thework tape at the time that the i � 1st answer was given (denoted wi�1). Note that themapping (x; ai�1; wi�1)! (qi; wi) can be computed using s1(jxj)+�(jxj) bits of temporarystorage, because the oracle machine e�ects this mapping (when x; ai�1 and wi�1 reside ondi�erent devices). Composing each iteration with the computation of �0 (using a variantof Lemma 5.2), we conclude that the mapping (x; ai�1; wi�1)! (ai; wi) can be computed(without storing the intermediate qi) in space s1(n) + s2(`(n)) + O(log(`(n) + s1(n) +s2(`(n)))). Thus, we can emulate the entire computation using space s(n), where theextra space of s1(n) + 2`0(n) bits is used for storing the work-tape of the oracle machineand the i� 1st and ith oracle answers.

194 CHAPTER 5. SPACE COMPLEXITYExercise 5.8 (non-adaptive reductions) In continuation to the discussion inx5.1.3.3, we de�ne non-adaptive space-bounded reductions as follows. First, for anyproblem �0, we de�ne the (\direct product") problem �0 such that the instances of�0 are sequences of instances of �0. The sequence y = (y1; :::; yt) is a valid solution(with respect to the problem �0) to the instance x = (x1; :::; xt) if and only if forevery i 2 [t] it holds that yi is a valid solution to xi (with respect to the problem�0). Now, a non-adaptive reduction of � to �0 is de�ned as a single-query reductionof � to �0.1. Note that this de�nition allows the oracle machine to freely scan the sequenceof answers (i.e., it can move freely between the blocks that correspond todi�erent answers). Still, prove that this does not add much power to themachine (in comparison to a machine that reads the oracle-answer device ina \semi-unidirectional" manner (i.e., it never reads bits of some answer afterreading any bit of any later answer)). That is, prove that a general non-adaptive reduction of space-complexity s can be emulated by a non-adaptivereduction of space-complexity O(s) that when obtaining the oracle answer(y1; :::; yt) may read bits of yi only before reading any bit of yi+1; :::; yt.Guideline: Replace the query sequence x = (x1; :::; xt) by the query sequence(x; x; :::; x) where the number of repetitions is 2O(s).2. Prove that if � is reducible to �0 via a non-adaptive reduction of space-complexity s1 that makes queries of length at most ` and �0 is solvable isspace s2, then � is solvable in space s such that s(n) = O(s1(n) + s2(`(n))).As a warm-up, consider �rst the case of a general single-query reduction (of� to �0).Guideline: The composed computation, on input x, can be written as E(x;A(G(x))),where G represents the query generation phase, A represents the application of the�0-solver to each string in the sequence of queries, and E represents the evaluationphase. Analyze the space-complexity of this computation by using (variants of)Lemma 5.2.Exercise 5.9 Referring to the discussion in x5.1.3.3, prove that, for any s, anyproblem having space-complexity s can be solved by a constant-space (2s; 2s)-restricted reduction to a problem that is solvable in constant-space.Guideline: The reduction is to the \next con�guration function" associated with the saidalgorithm (of space complexity s), where here the con�guration contains also the singlebit of the input that the machine currently examines (i.e., the value of bit at the machine'slocation on the input device). To facilitate the computation of this function, choose asuitable representation of such con�gurations. Note that the bulk of the operation of theoracle machine consists of iteratively copying (with minor modi�cation) the contents ofthe oracle-answer tape to the oracle-query tape.Exercise 5.10 In continuation to x5.1.3.3, we say that a reduction is (�; `0)-restrictedif there exists some function ` such that the reduction is (`; `0)-restricted; that is,

5.4. PSPACE AND GAMES 195in this de�nition only the length of the oracle answers is restricted. Prove thatany reduction of space-complexity s that is (�; `0)-restricted is (`; `0)-restricted for`(n) = 2O(s(n)+`0(n)+logn). Actually, prove that this reduction has time-complexity`.Guideline: Consider an adequate notion of instantaneous con�guration; speci�cally, sucha con�guration consists of the contents of both the work-tape and the oracle-answer tapeas well as the machine's location on these tapes (and on the input tape).Exercise 5.11 (transitivity of log-space reductions) Prove that log-space Karp-reductions are transitive. De�ne log-space Levin-reductions and prove that theyare transitive.Guideline: Use Lemma 5.2, noting that such reductions are merely log-space computablefunctions.Exercise 5.12 (log-space uniform NC1 is in L) Suppose that a problem � issolvable by a family of log-space uniform circuits of bounded fan-in and depth dsuch that d(n) � logn. Prove that � is solvable by an algorithm having spacecomplexity O(d).Guideline: Combine the algorithm outlined in Section 5.1.4 with the de�nition of log-space uniformity (using Lemma 5.2).Exercise 5.13 (UCONN in constant degree graphs of logarithmic diameter)Present a log-space algorithm for deciding the following promise problem, whichis parameterized by constants c and d. The input graph satis�es the promise ifeach vertex has degree at most d and every pair of vertices that reside in the sameconnected component is connected by a path of length at most c log2 n, where ndenotes the number of vertices in the input graph. The task is to decide whetherthe input graph is connected.Guideline: For every pair of vertices in the graph, we check whether these verticesare connected in the graph. (Alternatively, we may just check whether each vertex isconnected to the �rst vertex.) Relying on the promise, it su�ces to inspect all paths oflength at most ` def= c log2 n, and these paths can be enumerated using ` � dlog2 de bits ofstorage.Exercise 5.14 (warm-up towards x5.2.4.2) In continuation to x5.2.4.1, presenta log-space transformation of Gi to Gi+1.Guideline: Given the graph Gi as input, we may construct Gi+1 by �rst constructingG0 = Gci and then constructing G0z G. To construct G0, we scan all vertices of Gi(holding the current vertex in temporary storage), and, for each such vertex, constructits \distance c neighborhood" in G0 (by using O(c) space for enumerating all possible\distance c neighbors"). Similarly, we can construct the vertex neighborhoods in G0z G(by storing the current vertex name and using a constant amount of space for indicatingincident edges in G).

196 CHAPTER 5. SPACE COMPLEXITYExercise 5.15 (st-UCONN) In continuation to Section 5.2.4, prove that thefollowing computational problem is in L: Given an undirected graph G = (V;E)and two designated vertices, s and t, determine whether there is a path from s tot in G.Guideline: Note that the transformation described in Section 5.2.4 can be easily ex-tended such that it maps vertices in G0 to vertices in GO(log jV j) while preserving theconnectivity relation (i.e., u and v are connected in G0 if and only if their images underthe map are connected in GO(log jV j)).Exercise 5.16 (Bipartiteness) Prove that the problem of determining whetheror not the input graph is bipartite (i.e., 2-colorable) is computationally equivalentunder log-space reductions to st-UCONN (as de�ned in Exercise 5.15).Guideline: Both reductions use the mapping of a graph G=(V;E) to a bipartite graphG0 = (V 0; E0) such that V 0 = fv(1); v(2) : v 2 V g and E0 = ffu(1); v(2)g; fu(2); v(1)g :fu; vg2Eg. When reducing to st-UCONN note that a vertex v resides on an odd cycle inG if and only if v(1) and v(2) are connected in G0. When reducing from st-UCONN notethat s and t are connected in G by a path of even (resp., odd) length if and only if thegraph G0 ceases to be bipartite when augmented with the edge fs(1); t(1)g (resp., with theedges fs(1); xg and fx; t(2)g, where x 62 V 0 is an auxiliary vertex).Exercise 5.17 (�nding paths in undirected graphs) In continuation to Ex-ercise 5.15, present a log-space algorithm that given an undirected graphG = (V;E)and two designated vertices, s and t, �nds a path from s to t in G (in case such apath exists).Guideline: In continuation to Exercise 5.15, we may �nd and (implicitly) store a loga-rithmically long path in GO(log jV j) that connects a representative of s and a representativeof t. Focusing on the task of �nding a path inG0 that corresponds to an edge in GO(log jV j),we note that such a path can be found by using the reduction underlying the combinationof Claim 5.9 and Lemma 5.10. (An alternative description appears in [183].)Exercise 5.18 (relating the two models of NSPACE) Referring to the de�-nitions in Section 5.3.1, prove that for every function s such that log s is space-constructible and at least logarithmic, it holds thatNspaceon-line(s) = Nspaceo�-line(�(log s)).Note that Nspaceon-line(s) � Nspaceo�-line(O(log s)) holds also for s that is atleast logarithmic.Guideline (for Nspaceon-line(s) � Nspaceo�-line(O(log s))): Use the non-deterministicinput of the o�-line machine for encoding an accepting computation of the on-line machine;that is, this input should contain a sequence of consecutive con�gurations leading from theinitial con�guration to an accepting con�guration, where each con�guration contains thecontents of the work-tape as well as the machine's state and its locations on the work-tapeand on the input-tape. The emulating o�-line machine (which veri�es the correctness ofthe sequence of con�gurations recorded on its non-deterministic input tape) needs onlystore its location within the current pair of consecutive con�gurations that it examines,which requires space logarithmic in the length of a single con�guration (which in turn

5.4. PSPACE AND GAMES 197equals s(n) + log2 s(n) + log2 n + O(1)). (Note that this veri�cation relies on a two-directional access to the non-deterministic input.)Guideline (for Nspaceo�-line(s0) � Nspaceon-line(exp(s0))): Here we refer to the no-tion of a crossing-sequence. Speci�cally, for each location on the o�-line non-deterministicinput, consider the sequence of the residual con�gurations of the machine, where such aresidual con�guration consists of the bit residing in this non-deterministic tape location,the contents of the machine's temporary storage and the machine's locations on the inputand storage tapes (but not its location on the non-deterministic tape). Show that thelength of such a crossing-sequence is exponential in the space complexity of the o�-line ma-chine, and that the time complexity of the o�-line machine is at most double-exponential inits space complexity (see Exercise 5.4). The on-line machine merely generates a sequenceof crossing-sequences (\on the y") and checks that each consecutive pair of crossing-sequences is consistent. This requires holding two crossing-sequences in storage, whichrequire space linear in the length of such sequences (which, in turn, is exponential in thespace complexity of the o�-line machine).Exercise 5.19 (st-CONN and variants of it are in NL) Prove that the fol-lowing computational problem is in NL. The instances have the form (G; v; w; `),where G=(V;E) is a directed graph, v; w 2 V , and ` is an integer, and the questionis whether G contains a path of length at most ` from v to w.Guideline: Consider a non-deterministic machine that generates and veri�ers an ade-quate path on the y. That is, starting at v0 = v, the machine proceeds in iterations, suchthat in the ith iteration it non-deterministically generates vi, veri�ers that (vi�1; vi) 2 E,and checks whether i � ` and vi = w. Note that this machine need only store the lasttwo vertices on the path (i.e., vi�1 and vi) as well as the number of edges traversed so far(i.e., i). (Actually, using a careful implementation, it su�ces to store only one of thesetwo vertices (as well as the current i).)Exercise 5.20 (�nding directed paths in directed graphs) Present a log-spaceoracle machine that �nds (shortest) directed paths in directed graphs by using anoracle to NL. Conclude that NL = L if and only if such paths can be found by a(standard) log-space algorithm.Guideline: Use a reduction to the decision problem presented in Exercise 5.19, andderive a standard algorithm by using the composition result of Exercise 5.7.Exercise 5.21 (NSPACE and directed connectivity) Our aim is to establisha relation between general non-deterministic space-bounded computation and di-rected connectivity in \strongly constructible" graphs that have size exponential inthe space bound. Let s be space constructible and at least logarithmic. For everyS 2 Nspace(s), present a linear-time oracle machine (somewhat as in x5.2.4.2)that given oracle access to x provides oracle access to a directed graph Gx of sizeexp(s(jxj)) such that x 2 S if and only if there is a directed path between the �rstand last vertices of Gx. That is, on input a pair (u; v) and oracle access to x, theoracle machine decides whether or not (u; v) is a directed edge in Gx.Guideline: Follow the proof of Theorem 5.11.

198 CHAPTER 5. SPACE COMPLEXITYExercise 5.22 (an alternative presentation of the proof of Theorem 5.12)We refer to directed graphs in which each vertex has a self-loop.1. Viewing the adjacency matrices of directed graphs as oracles (cf. Exer-cise 5.21), present a linear-space oracle machine that determines whethera given pair of vertices is connected by a directed path of length two in theinput graph. Note that this oracle machine computes the adjacency relationof the square of the graph represented in the oracle.2. Using naive composition (as in Lemma 5.1), present a quadratic-space oraclemachine that determines whether a given pair of vertices is connected by adirected path in the graph represented in the oracle.Note that the machine in Item 2 implies that st-CONN can be decided in log-squarespace. In particular, justify the self-loop assumption made up-front.Exercise 5.23 (deciding strong connectivity) A directed graph is called stronglyconnected if there exists a directed path between every ordered pair of vertices inthe graph (or, equivalently, a directed cycle passing through every two vertices).Prove that the problem of deciding whether a directed graph is strongly connectedis NL-complete under (many-to-one) log-space reductions.Guideline (for NL-hardness): Reduce from st-CONN. Note that, for any graph G=(V;E), it holds that (G; s; t) is a yes-instance of st-CONN if and only if the graph G0 =(V;E [f(v; s) : v2V g [f(t; v) : v2V g) is strongly connected.Exercise 5.24 (determining distances in undirected graphs) Prove that thefollowing computational problem is NL-complete under (many-to-one) log-spacereductions: Given an undirected graph G = (V;E), two designated vertices, s andt, and an integer K, determine whether there is a path of length at most (resp.,exactly) K from s to t in G.Guideline (for NL-hardness): Reduce from st-CONN. Speci�cally, given a directedgraph G = (V;E) and vertices s; t, consider a (\layered") graph G0 = (V 0; E0) such thatV 0 = [jV j�1i=0 fhi; vi : v2V g and E0 = [jV j�2i=0 ffhi; ui; hi + 1; vig : (u; v)2E _ u=vg. Notethat there exists a directed path from s to t in G if and only if there exists a path oflength at most (resp., exactly) jV j � 1 between h0; si and hjV j � 1; ti in G0.Guideline (for the exact version being in NL): Use NL = coNL.Exercise 5.25 (an operational interpretation of NL \ coNL, NP \ coNP, etc)Referring to De�nition 5.13, prove that S 2 NL\ coNL if and only if there existsa non-deterministic log-space machine that computes �S , where �S(x) = 1 if x 2 Sand �S(x) = 0 otherwise. State and prove an analogous result for NP \ coNP .Guideline: A non-deterministic machine computing any function f yields, for each valuev, a non-deterministic machine of similar complexity that accept fx : f(x) = vg. (Extrahint: Invoke the machine M that computes f and accept if and only if M outputs v.) On theother hand, for any function f of �nite range, combining non-deterministic machines that

5.4. PSPACE AND GAMES 199accept the various sets Sv def= fx : f(x) = vg, we obtain a non-deterministic machine ofsimilar complexity that computes f . (Extra hint: On input x, the combined machine invokeseach of the aforementioned machines on input x and outputs the value v if and only if the machineaccepting Sv has accepted. In the case that none of the machines accepts, the combined machineoutputs ?.)Exercise 5.26 (a graph algorithmic interpretation of NL = coNL) Show thatthere exists a log-space computable function f such that for every (G; s; t) it holdsthat (G; s; t) is a yes-instance of st-CONN if and only if (G0; s0; t0) = f(G; s; t) is ano-instance of st-CONN.Exercise 5.27 Referring to De�nition 5.13, prove that there exists a non-deterministiclog-space machine that computes the distance between two given vertices in a givenundirected graph.Guideline: Relate this computational problem to the (exact version of the) decisionproblem considered in Exercise 5.24.Exercise 5.28 As an alternative to the two-query reduction presented in the proofof Theorem 5.14, show that (computing the characteristic function of) st-CONN islog-space reducible via a single query to the problem of determining the number ofvertices that are reachable from a given vertex in a given graph.(Hint: On input (G; s; t), where G = ([N]; E), consider the number of vertices reachable from sin the graph G0 = ([2N]; E [f(t; N + i) : i = 1; :::;Ng).)Exercise 5.29 (reductions and non-deterministic computations) Suppose thatcomputing f is log-space reducible to computing some function g and that it iseither the case that the reduction is non-adaptive or that for every x it holdsthat jg(x)j = O(log jxj). Referring to non-deterministic computations as in De�-nition 5.13, prove that if there exists a non-deterministic log-space machine thatcomputes g then there exists a non-deterministic log-space machine that computesf .Guideline: The point is adapting a composition result that refers to deterministic algo-rithms (for computing g) into one that applies to non-deterministic computations. Specif-ically, in the �rst case we adapt the result of Exercise 5.8, whereas in the second case weadapt the result Exercise 5.7. The idea is running the same procedure as in the deter-ministic case, and handling the possible failure of the non-deterministic machine thatcomputes g in the natural manner; that is, if any such computation returns the value ?then we just halt outputting ?, and otherwise we proceed as in the deterministic case(using the non-? values obtained).Exercise 5.30 (the QBF game) Consider the following two-party game that isinitiated with a quanti�ed Boolean formula. The game features an existential player(which tries to prove that the formula is valid) versus a universal player (which triesto invalidate it). The game consists of the parties scanning the formula from leftto right such that when a quanti�er is encountered, the corresponding party takesa move that consists of instantiating the corresponding Boolean variable. At the

200 CHAPTER 5. SPACE COMPLEXITY�nal position, when all variables were instantiated, the existential party is declaredthe winner if and only if the corresponding Boolean expression evaluates to true.1. Show that, modulo some technical conventions, the foregoing QBF game �tsthe framework of e�cient two-party games (described at the beginning ofSection 5.4).2. Prove that any e�cient two-party game can be cast as a QBF game.Guideline: For Part 1 de�ne the universal player as winning in any non-�nal position(i.e., a position in which not all variables are instantiated). For part 2, see Footnote 6 inChapter 3.

Chapter 6Randomness and CountingI owe this almost atrocious variety to an institution which otherrepublics do not know or which operates in them in an imperfectand secret manner: the lottery.Jorge Luis Borges, The Lottery In BabylonSo far, our approach to computing devices was somewhat conservative: we thoughtof them as executing a deterministic rule. A more liberal and quite realistic ap-proach, which is pursued in this chapter, considers computing devices that use aprobabilistic rule. This relaxation has an immediate impact on the notion of e�-cient computation, which is consequently associated with probabilistic polynomial-time computations rather than with deterministic (polynomial-time) ones. Westress that the association of e�cient computation with probabilistic polynomial-time computation makes sense provided that the failure probability of the latter isnegligible (which means that it may be safely ignored).The quantitative nature of the failure probability of probabilistic algorithmprovides one connection between probabilistic algorithms and counting problems.The latter are indeed a new type of computational problems, and our focus is oncounting e�ciently recognizable objects (e.g., NP-witnesses for a given instance ofset in NP). Randomized procedures turn out to play an important role in thestudy of such counting problems.Summary: Focusing on probabilistic polynomial-time algorithms, weconsider various types of probabilistic failure of such algorithms (e.g.,actual error versus failure to produce output). This leads to the formu-lation of complexity classes such as BPP, RP , and ZPP. The resultspresented include the existence of (non-uniform) families of polynomial-size circuits that emulate probabilistic polynomial-time algorithms (i.e.,BPP � P=poly) and the fact that BPP resides in the (second level ofthe) Polynomial-time Hierarchy (i.e., BPP � �2).We then turn to counting problems; speci�cally, counting the numberof solutions for an instance of a search problem in PC (or, equivalently,203

204 CHAPTER 6. RANDOMNESS AND COUNTINGcounting the number of NP-witnesses for an instance of a decision prob-lem in NP). We distinguish between exact counting and approximatecounting (in the sense of relative approximation). In particular, whileany problem in PH is reducible to the exact counting class #P , ap-proximate counting (for #P) is (probabilisticly) reducible to NP .In general, counting problems exhibit a \richer structure" than the cor-responding search (and decision) problems, even when considering onlynatural problems. For example, some counting problems are hard in theexact version (e.g., are #P-complete) but easy to approximate, whileothers are NP-hard to approximate. In some cases #P-completeness isdue to the very same reduction that establishes the NP-completeness ofthe corresponding decision problem, whereas in other cases new reduc-tions are required (often because the corresponding decision problem isnot NP-complete but is rather in P).We also consider two other types of computational problems that arerelated to approximate counting. The �rst type refers to promise prob-lems, called unique solution problems, in which the solver is guaran-teed that the instance has at most one solution. Many NP-completeproblems are randomly reducible to the corresponding unique solutionproblems. Lastly, we consider the problem of generating almost uni-formly distributed solutions, and show that in many cases this problemis computationally equivalent to approximately counting the number ofsolutions.Prerequisites: We assume basic familiarity with elementary probability theory(see Appendix D.1). In Section 6.2 we will rely extensively on formulations pre-sented in Section 2.1 (i.e., the \NP search problem" class PC as well as the setsR(x) def= fy : (x; y) 2 Rg, and SR def= fx : R(x) 6= ;g de�ned for every R 2 PC).In Sections 6.2.2{6.2.4 we shall extensively use various hashing functions and theirproperties, as presented in Appendix D.2.6.1 Probabilistic Polynomial-TimeConsidering algorithms that utilize random choices, we extend our notion of ef-�cient algorithms from deterministic polynomial-time algorithms to probabilisticpolynomial-time algorithms. Two conicting questions that arise are whether itis reasonable to allow randomized computational steps and whether adding suchsteps buys us anything.We �rst note that random events are an important part of our modeling ofthe world. We stress that this does not necessarily mean that we assert that theworld per se includes genuine random choices, but rather that it is bene�cial tomodel the world as including random choices (i.e., some phenomena appear to usas if they are random in some sense). Furthermore, it seems feasible to generate

6.1. PROBABILISTIC POLYNOMIAL-TIME 205random-looking events (e.g., the outcome of a toss coin).1 Thus, postulating thatseemingly random choices can be generated by a computer is quite natural (andis in fact common practice). At the very least, this postulate yields an intuitivemodel of computation and the study of such a model is of natural concern.This leads to the question of whether augmenting the computational model withthe ability to make random choices buys us anything. Although randomization isknown to be essential in several computational settings (e.g., cryptography (cf.,Appendix C) and sampling (cf., Appendix D.3)), the question is whether random-ization is useful in the context of solving decision (and search) problems. This isindeed a very good question, which is further discussed in x6.1.2.1. In fact, one ofthe main goals of the current section is putting this question forward. To demon-strate the potential bene�t of randomized algorithms, we provide a few examples(cf., x6.1.2.2, x6.1.3.1 and x6.1.5.2).6.1.1 Basic modeling issuesRigorous models of probabilistic (or randomized) algorithms are de�ned by nat-ural extensions of the basic machine model. We will exemplify this approach bydescribing the model of probabilistic Turing machines, but we stress that (again)the speci�c choice of the model is immaterial (as long as it is \reasonable"). Aprobabilistic Turing machine is de�ned exactly as a non-deterministic machine (seethe �rst item of De�nition 2.7), but the de�nition of its computation is fundamen-tally di�erent. Speci�cally, whereas De�nition 2.7 refers to the question of whetheror not there exists a computation of the machine that (started on a speci�c input)reaches a certain con�guration, in the case of probabilistic Turing machines werefer to the probability that this event occurs, when at each step a choice is selecteduniformly among the relevant possible choices available at this step. That is, if thetransition function of the machine maps the current state-symbol pair to severalpossible triples, then in the corresponding probabilistic computation one of thesetriples is selected at random (with equal probability) and the next con�guration isdetermined accordingly. These random choices may be viewed as the internal cointosses of the machine. (Indeed, as in the case of non-deterministic machines, wemay assume without loss of generality that the transition function of the machinemaps each state-symbol pair to exactly two possible triples; see Exercise 2.4.)We stress the fundamental di�erence between the �ctitious model of a non-deterministic machine and the realistic model of a probabilistic machine. In the caseof a non-deterministic machine we consider the existence of an adequate sequence ofchoices (leading to a desired outcome), and ignore the question of how these choicesare actually made. In fact, the selection of such a sequence of choices is merely amental experiment. In contrast, in the case of a probabilistic machine, at each stepa real random choice is actually made (uniformly among a set of predetermined1Di�erent perspectives on the question of the feasibility of randomized computation are o�eredin Chapter 8 and Appendix D.4. The pivot of Chapter 8 is the distinction between being actuallyrandom and looking random (to computationally restricted observers). In contrast, Appendix D.4refers to various notions of randomness and to the feasibility of transforming weak forms ofrandomness into almost perfect forms.

206 CHAPTER 6. RANDOMNESS AND COUNTINGpossibilities), and we consider the probability of reaching a desired outcome.In view of the foregoing, we consider the output distribution of such a proba-bilistic machine on �xed inputs; that is, for a probabilistic machine M and stringx 2 f0; 1g�, we denote by M(x) the output distribution of M when invoked oninput x, where the probability is taken uniformly over the machine's internal cointosses. Needless to say, we will consider the probability that M(x) is a \correct"answer; that is, in the case of a search problem (resp., decision problem) we will beinterested in the probability that M(x) is a valid solution for the instance x (resp.,represents the correct decision regarding x).The foregoing description views the internal coin tosses of the machine as takingplace on-the-y; that is, these coin tosses are performed on-line by the machineitself. An alternative model is one in which the sequence of coin tosses is providedby an external device, on a special \random input" tape. In such a case, we viewthese coin tosses as performed o�-line. Speci�cally, we denote by M 0(x; r) the(uniquely de�ned) output of the residual deterministic machineM 0, when given the(primary) input x and random input r. Indeed, M 0 is a deterministic machine thattakes two inputs (the �rst representing the actual input and the second representingthe \random input"), but we consider the random variableM(x) def= M 0(x; U`(jxj)),where `(jxj) denotes the number of coin tosses \expected" by M 0(x; �).These two perspectives on probabilistic algorithms are closely related: Clearly,the aforementioned residual deterministic machine M 0 yields the on-line machineM that on input x selects at random a string r of adequate length, and invokesM 0(x; r). On the other hand, the computation of any on-line machineM is capturedby the residual machineM 0 that emulates the actions ofM(x) based on an auxiliaryinput r (obtained by M 0 and representing a possible outcome of the internal cointosses of M). (Indeed, there is no harm in supplying more coin tosses than areactually used by M , and so the length of the aforementioned auxiliary input maybe set to equal the time complexity ofM .) For sake of clarity and future reference,we summarize the foregoing discussion in the following de�nition.De�nition 6.1 (on-line and o�-line formulations of probabilistic polynomial-time):� We say thatM is a on-line probabilistic polynomial-time machine if there existsa polynomial p such that when invoked on any input x 2 f0; 1g�, machine Malways halts within at most p(jxj) steps (regardless of the outcome of itsinternal coin tosses). In such a case M(x) is a random variable.� We say that M 0 is a o�-line probabilistic polynomial-time machine if there ex-ists a polynomial p such that, for every x 2 f0; 1g� and r 2 f0; 1gp(jxj), wheninvoked on the primary input x and the random-input sequence r, machine M 0halts within at most p(jxj) steps. In such a case, we will consider the ran-dom variable M 0(x; Up(jxj)), where Um denotes a random variable uniformlydistributed over f0; 1gm.Clearly, in the context of time-complexity, the on-line and o�-line formulationsare equivalent (i.e., given an on-line probabilistic polynomial-time machine we canderive a functionally equivalent o�-line (probabilistic polynomial-time) machine,and vice versa). Thus, in the sequel, we will freely use whichever is more convenient.

6.1. PROBABILISTIC POLYNOMIAL-TIME 207Failure probability. A major aspect of randomized algorithms (probabilisticmachines) is that they may fail (see Exercise 6.1). That is, with some speci�ed(\failure") probability, these algorithms may fail to produce the desired output.We discuss two aspects of this failure: its type and its magnitude.1. The type of failure is a qualitative notion. One aspect of this type is whether,in case of failure, the algorithm produces a wrong answer or merely an indica-tion that it failed to �nd a correct answer. Another aspect is whether failuremay occur on all instances or merely on certain types of instances. Let usclarify these aspects by considering three natural types of failure, giving riseto three di�erent types of algorithms.(a) The most liberal notion of failure is the one of two-sided error. Thisterm originates from the setting of decision problems, where it meansthat (in case of failure) the algorithm may err in both directions (i.e.,it may rule that a yes-instance is a no-instance, and vice versa). Inthe case of search problems two-sided error means that, when failing,the algorithm may output a wrong answer on any input. That is, thealgorithm may falsely rule that the input has no solution and it mayalso output a wrong solution (both in case the input has a solution andin case it has no solution).(b) An intermediate notion of failure is the one of one-sided error. Again, theterm originates from the setting of decision problems, where it meansthat the algorithm may err only in one direction (i.e., either on yes-instances or on no-instances). Indeed, there are two natural cases de-pending on whether the algorithm errs on yes-instances but not on no-instances, or the other way around. Analogous cases occur also in thesetting of search problems. In one case the algorithm never outputsa wrong solution but may falsely rule that the input has no solution.In the other case the indication that an input has no solution is neverwrong, but the algorithm may output a wrong solution.(c) The most conservative notion of failure is the one of zero-sided error. Inthis case, the algorithm's failure amounts to indicating its failure to �ndan answer (by outputting a special don't know symbol). We stress thatin this case the algorithm never provides a wrong answer.Indeed, the forgoing discussion ignores the probability of failure, which is thesubject of the next item.2. The magnitude of failure is a quantitative notion. It refer to the probabilitythat the algorithm fails, where the type of failure is �xed (e.g., as in theforgoing discussion).When actually using a randomized algorithm we typically wish its failureprobability to be negligible, which intuitively means that the failure event isso rare that it can be ignored in practice. Formally, we say that a quantity isnegligible if, as a function of the relevant parameter (e.g., the input length),this quantity vanishes faster than the reciprocal of any positive polynomial.

208 CHAPTER 6. RANDOMNESS AND COUNTINGFor ease of presentation, we sometimes consider alternative upper-boundson the probability of failure. These bounds are selected in a way that al-lows (and in fact facilitates) \error reduction" (i.e., converting a probabilisticpolynomial-time algorithm that satis�es such an upper-bound into one inwhich the failure probability is negligible). For example, in the case of two-sided error we need to be able to distinguish the correct answer from wronganswers by sampling, and in the other types of failure \hitting" a correctanswer su�ces.In the following three sections (i.e., Sections 6.1.2{6.1.4), we will discuss complexityclasses corresponding to the aforementioned three types of failure. For sake ofsimplicity, the failure probability itself will be set to a constant that allows errorreduction.Randomized reductions. Before turning to the more detailed discussion, wemention that randomized reductions play an important role in complexity the-ory. Such reductions can be de�ned analogously to the standard Cook-Reductions(resp., Karp-reductions), and again a discussion of the type and magnitude of thefailure probability is in place. For clarity, we spell-out the two-sided error versions.� In analogy to De�nition 2.9, we say that a problem � is probabilistic polynomial-time reducible to a problem �0 if there exists a probabilistic polynomial-timeoracle machineM such that, for every function f that solves �0 and for everyx, with probability at least 1��(jxj), the output Mf (x) is a correct solutionto the instance x, where � is a negligible function.� In analogy to De�nition 2.11, we say that a decision problem S is reducibleto a decision problem S0 via a randomized Karp-reduction if there exists aprobabilistic polynomial-time algorithm A such that, for every x, it holds thatPr[�S0(A(x)) = �S(x)] � 1��(jxj), where �S (resp., �S0) is the characteristicfunction of S (resp., S0) and � is a negligible function.These reductions preserve e�cient solvability and are transitive: see Exercise 6.2.6.1.2 Two-sided error: The complexity class BPPIn this section we consider the most liberal notion of probabilistic polynomial-timealgorithms that is still meaningful. We allow the algorithm to err on each input,but require the error probability to be negligible. The latter requirement guaranteesthe usefulness of such algorithms, because in reality we may ignore the negligibleerror probability.Before focusing on the decision problem setting, let us say a few words on thesearch problem setting (see De�nition 1.1). Following the previous paragraph, wesay that a probabilistic (polynomial-time) algorithm A solves the search problemof the relation R if for every x 2 SR (i.e., R(x) def= fy : (x; y) 2Rg 6= ;) it holdsthat Pr[A(x) 2 R(x)] > 1 � �(jxj) and for every x 62 SR it holds that Pr[A(x) =?] > 1��(jxj), where � is a negligible function. Note that we did not require that,

6.1. PROBABILISTIC POLYNOMIAL-TIME 209when invoked on input x that has a solution (i.e., R(x) 6= ;), the algorithm alwaysoutputs the same solution. Indeed, a stronger requirement is that for every such xthere exists y 2 R(x) such that Pr[A(x)= y] > 1� �(jxj). The latter version andquantitative relaxations of it allow for error-reduction (see Exercise 6.3).Turning to decision problems, we consider probabilistic polynomial-time algo-rithms that err with negligible probability. That is, we say that a probabilistic(polynomial-time) algorithm A decides membership in S if for every x it holdsthat Pr[A(x) = �S(x)] > 1 � �(jxj), where �S is the characteristic function of S(i.e., �S(x) = 1 if x 2 S and �S(x) = 0 otherwise) and � is a negligible function.The class of decision problems that are solvable by probabilistic polynomial-timealgorithms is denoted BPP, standing for Bounded-error Probabilistic Polynomial-time. Actually, the standard de�nition refers to machines that err with probabilityat most 1=3.De�nition 6.2 (the class BPP): A decision problem S is in BPP if there existsa probabilistic polynomial-time algorithm A such that for every x 2 S it holds thatPr[A(x) = 1] � 2=3 and for every x 62 S it holds that Pr[A(x) = 0] � 2=3.The choice of the constant 2=3 is immaterial, and any other constant greater than1=2 will do (and yields the very same class). Similarly, the complementary constant1=3 can be replaced by various negligible functions (while preserving the class).Both facts are special cases of the robustness of the class, discussed next, which isestablished using the process of error reduction.Error reduction (or con�dence ampli�cation). For " : N ! (0; 0:5), letBPP" denote the class of decision problems that can be solved in probabilisticpolynomial-time with error probability upper-bounded by "; that is, S 2 BPP" ifthere exists a probabilistic polynomial-time algorithm A such that for every x itholds that Pr[A(x) 6= �S(x)] � "(jxj). By de�nition, BPP = BPP1=3. However, awide range of other classes also equal BPP. In particular, we mention two extremecases:1. For every positive polynomial p and "(n) = (1=2)� (1=p(n)), the class BPP"equals BPP. That is, any error that is (\noticeably") bounded away from1/2 (i.e., error (1=2)� (1=poly(n))) can be reduced to an error of 1=3.2. For every positive polynomial p and "(n) = 2�p(n), the class BPP" equalsBPP. That is, an error of 1=3 can be further reduced to an exponentiallyvanishing error.Both facts are proved by invoking the weaker algorithm (i.e., the one having alarger error probability bound) for an adequate number of times, and ruling bymajority. We stress that invoking a randomized machine several times means thatthe random choices made in the various invocations are independent of one another.The success probability of such a process is analyzed by applying an adequate Lawof Large Numbers (see Exercise 6.4).

210 CHAPTER 6. RANDOMNESS AND COUNTING6.1.2.1 On the power of randomizationLet us turn back to the natural question raised at the beginning of Section 6.1;that is, was anything gained by extending the de�nition of e�cient computation toinclude also probabilistic polynomial-time ones.This phrasing seems too generic. We certainly gained the ability to toss coins(and generate various distributions). More concretely, randomized algorithms areessential in many settings (see, e.g., Chapter 9, Section 10.1.2, Appendix C, andAppendix D.3) and seem essential in others (see, e.g., Sections 6.2.2{6.2.4). Whatwe mean to ask here is whether allowing randomization increases the power ofpolynomial-time algorithms also in the restricted context of solving decision andsearch problems?The question is whether BPP extends beyond P (where clearly P � BPP).It is commonly conjectured that the answer is negative. Speci�cally, under somereasonable assumptions, it holds that BPP = P (see Part 1 of Theorem 8.19). Wenote, however, that a polynomial slow-down occurs in the proof of the latter result;that is, randomized algorithms that run in time t(�) are emulated by determinis-tic algorithms that run in time poly(t(�)). This slow-down seems inherent to theaforementioned approach (see x8.3.3.2). Furthermore, for some concrete problems(most notably primality testing (cf. x6.1.2.2)), the known probabilistic polynomial-time algorithm is signi�cantly faster (and conceptually simpler) than the knowndeterministic polynomial-time algorithm. Thus, we believe that even in the con-text of decision problems, the notion of probabilistic polynomial-time algorithmsis advantageous.We note that the fundamental nature of BPP will remain intact even in the(rather unlikely) case that it turns out that randomization o�ers no computa-tional advantage (i.e., even if every problem that can be decided in probabilisticpolynomial-time can be decided by a deterministic algorithm of essentially thesame complexity). Such a result would address a fundamental question regardingthe power of randomness.2 We now turn from the foregoing philosophical (andpartially hypothetical) discussion to a concrete discussion of what is known aboutBPP.BPP is in the Polynomial-TimeHierarchy: While it may be that BPP = P ,it is not known whether or not BPP is contained in NP . The source of troubleis the two-sided error probability of BPP, which is incompatible with the absoluterejection of no-instances required in the de�nition of NP (see Exercise 6.8). Inview of this ignorance, it is interesting to note that BPP resides in the secondlevel of the Polynomial-Time Hierarchy (i.e., BPP � �2). This is a corollary ofTheorem 6.9.Trivial derandomization. A straightforward way of eliminating randomnessfrom an algorithm is trying all possible outcomes of its internal coin tosses, collect-ing the relevant statistics and deciding accordingly. This yields BPP � PSPACE �2By analogy, establishing that IP = PSPACE (cf. Theorem 9.4) does not diminish theimportance of any of these classes, because each class models something fundamentally di�erent.

6.1. PROBABILISTIC POLYNOMIAL-TIME 211EXP , which is considered the trivial derandomization of BPP. In Section 8.3 wewill consider various non-trivial derandomizations of BPP, which are known undervarious intractability assumptions. The interested reader, who may be puzzled bythe connection between derandomization and computational di�culty, is referredto Chapter 8.Non-uniform derandomization. In many settings (and speci�cally in the con-text of solving search and decision problems), the power of randomization is su-perseded by the power of non-uniform advice. Intuitively, the non-uniform advicemay specify a sequence of coin tosses that is good for all (primary) inputs of aspeci�c length. In the context of solving search and decision problems, such anadvice must be good for each of these inputs3, and thus its existence is guaran-teed only if the error probability is low enough (so as to support a union bound).The latter condition can be guaranteed by error-reduction, and thus we get thefollowing result.Theorem 6.3 BPP is (strictly) contained in P=poly.Proof: Recall that P=poly contains undecidable problems (Theorem 3.7), whichare certainly not in BPP. Thus, we focus on showing that BPP � P=poly. Bythe discussion regarding error-reduction, for every S 2 BPP there exists a (de-terministic) polynomial-time algorithm A and a polynomial p such that for everyx it holds that Pr[A(x; Up(jxj)) 6= �S(x)] < 2�jxj. Using a union bound, it followsthat Prr2f0;1gp(n) [9x 2 f0; 1gn s.t. A(x; r) 6= �S(x)] < 1. Thus, for every n 2 N ,there exists a string rn 2 f0; 1gp(n) such that for every x 2 f0; 1gn it holds thatA(x; rn) = �S(x). Using such a sequence of rn's as advice, we obtain the desirednon-uniform machine (establishing S 2 P=poly).Digest. The proof of Theorem 6.3 combines error-reduction with a simple ap-plication of the Probabilistic Method (cf. [10]), where the latter refers to provingthe existence of an object by analyzing the probability that a random object isadequate. In this case, we sought a non-uniform advice, and proved it existence byanalyzing the probability that a random advice is good. The latter event was ana-lyzed by identifying the space of possible advice with the set of possible sequencesof internal coin tosses of a randomized algorithm.6.1.2.2 A probabilistic polynomial-time primality testTeaching note: Although primality has been recently shown to be in P, we believethat the following example provides a nice illustration to the power of randomizedalgorithms.3In other contexts (see, e.g., Chapters 7 and 8), it su�ces to have an advice that is good onthe average, where the average is taken over all relevant (primary) inputs.

212 CHAPTER 6. RANDOMNESS AND COUNTINGWe present a simple probabilistic polynomial-time algorithm for deciding whetheror not a given number is a prime. The only Number Theoretic facts that we useare:Fact 1: For every prime p > 2, each quadratic residue mod p has exactly two squareroots mod p (and they sum-up to p).4Fact 2: For every (odd and non-integer-power) composite numberN , each quadraticresidue mod N has at least four square roots mod N .Our algorithm uses as a black-box an algorithm, denoted sqrt, that given a primep and a quadratic residue mod p, denoted s, returns the smallest among the twomodular square roots of s. There is no guarantee as to what the output is in thecase that the input is not of the aforementioned form (and in particular in the casethat p is not a prime). Thus, we actually present a probabilistic polynomial-timereduction of testing primality to extracting square roots modulo a prime (which isa search problem with a promise; see Section 2.4.1).Construction 6.4 (the reduction): On input a natural number N > 2 do1. If N is either even or an integer-power5 then reject.2. Uniformly select r 2 f1; :::; N � 1g, and set s r2 mod N .3. Let r0 sqrt(s;N). If r0 � �r (mod N) then accept else reject.Indeed, in the case that N is composite, the reduction invokes sqrt on an illegiti-mate input (i.e., it makes a query that violates the promise of the problem at thetarget of the reduction). In such a case, there is not guarantee as to what sqrt an-swers, but actually a bluntly wrong answer only plays in our favor. In general, wewill show that if N is composite, then the reduction rejects with probability at least1=2, regardless of how sqrt answers. We mention that there exists a probabilisticpolynomial-time algorithm for implementing sqrt (see Exercise 6.16).Proposition 6.5 Construction 6.4 constitutes a probabilistic polynomial-time re-duction of testing primality to extracting square roots module a prime. Further-more, if the input is a prime then the reduction always accepts, and otherwise itrejects with probability at least 1=2.We stress that Proposition 6.5 refers to the reduction itself; that is, sqrt is viewedas a (\perfect") oracle that, for every prime P and quadratic residue s (mod P),returns r < s=2 such that r2 � s (mod P). Combining Proposition 6.5 with aprobabilistic polynomial-time algorithm that computes sqrt with negligible errorprobability, we obtain that testing primality is in BPP.4That is, for every r 2 f1; :::; p�1g, the equation x2 � r2 (mod p) has two solutions modulo p(i.e., r and p� r).5This can be checked by scanning all possible powers e 2 f2; :::; log2Ng, and (approximately)solving the equation xe = N for each value of e (i.e., �nding the smallest integer i such thatie � N). Such a solution can be found by binary search.

6.1. PROBABILISTIC POLYNOMIAL-TIME 213Proof: By Fact 1, on input a prime number N , Construction 6.4 always accepts(because in this case, for every r 2 f1; :::; N�1g, it holds that sqrt(r2 mod N;N) 2fr;N � rg). On the other hand, suppose that N is an odd composite that is notan integer-power. Then, by Fact 2, each quadratic residue s has at least foursquare roots, and each of these square roots is equally likely to be chosen at Step 2(in other words, s yields no information regarding which of its modular squareroots was selected in Step 2). Thus, for every such s, the probability that eithersqrt(s;N) or N � sqrt(s;N) equal the root chosen in Step 2 is at most 2=4. Itfollows that, on input a composite number, the reduction rejects with probabilityat least 1=2.Reection: Construction 6.4 illustrates an interesting aspect of randomized algo-rithms (or rather reductions); that is, their ability to take advantage of informationthat is unknown to the invoked subroutine. Speci�cally, Construction 6.4 generatesa problem instance (N; s), which hides crucial information (regarding how s wasgenerated). Any subroutine that answers correctly in the case that N is prime pro-vides probabilistic evidence that N is a prime, where the probability space refersto the missing information (regarding how s was generated in the case that N iscomposite).Comment. Testing primality is actually in P . However, the deterministic al-gorithm demonstrating this fact is more complex than Construction 6.4 (and itsanalysis is even more complicated).6.1.3 One-sided error: The complexity classes RP and coRPIn this section we consider notions of probabilistic polynomial-time algorithmshaving one-sided error. The notion of one-sided error refers to a natural partition ofthe set of instances; that is, yes-instances versus no-instances in the case of decisionproblems, and instances having solution versus instances having no solution in thecase of search problems. We focus on decision problems, and comment that ananalogous treatment can be provided for search problems (see Exercise 6.3).De�nition 6.6 (the class RP)6: A decision problem S is in RP if there exists aprobabilistic polynomial-time algorithm A such that for every x 2 S it holds thatPr[A(x)=1] � 1=2 and for every x 62 S it holds that Pr[A(x)=0] = 1.The choice of the constant 1=2 is immaterial, and any other constant greater thanzero will do (and yields the very same class). Similarly, this constant can bereplaced by 1��(jxj) for various negligible functions � (while preserving the class).Both facts are special cases of the robustness of the class (see Exercise 6.5).Observe that RP � NP (see Exercise 6.8) and that RP � BPP (by theaforementioned error-reduction). De�ning coRP = ff0; 1g� n S : S 2 RPg, note6The initials RP stands for Random Polynomial-time, which fails to convey the restricted typeof error allowed in this class. The only nice feature of this notation is that it is reminiscent of NP,thus reecting the fact that RP is a randomized polynomial-time class that is contained in NP .

214 CHAPTER 6. RANDOMNESS AND COUNTINGthat coRP corresponds to the opposite direction of one-sided error probability.That is, a decision problem S is in coRP if there exists a probabilistic polynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x)=1] = 1 and forevery x 62 S it holds that Pr[A(x)=0] � 1=2.6.1.3.1 Testing polynomial identityAn appealing example of a one-sided error randomized algorithm refers to theproblem of determining whether two polynomials are identical. For simplicity, weassume that we are given an oracle for the evaluation of each of the two polynomials.An alternative presentation that refers to polynomials that are represented byarithmetic circuits (cf. Appendix B.3) yields a standard decision problem in coRP(see Exercise 6.17). Either way, we refer to multi-variant polynomials and to thequestion of whether they are identical over any �eld (or, equivalently, whether theyare identical over a su�ciently large �nite �eld). Note that it su�ces to consider�nite �elds that are larger than the degree of the two polynomials.Construction 6.7 (Polynomial-Identity Test): Let n be an integer and F be a�nite �eld. Given black-box access to p; q : Fn ! F, uniformly select r1; :::; rn 2 F,and accept if and only if p(r1; :::; rn) = q(r1; :::; rn).Clearly, if p � q then Construction 6.7 always accepts. The following lemma impliesthat if p and q are di�erent polynomials, each of total degree at most d over the�nite �eld F, then Construction 6.7 accepts with probability at most d=jFj.Lemma 6.8 Let p : Fn ! F be a non-zero polynomial of total degree d over the�nite �eld F. Then Prr1;:::;rn2F[p(r1; :::; rn) = 0] � djFj :Proof: The lemma is proven by induction on n. The base case of n = 1 followsimmediately by the Fundamental Theorem of Algebra (i.e., any non-zero univariatepolynomial of degree d has at most d distinct roots). In the induction step, we writep as a polynomial in its �rst variable with coe�cients that are polynomials in theother variables. That is,p(x1; x2; :::; xn) = dXi=0 pi(x2; :::; xn) � xi1where pi is a polynomial of total degree at most d�i. Let i be the largest integer forwhich pi is not identically zero. Dismissing the case i = 0 and using the inductionhypothesis, we havePrr1;r2;:::;rn[p(r1; r2; :::; rn) = 0]� Prr2;:::;rn[pi(r2; :::; rn) = 0]+Prr1;r2;:::;rn[p(r1; r2; :::; rn) = 0 j pi(r2; :::; rn) 6= 0]� d� ijFj + ijFj

6.1. PROBABILISTIC POLYNOMIAL-TIME 215where the second term is bounded by �xing any sequence r2; :::; rn for whichpi(r2; ::::; rn) 6= 0 and considering the univariate polynomial p0(x) def= p(x; r2; :::; rn)(which by hypothesis is a non-zero polynomial of degree i).Reection: Lemma 6.8 may be viewed as asserting that for every non-zero poly-nomial of degree d over F at least a 1 � (d=jFj) fraction of its domain does notevaluate to zero. Thus, if d � jFj then most of the evaluation points constitute awitness for the fact that the polynomial is non-zero. We know of no e�cient deter-ministic algorithm that, given a representation of the polynomial via an arithmeticcircuit, �nds such a witness. Indeed, Construction 6.7 attempts to �nd a witnessby merely selecting it at random.6.1.3.2 Relating BPP to RPA natural question regarding probabilistic polynomial-time algorithms refers to therelation between two-sided and one-sided error probability. For example, is BPPcontained in RP? Loosely speaking, we show that BPP is reducible to coRPby one-sided error randomized Karp-reductions, where the actual statement refersto the promise problem versions of both classes (briey de�ned in the followingparagraph). Note that BPP is trivially reducible to coRP by two-sided errorrandomized Karp-reductions, whereas a deterministic Karp-reduction of BPP tocoRP would imply BPP = coRP = RP (see Exercise 6.9).First, we refer the reader to the general discussion of promise problems inSection 2.4.1. Analogously to De�nition 2.31, we say that the promise problem� = (Syes; Sno) is in (the promise problem extension of) BPP if there exists aprobabilistic polynomial-time algorithm A such that for every x 2 Syes it holds thatPr[A(x)=1] � 2=3 and for every x 2 Sno it holds that Pr[A(x)=0] � 2=3. Similarly,� is in coRP if for every x 2 Syes it holds that Pr[A(x) = 1] = 1 and for everyx 2 Sno it holds that Pr[A(x)=0] � 1=2. Probabilistic reductions among promiseproblems are de�ned by adapting the conventions of Section 2.4.1; speci�cally,queries that violate the promise at the target of the reduction may be answeredarbitrarily.Theorem 6.9 Any problem in BPP is reducible by a one-sided error randomizedKarp-reduction to coRP, where coRP (and possibly also BPP) denotes the cor-responding class of promise problems. Speci�cally, the reduction always maps ano-instance to a no-instance.It follows that BPP is reducible by a one-sided error randomized Cook-reduction toRP . Thus, using the conventions of Section 3.2.2 and referring to classes of promiseproblems, we may write BPP � RPRP . In fact, since RPRP � BPPBPP = BPP,we have BPP = RPRP . Theorem 6.9 may be paraphrased as saying that thecombination of the one-sided error probability of the reduction and the one-sidederror probability of coRP can account for the two-sided error probability of BPP.We warn that this statement is not a triviality like 1 + 1 = 2, and in particular

216 CHAPTER 6. RANDOMNESS AND COUNTINGwe do not know whether it holds for classes of standard decision problems (ratherthan for the classes of promise problems considered in Theorem 6.9).Proof: Recall that we can easily reduce the error probability of BPP-algorithms,and derive probabilistic polynomial-time algorithms of exponentially vanishing er-ror probability. But this does not eliminate the error altogether (not even on \oneside"). In general, there seems to be no hope to eliminate the error, unless we(either do something earth-shaking or) change the setting as done when allowing aone-sided error randomized reduction to a problem in coRP . The latter setting canbe viewed as a two-move randomized game (i.e., a random move by the reductionfollowed by a random move by the decision procedure of coRP), and it enablesapplying di�erent quanti�ers to the two moves (i.e., allowing error in one directionin the �rst quanti�er and error in the other direction in the second quanti�er).In the next paragraph, which is inessential to the actual proof, we illustrate thepotential power of this setting.Teaching note: The following illustration represents an alternative way of provingTheorem 6.9. This way seems conceptual simpler but it requires a starting point (orrather an assumption) that is much harder to establish, where both comparisons arewith respect to the actual proof of Theorem 6.9 (which follows the illustration).An illustration. Suppose that for some set S 2 BPP there exists a polynomial p0 andan o�-line BPP-algorithmA0 such that for every x it holds that Prr2f0;1g2p0(jxj) [A0(x; r) 6=�S(x)] < 2�(p0(jxj)+1); that is, the algorithm uses 2p0(jxj) bits of randomness andhas error probability smaller than 2�p0(jxj)=2. Note that such an algorithm cannotbe obtained by standard error-reduction (see Exercise 6.10). Anyhow, such a smallerror probability allows a partition of the string r such that one part accountsfor the entire error probability on yes-instances while the other part accounts forthe error probability on no-instances. Speci�cally, for every x 2 S, it holds thatPrr02f0;1gp0(jxj) [(8r00 2 f0; 1gp0(jxj))A0(x; r0r00) = 1] > 1=2, whereas for every x 62 Sand every r0 2 f0; 1gp0(jxj) it holds that Prr002f0;1gp0(jxj) [A0(x; r0r00) = 1] < 1=2.Thus, the error on yes-instances is \pushed" to the selection of r0, whereas theerror on no-instances is pushed to the selection of r00. This yields a one-sided errorrandomized Karp-reduction that maps x to (x; r0), where r0 is uniformly selectedin f0; 1gp0(jxj), such that deciding S is reduced to the coRP problem (regardingpairs (x; r0)) that is decided by the (on-line) randomized algorithm A00 de�nedby A00(x; r0) def= A0(x; r0Up0(jxj)). For details, see Exercise 6.11. The actual proof,which avoids the aforementioned hypothesis, follows.The actual starting point. Consider any BPP-problem with a characteristic function� (which, in case of a promise problem, is a partial function, de�ned only over thepromise). By standard error-reduction, there exists a probabilistic polynomial-timealgorithm A such that for every x on which � is de�ned it holds that Pr[A(x) 6=�(x)] < �(jxj), where � is a negligible function. Looking at the correspondingo�-line algorithm A0 and denoting by p the polynomial that bounds the running

6.1. PROBABILISTIC POLYNOMIAL-TIME 217time of A, we havePrr2f0;1gp(jxj) [A0(x; r) 6=�(x)] < �(jxj) < 12p(jxj) (6.1)for all su�ciently long x's on which � is de�ned. We show a randomized one-sidederror Karp-reduction of � to a promise problem in coRP .Teaching note: Some readers may prefer skipping the following two paragraphs andproceeding directly to the formal description of the randomized mapping (which fol-lows). To such readers, we recommend returning to the two skipped paragraphs afterreading the formal analysis.The main idea. As in the illustrating paragraph, the basic idea is \pushing" theerror probability on yes-instances (of �) to the reduction, while pushing the er-ror probability on no-instances to the coRP-problem. Focusing on the case that�(x) = 1, this is achieved by augmenting the input x with a random sequence of\modi�ers" that act on the random-input of algorithm A0 such that for a goodchoice of modi�ers it holds that for every r 2 f0; 1gp(jxj) there exists a modi�er inthis sequence that when applied to r yields r0 that satis�es A0(x; r0) = 1. Indeed,not all sequences of modi�ers are good, but a random sequence will be good withhigh probability and bad sequences will be accounted for in the error probabilityof the reduction. On the other hand, using only modi�ers that are permutationsguarantees that the error probability on no-instances only increase by a factorthat equals the number of modi�ers that we use, and this error probability will beaccounted for by the error probability of the coRP-problem. Details follow.The aforementioned modi�ers are implemented by shifts (of the set of all stringsby �xed o�sets). Thus, we augment the input x with a random sequence of shifts,denoted s1; :::; sm 2 f0; 1gp(jxj), such that for a good choice of (s1; :::; sm) it holdsthat for every r 2 f0; 1gp(jxj) there exists an i 2 [m] such that A0(x; r�si) = 1. Wewill show that, for any yes-instance x and a suitable choice of m, with very highprobability, a random sequence of shifts is good. Thus, for A00(hx; s1; :::; smi; r) def=_mi=1A0(x; r � si), it holds that, with very high probability over the choice ofs1; :::; sm, a yes-instance x is mapped to an augmented input hx; s1; :::; smi thatis accepted by A00 with probability 1. On the other hand, the acceptance probabil-ity of augmented no-instances (for any choice of shifts) only increases by a factor ofm. In further detailing the foregoing idea, we start by explicitly stating the simplerandomized mapping (to be used as a randomized Karp-reduction), and next de�nethe target promise problem.The randomized mapping. On input x 2 f0; 1gn, we set m = p(jxj), uniformly selects1; :::; sm 2 f0; 1gm, and output the pair (x; s), where s = (s1; :::; sm). Note thatthis mapping, denoted M , is easily computable by a probabilistic polynomial-timealgorithm.The promise problem. We de�ne the following promise problem, denoted � =(�yes;�no), having instances of the form (x; s) such that jsj = p(jxj)2.

218 CHAPTER 6. RANDOMNESS AND COUNTING� The yes-instances are pairs (x; s), where s = (s1; :::; sm) and m = p(jxj), suchthat for every r 2 f0; 1gm there exists an i satisfying A0(x; r � si) = 1.� The no-instances are pairs (x; s), where again s = (s1; :::; sm) and m = p(jxj),such that for at least half of the possible r 2 f0; 1gm, for every i it holds thatA0(x; r � si) = 0.To see that � is indeed a coRP promise problem, we consider the following random-ized algorithm. On input (x; (s1; :::; sm)), wherem = p(jxj) = js1j = � � � = jsmj, thealgorithm uniformly selects r 2 f0; 1gm, and accepts if and only if A0(x; r� si) = 1for some i 2 f1; :::;mg. Indeed, yes-instances of � are accepted with probability 1,whereas no-instances of � are rejected with probability at least 1=2.Analyzing the reduction: We claim that the randomized mapping M reduces � to� with one-sided error. Speci�cally, we will prove two claims.Claim 1: If x is a yes-instance (i.e., �(x) = 1) then Pr[M(x) 2 �yes] > 1=2.Claim 2: If x is a no-instance (i.e., �(x) = 0) then Pr[M(x) 2 �no] = 1.We start with Claim 2, which is easier to establish. Recall thatM(x) = (x; (s1; :::; sm)),where s1; :::; sm are uniformly and independently distributed in f0; 1gm. We notethat (by Eq. (6.1) and �(x) = 0), for every possible choice of s1; :::; sm 2 f0; 1gmand every i 2 f1; :::;mg, the fraction of r's that satisfy A0(x; r � si) = 1 is at most12m . Thus, for every possible choice of s1; :::; sm 2 f0; 1gm, for at most half of thepossible r 2 f0; 1gm there exists an i such that A0(x; r � si) = 1 holds. Hence, thereduction M always maps the no-instance x (i.e., �(x) = 0) to a no-instance of �(i.e., an element of �no).Turning to Claim 1 (which refers to �(x) = 1), we will show shortly that inthis case, with very high probability, the reduction M maps x to a yes-instance of�. We upper-bound the probability that the reduction fails (in case �(x) = 1) asfollows:Pr[M(x) 62 �yes] = Prs1;:::;sm [9r 2 f0; 1gm s.t. (8i) A0(x; r � si) = 0]� Xr2f0;1gm Prs1;:::;sm [(8i) A0(x; r � si) = 0]= Xr2f0;1gm mYi=1Prsi [A0(x; r � si) = 0]< 2m � � 12m�mwhere the last inequality is due to Eq. (6.1). It follows that if �(x) = 1 thenPr[M(x) 2 �yes]� 1=2.Combining both claims, it follows that the randomized mapping M reduces �to �, with one-sided error on yes-instances. Recalling that � 2 coRP , the theoremfollows.

6.1. PROBABILISTIC POLYNOMIAL-TIME 219BPP is in PH. The traditional presentation of the ideas underlying the proof ofTheorem 6.9 uses them for showing that BPP is in the Polynomial-time Hierarchy(where both classes refer to standard decision problems). Speci�cally, to prove thatBPP � �2 (see De�nition 3.8), de�ne the polynomial-time computable predicate'(x; s; r) def= Wmi=1(A0(x; si � r) = 1), and observe that�(x) = 1) 9s8r '(x; s; r) (6.2)�(x) = 0) 8s9r :'(x; s; r) (6.3)(where Eq. (6.3) is equivalent to :9s8r '(x; s; r)). Note that Claim 1 (in the proofof Theorem 6.9) establishes that most sequences s satisfy 8r '(x; s; r), whereasEq. (6.2) only requires the existence of at least one such s. Similarly, Claim 2establishes that for every s most choices of r violate '(x; s; r), whereas Eq. (6.3)only requires that for every s there exists at least one such r. We comment thatthe same proof idea yields a variety of similar statements (e.g., BPP �MA, whereMA is a randomized version of NP de�ned in Section 9.1).76.1.4 Zero-sided error: The complexity class ZPPWe now consider probabilistic polynomial-time algorithms that never err, but mayfail to provide an answer. Focusing on decision problems, the corresponding class isdenoted ZPP (standing for Zero-error Probabilistic Polynomial-time). The stan-dard de�nition of ZPP is in terms of machines that output ? (indicating fail-ure) with probability at most 1=2. That is, S 2 ZPP if there exists a proba-bilistic polynomial-time algorithm A such that for every x 2 f0; 1g� it holds thatPr[A(x) 2 f�S(x);?g] = 1 and Pr[A(x) = �S(x)] � 1=2, where �S(x) = 1 if x 2 Sand �S(x) = 0 otherwise. Again, the choice of the constant (i.e., 1=2) is immate-rial, and \error-reduction" can be performed showing that algorithms that yield ameaningful answer with noticeable probability can be ampli�ed to algorithms thatfail with negligible probability (see Exercise 6.6).Theorem 6.10 ZPP = RP \ coRP.Proof Sketch: The fact that ZPP � RP (as well as ZPP � coRP) follows by atrivial transformation of the ZPP-algorithm; that is, replacing the failure indicator? by a \no" verdict (resp., \yes" verdict). Note that the choice of what to say incase the ZPP-algorithm fails is determined by the type of error that we are allowed.In order to prove that RP \ coRP � ZPP we combine the two algorithmguaranteed for a set in RP \ coRP . The point is that we can trust the RP-algorithm (resp., coNP-algorithm) in the case that it says \yes" (resp., \no"), butnot in the case that it says \no" (resp., \yes"). Thus, we invoke both algorithms,7Speci�cally, the classMA is de�ned by allowing the veri�cation algorithm V in De�nition 2.5to be probabilistic and err on no-instances; that is, for every x 2 S there exists y 2 f0; 1gpoly(jxj)such that Pr[V (x; y) = 1] = 1, whereas for every x 62 S and every y it holds that Pr[V (x; y) =0] � 1=2. We note that MA can be viewed as a hybrid of the two aforementioned pairs ofconditions; speci�cally, each problem in MA satisfy the conjunction of Eq. (6.2) and Claim 2.Other randomized versions of NP (i.e., variants of MA) are considered in Exercise 6.12.

220 CHAPTER 6. RANDOMNESS AND COUNTINGand output a de�nite answer only if we obtain an answer that we can trust (whichhappen with high probability). Otherwise, we output ?.Expected polynomial-time. In some sources ZPP is de�ned in terms of ran-domized algorithms that run in expected polynomial-time and always output thecorrect answer. This de�nition is equivalent to the one we used (see Exercise 6.7).6.1.5 Randomized Log-SpaceIn this section we discuss probabilistic polynomial-time algorithms that are furtherrestricted such that they are allowed to use only a logarithmic amount of space.6.1.5.1 De�nitional issuesWhen de�ning space-bounded randomized algorithms, we face a problem analogousto the one discussed in the context of non-deterministic space-bounded computation(see Section 5.3). Speci�cally, the on-line and the o�-line versions (formulated inDe�nition 6.1) are no longer equivalent, unless we restrict the o�-line machine toaccess its random-input tape in a uni-directional manner. The issue is that, in thecontext of space-bounded computation (and unlike in the case that we only careabout time-bounds), the outcome of the internal coin tosses (in the on-line model)cannot be recorded for free. Bearing in mind that, in the current context, we wishto model real algorithms (rather than present a �ctitious model that captures afundamental phenomena as in Section 5.3), it is clear that using the on-line versionis the natural choice.An additional issue that arises is the need to explicitly bound the running-timeof space-bounded randomized algorithms. Recall that, without loss of generality,the number of steps taken by a space-bounded non-deterministic machine is at mostexponential in its space complexity, because the shortest path between two con�g-urations in the (directed) graph of possible con�gurations is upper-bounded by itssize (which in turn is exponential in the space-bound). This reasoning fails in thecase of randomized algorithms, because the shortest path between two con�gura-tions does not bound the expected number of random steps required for going fromthe �rst con�guration to the second one. In fact, as we shall shortly see, failing toupper-bound the running time of log-space randomized algorithms seems to allowthem too much power; that is, such (unrestricted) log-space randomized algorithmscan emulate non-deterministic log-space computations (in exponential time). Theemulation consists of repeatedly invoking the NL-machine, while using randomchoices in the role of the non-deterministic moves. If the input is a yes-instancethen, in each attempt, with probability at least 2�t, we \hit" an accepting t-step(non-deterministic) computation, where t is polynomial in the input length. Thus,the randomized machine accepts such a yes-instance after an expected number of2t trials. To allow for the rejection of no-instances (rather than looping in�nitely invain), we wish to implement a counter that counts till 2t (or so) and reject the input

6.1. PROBABILISTIC POLYNOMIAL-TIME 221if 2t trials were made and have all failed (to hit an accepting computation of theNL-machine). We need to implement such a counter within space O(log t) ratherthan t (which is easy). In fact, it su�ces to have a \randomized counter" that,with high probability, counts to approximately 2t. The implementation of such acounter is left to Exercise 6.18, and using it we may obtain a randomized algorithmthat halts with high probability (on every input), always rejects a no-instance, andaccepts each yes-instance with probability at least 1=2.In light of the foregoing discussion, when de�ning randomized log-space algo-rithms we explicitly require that the algorithms halt in polynomial-time. Modulothis convention, the relation between classesRL (resp., BPL) and NL is analogousto the relation between RP (resp., BPP) and NP. Speci�cally, the probabilisticacceptance condition of RL (resp., BPL) is as in the case of RP (resp., BPP).De�nition 6.11 (the classes RL and BPL): We say that a randomized log-spacealgorithm is admissible if it always halts in a polynomial number of steps.� A decision problem S is in RL if there exists an admissible (on-line) random-ized log-space algorithm A such that for every x 2 S it holds that Pr[A(x) =1] � 1=2 and for every x 62 S it holds that Pr[A(x) = 0] = 1.� A decision problem S is in BPL if there exists an admissible (on-line) random-ized log-space algorithm A such that for every x 2 S it holds that Pr[A(x) =1] � 2=3 and for every x 62 S it holds that Pr[A(x) = 0] � 2=3.Clearly, RL � NL � P and BPL � P . Note that the classes RL and BPL remainunchanged even if we allow the algorithms to run for expected polynomial-time andhave non-halting computations. Such algorithms can be easily transformed intoadmissible algorithms by truncating long computations, while using a (standard)counter (which can be implemented in logarithmic-space). Also note that error-reduction is applicable in the current setting (while essentially preserving both thetime and space bounds).6.1.5.2 The accidental tourist sees it allAn appealing example of a randomized log-space algorithm is presented next. Itrefers to the problem of deciding undirected connectivity, and demonstrates thatthis problem is in RL. (Recall that in Section 5.2.4 we proved that this problemis actually in L, but the algorithm and its analysis were more complicated.) Incontrast, recall that Directed Connectivity is complete for NL (under log-spacereductions).For sake of simplicity, we consider the following computational problem: givenan undirected graph G and a pair of vertices (s; t), determine whether or not sand t are connected in G. Note that deciding undirected connectivity (of a givenundirected graph) is log-space reducible to the foregoing problem (e.g., just checkthe connectivity of all pairs of vertices).Construction 6.12 On input (G; s; t), the randomized algorithm starts a poly(jGj)-long random walk at vertex s, and accepts the triplet if and only if the walk passed

222 CHAPTER 6. RANDOMNESS AND COUNTINGthrough the vertex t. By a random walk we mean that at each step the algorithmselects uniformly one of the neighbors of the current vertex and moves to it.Observe that the algorithm can be implemented in logarithmic space (becausewe only need to store the current vertex as well as the number of steps takenso far). Obviously, if s and t are not connected in G then the algorithm alwaysrejects (G; s; t). Proposition 6.13 implies that if s and t are connected (in G) thenthe algorithm accepts with probability at least 1=2. It follows that undirectedconnectivity is in RL.Proposition 6.13 With probability at least 1=2, a random walk of length O(jV j �jEj) starting at any vertex of the graph G = (V;E) passes through all the verticesthat reside in the same connected component as the start vertex.Thus, such a random walk may be used to explore the relevant connected compo-nent (in any graph). Following this walk one is likely to see all that there is to seein that component.Proof Sketch: We will actually show that if G is connected then, with probabilityat least 1=2, a random walk starting at s visits all the vertices of G. For any pair ofvertices (u; v), letXu;v be a random variable representing the number of steps takenin a random walk starting at u until v is �rst encountered. The reader may verifythat for every edge fu; vg 2 E it holds that E[Xu;v] � 2jEj; see Exercise 6.19. Next,we let cover(G) denote the expected number of steps in a random walk starting at sand ending when the last of the vertices of V is encountered. Our goal is to upper-bound cover(G). Towards this end, we consider an arbitrary directed cyclic-tourC that visits all vertices in G, and note thatcover(G) � X(u;v)2C E[Xu;v] � jCj � 2jEj:In particular, selecting C as a traversal of some spanning tree of G, we concludethat cover(G) < 4 � jV j � jEj. Thus, with probability at least 1=2, a random walkof length 8 � jV j � jEj starting at s visits all vertices of G.6.2 CountingWe now turn to a new type of computational problems, which vastly generalizedecision problems of the NP-type. We refer to counting problems, and more specif-ically to counting objects that can be e�ciently recognized. The search and decisionversions of NP provide suitable de�nitions of e�ciently recognized objects, whichin turn yield corresponding counting problems:1. For each search problem having e�ciently checkable solutions (i.e., a relationR � f0; 1g�� f0; 1g� in PC (see De�nition 2.3)), we consider the problem ofcounting the number of solutions for a given instance. That is, on input x,we are required to output jfy : (x; y)2Rgj.

6.2. COUNTING 2232. For each decision problem S in NP , and each corresponding veri�cationprocedure V (as in De�nition 2.5), we consider the problem of counting thenumber of NP-witnesses for a given instance. That is, on input x, we arerequired to output jfy : V (x; y)=1gj.We shall consider these types of counting problems as well as relaxations (ofthese counting problems) that refer to approximating the said quantities (see Sec-tions 6.2.1 and 6.2.2, respectively). Other related topics include \problems withunique solutions" (see Section 6.2.3) and \uniform generation of solutions" (seeSection 6.2.4). Interestingly, randomized procedures will play an important role inmany of the results regarding the aforementioned types of problems.6.2.1 Exact CountingIn continuation to the foregoing discussion, we de�ne the class of problems con-cerned with counting e�ciently recognized objects. (Recall that PC denotes theclass of search problems having polynomially long solutions that are e�cientlycheckable; see De�nition 2.3.)De�nition 6.14 (counting e�ciently recognized objects { #P): The class #Pconsists of all functions that count solutions to a search problem in PC. That is,f : f0; 1g� ! N is in #P if there exists R 2 PC such that, for every x, it holdsthat f(x) = jR(x)j, where R(x) = fy : (x; y)2Rg. In this case we say that f is thecounting problem associated with R, and denote the latter by #R (i.e., #R = f).Every decision problem in NP is Cook-reducible to #P , because every such prob-lem can be cast as deciding membership in SR = fx : jR(x)j > 0g for some R 2 PC(see Section 2.1.2). It also holds that BPP is Cook-reducible to #P (see Exer-cise 6.20). The class #P is sometimes de�ned in terms of decision problems, as isimplicit in the following proposition.Proposition 6.15 (a decisional version of #P): For any f 2 #P, deciding mem-bership in Sf def= f(x;N) : f(x)�Ng is computationally equivalent to computing f .Actually, the claim holds for any function f : f0; 1g� ! N for which there exists apolynomial p such that for every x 2 f0; 1g� it holds that f(x) � 2p(jxj).Proof: Since the relation R vouching for f 2 #P (i.e., f(x) = jR(x)j) is poly-nomially bounded, there exists a polynomial p such that for every x it holds thatf(x) � 2p(jxj). Deciding membership in Sf is easily reduced to computing f (i.e.,we accept the input (x;N) if and only if f(x) � N). Computing f is reducible todeciding Sf by using a binary search (see Exercise 2.9). This relies on the fact that,on input x and oracle access to Sf , we can determine whether or not f(x) � N bymaking the query (x;N). Note that we know a priori that f(x) 2 [0; 2p(jxj)].The counting class #P is also related to the problem of enumerating all possiblesolutions to a given instance (see Exercise 6.21).

224 CHAPTER 6. RANDOMNESS AND COUNTING6.2.1.1 On the power of #PAs indicated, NP [BPP is (easily) reducible to #P . Furthermore, as stated inTheorem 6.16, the entire Polynomial-Time Hierarchy (as de�ned in Section 3.2) isCook-reducible to #P (i.e., PH � P#P). On the other hand, any problem in #Pis solvable in polynomial space, and so P#P � PSPACE .Theorem 6.16 Every set in PH is Cook-reducible to #P.We do not present a proof of Theorem 6.16 here, because the known proofs arerather technical. Furthermore, one main idea underlying these proofs appears ina more clear form in the proof of Theorem 6.29. Nevertheless, in Section F.1 wepresent a proof of a related result, which implies that PH is reducible to #P viarandomized Karp-reductions.6.2.1.2 Completeness in #PThe de�nition of #P-completeness is analogous to the de�nition ofNP-completeness.That is, a counting problem f is #P-complete if f 2 #P and every problem in #Pis Cook-reducible to f .We claim that the counting problems associated with the NP-complete problemspresented in Section 2.3.3 are all #P-complete. We warn that this fact is notdue to the mere NP-completeness of these problems, but rather to an additionalproperty of the reductions establishing their NP-completeness. Speci�cally, theKarp-reductions that were used (or variants of them) have the extra property ofpreserving the number of NP-witnesses (as captured by the following de�nition).De�nition 6.17 (parsimonious reductions): Let R;R0 2 PC and let g be a Karp-reduction of SR = fx : R(x) 6= ;g to SR0 = fx : R0(x) 6= ;g, where R(x) = fy :(x; y) 2 Rg and R0(x) = fy : (x; y) 2 R0g. We say that g is parsimonious (withrespect to R and R0) if for every x it holds that jR(x)j = jR0(g(x))j. In such a casewe say that g is a parsimonious reduction of R to R0.We stress that the condition of being parsimonious refers to the two underlyingrelations R and R0 (and not merely to the sets SR and SR0). The requirementthat g is a Karp-reduction is partially redundant, because if g is polynomial-timecomputable and for every x it holds that jR(x)j = jR0(g(x))j, then g constitutes aKarp-reduction of SR to SR0 . Speci�cally, jR(x)j = jR0(g(x))j implies that jR(x)j >0 (i.e., x 2 SR) if and only if jR0(g(x))j > 0 (i.e., g(x) 2 SR0). The reader mayeasily verify that the Karp-reduction underlying the proof of Theorem 2.19 as wellas many of the reductions used in Section 2.3.3 are parsimonious (see Exercise 2.29).Theorem 6.18 Let R 2 PC and suppose that every search problem in PC is par-simoniously reducible to R. Then the counting problem associated with R is #P-complete.Proof: Clearly, the counting problem associated with R, denoted #R, is in #P.To show that every f 0 2 #P is reducible to f , we consider the relation R0 2 PC

6.2. COUNTING 225that is counted by f 0; that is, #R0 = f 0. Then, by the hypothesis, there existsa parsimonious reduction g of R0 to R. This reduction also reduces #R0 to #R;speci�cally, #R0(x) = #R(g(x)) for every x.Corollaries. As an immediate corollary of Theorem 6.18, we get that countingthe number of satisfying assignments to a given CNF formula is #P-complete(because RSAT is PC-complete via parsimonious reductions). Similar statementshold for all the other NP-complete problems mentioned in Section 2.3.3 and infact for all NP-complete problems listed in [82]. These corollaries follow from thefact that all known reductions among natural NP-complete problems are eitherparsimonious or can be easily modi�ed to be so.We conclude that many counting problems associated with NP-complete searchproblems are #P-complete. It turns out that also counting problems associatedwith e�ciently solvable search problems may be #P-complete.Theorem 6.19 There exist #P-complete counting problems that are associatedwith e�ciently solvable search problems. That is, there exists R 2 PF (see De�ni-tion 2.2) such that #R is #P-complete.Theorem 6.19 can be established by presenting arti�cial #P-complete problems(see Exercise 6.22). The following proof uses a natural counting problem.Proof: Consider the relation Rdnf consisting of pairs (�; �) such that � is a DNFformula and � is an assignment satisfying it. Note that the search problem of Rdnfis easy to solve (e.g., by picking an arbitrary truth assignment that satis�es the�rst term in the input formula). To see that #Rdnf is #P-complete consider thefollowing reduction from #RSAT (which is #P-complete by Theorem 6.18). Givena CNF formula �, transform :� into a DNF formula �0 by applying de-Morgan'sLaw, query #Rdnf on �0, and return 2n�#Rdnf(�0), where n denotes the numberof variables in � (resp., �0).Reections: We note that Theorem 6.19 is not established by a parsimoniousreduction. This fact should not come as a surprise because a parsimonious reduc-tion of #R0 to #R implies that SR0 = fx : 9y s.t. (x; y) 2 R0g is reducible toSR = fx : 9y s.t. (x; y)2Rg, where in our case SR0 is NP-Complete while SR 2 P(since R 2 PF). Nevertheless, the proof of Theorem 6.19 is related to the hard-ness of some underlying decision problem (i.e., the problem of deciding whether agiven DNF formula is a tautology (i.e., whether #Rdnf(�0) = 2n)). But does thereexist a #P-complete problem that is \not based on some underlying NP-completedecision problem"? Amazingly enough, the answer is positive.Theorem 6.20 Counting the number of perfect matchings in a bipartite graph is#P-complete.88See Appendix G.1 for basic terminology regarding graphs.

226 CHAPTER 6. RANDOMNESS AND COUNTINGEquivalently (see Exercise 6.23), the problem of computing the permanent of ma-trices with 0/1-entries is #P-complete. Recall that the permanent of an n-by-nmatrix M = (mi;j), denoted perm(M), equals the sum over all permutations �of [n] of the products Qni=1mi;�(i). Theorem 6.20 is proven by composing thefollowing two (many-to-one) reductions (asserted in Propositions 6.21 and 6.22,respectively) and using the fact that #R3SAT is #P-complete (see Theorem 6.18and Exercise 2.29). Needless to say, the resulting reduction is not parsimonious.Proposition 6.21 The counting problem of 3SAT (i.e., #R3SAT) is reducible tocomputing the permanent of integer matrices. Furthermore, there exists an eveninteger c > 0 and a �nite set of integers I such that, on input a 3CNF formula �, thereduction produces an integer matrix M� with entries in I such that perm(M�) =cm �#R3SAT(�) where m denotes the number of clauses in �.The original proof of Proposition 6.21 uses c = 210 and I = f�1; 0; 1; 2; 3g. Itcan be shown (see Exercise 6.24 (which relies on Theorem 6.29)) that, for everyinteger n > 1 that is relatively prime to c, computing the permanent modulo nis NP-hard (under randomized reductions). Thus, using the case of c = 210, thismeans that computing the permanent modulo n is NP-hard for any odd n > 1. Incontrast, computing the permanent modulo 2 (which is equivalent to computingthe determinant modulo 2) is easy (i.e., can be done in polynomial-time and evenin NC). Thus, assuming NP 6� BPP, Proposition 6.21 cannot hold for an odd c(because by Exercise 6.24 it would follow that computing the permanent modulo 2is NP-Hard). We also note that, assuming P 6= NP , Proposition 6.21 cannotpossibly hold for a set I containing only non-negative integers (see Exercise 6.25).Proposition 6.22 Computing the permanent of integer matrices is reducible tocomputing the permanent of 0/1-matrices. Furthermore, the reduction maps anyinteger matrix A into a 0/1-matrix A00 such that the permanent of A can be easilycomputed from A and the permanent of A00.Teaching note: We do not recommend presenting the proofs of Propositions 6.21and 6.22 in class. The high-level structure of the proof of Proposition 6.21 has theavor of some sophisticated reductions among NP-problems, but the crucial point is theexistence of adequate gadgets. We do not know of a high-level argument establishingthe existence of such gadgets nor of any intuition as to why such gadgets exist.9 Instead,the existence of such gadgets is proved by a design that is both highly non-trivial and adhoc in nature. Thus, the proof of Proposition 6.21 boils down to a complicated designproblem that is solved in a way that has little pedagogical value. In contrast, the proofof Proposition 6.22 uses two simple ideas that can be useful in other settings. Withsuitable hints, this proof can be used as a good exercise.Proof of Proposition 6.21: We will use the correspondence between thepermanent of a matrix A and the sum of the weights of the cycle covers of theweighted directed graph represented by the matrix A. A cycle cover of a graph is9Indeed, the conjecture that such gadgets exist can only be attributed to ingenuity.

6.2. COUNTING 227a collection of simple10 vertex-disjoint directed cycles that covers all the graph'svertices, and its weight is the product of the weights of the corresponding edges.The SWCC of a weighted directed graph is the sum of the weights of all its cyclecovers.Given a 3CNF formula �, we construct a directed weighted graph G� such thatthe SWCC of G� equals equals cm �#R3SAT(�), where c is a universal constant andm denotes the number of clauses in �. We may assume, without loss of generality,that each clause of � has exactly three literals (which are not necessarily distinct).
x

+x

+x+x

-x

Figure 6.1: Tracks connecting gadgets in the reduction to cycle cover.We start with a high-level description (of the construction) that refers to (clause)gadgets, each containing some internal vertices and internal (weighted) edges, whichare unspeci�ed at this point. In addition, each gadget has three pairs of designatedvertices, one pair per each literal appearing in the clause, where one vertex in thepair is designated as an entry vertex and the other as an exit vertex. The graphG� consists of m such gadgets, one per each clause (of �), and n auxiliary vertices,one per each variable (of �), as well as some additional directed edges, each havingweight 1. Speci�cally, for each variable, we introduce two tracks, one per each ofthe possible literals of this variable. The track associated with a literal consists ofdirected edges (each having weight 1) that form a simple \cycle" passing throughthe corresponding (auxiliary) vertex as well as through the designated vertices thatcorrespond to the occurrences of this literal in the various clauses. Speci�cally, foreach such occurrence, the track enters the corresponding clause gadget at the entry-vertex corresponding to this literal and exits at the corresponding exit-vertex. (Ifa literal does not appear in � then the corresponding track is a self-loop on thecorresponding variable.) See Figure 6.1 showing the two tracks of a variable x thatoccurs positively in three clauses and negatively in one clause. The entry-vertices(resp., exit-vertices) are drawn on the top (resp., bottom) part of each gadget.10Here a simple cycle is a strongly connected directed graph in which each vertex has a singleincoming (resp., outgoing) edge. In particular, self-loops are allowed.

228 CHAPTER 6. RANDOMNESS AND COUNTING

On the left is a gadget with the track edges adjacent to it (as in thereal construction). On the right is a gadget and four out of the nineexternal edges (two of which are nice) used in the analysis.Figure 6.2: External edges for the analysis of the clause gadgetFor the purpose of stating the desired properties of the clause gadget, we aug-ment the gadget by nine external edges (of weight 1), one per each pair of (notnecessarily matching) entry and exit vertices such that the edge goes from theexit-vertex to the entry-vertex (see Figure 6.2). (We stress that this is an auxiliaryconstruction that di�ers from and yet is related to the use of gadgets in the forego-ing construction of G�.) The three edges that link the designated pairs of verticesthat correspond to the three literals are called nice. We say that a collection ofedges C (e.g., a collection of cycles in the augmented gadget) uses the external edgesS if the intersection of C with the set of the (nine) external edges equals S. Wepostulate the following three properties of the clause gadget.1. The sum of the weights of all cycle covers (of the gadget) that do not use anyexternal edge (i.e., use the empty set of external edges) equals zero.2. Let V (S) denote the set of vertices incident to S, and say that S is nice if itis non-empty and the vertices in V (S) can be perfectly matched using niceedges.11 Then, there exists a constant c (indeed the one postulated in theproposition's claim) such that, for any nice set S, the sum of the weights ofall cycle covers that use the external edges S equals c.3. For any non-nice set S 6= ; of external edges, the sum of the weights of allcycle covers that use the external edges S equals zero.11Clearly, any non-empty set of nice edges is a nice set. Thus, a singleton set is nice if and onlyif the corresponding edge is nice. On the other hand, any set S of three (vertex-disjoint) externaledges is nice, because V (S) has a perfect matching using all three nice edges. Thus, the notionof nice sets is \non-trivial" only for sets of two edges. Such a set S is nice if and only if V (S)consists of two pairs of corresponding designated vertices.

6.2. COUNTING 229Note that the foregoing three cases exhaust all the possible ones. Also note thatthe set of external edges used by a cycle cover (of the augmented gadget) must bea matching (i.e., these edges must be vertex disjoint).Intuitively, there is a correspondence between nice sets of external edges (ofan augmented gadget) and the pairs of edges on tracks that pass through the(unaugmented) gadget. Indeed, we now turn back to G�, which uses unaugmentedgadgets. Using the foregoing properties of the (augmented) gadgets, it can beshown that each satisfying assignment of � contributes exactly cm to the SWCCof G� (see Exercise 6.26). It follows that the SWCC of G� equals cm �#R3SAT(�).Having established the validity of the abstract reduction, we turn to the imple-mentation of the clause gadget. The �rst implementation is a Deus ex Machina,with a corresponding adjacency matrix depicted in Figure 6.3. Its validity (for thevalue c = 12) can be veri�ed by computing the permanent of the correspondingsub-matrices (see analogous analysis in Exercise 6.28).The gadget uses eight vertices, where the �rst six are the designated(entry and exit) vertices. The entry-vertex (resp., exit-vertex) associ-ated with the ith literal is numbered i (resp., i+3). The correspondingadjacency matrix follows.0BBBBBBBBBB@
1 0 0 2 0 0 0 00 1 0 0 3 0 0 00 0 0 0 0 1 0 00 0 �1 1 �1 0 1 10 0 �1 �1 2 0 1 10 0 0 �1 �1 0 1 10 0 1 1 1 0 2 �10 0 1 1 1 0 0 1

1CCCCCCCCCCANote that the edge 3 ! 6 can be contracted, but the resulting 7-vertex graph will not be consistent with our (inessentially stringent)de�nition of a gadget by which the six designated vertices should bedistinct.Figure 6.3: A Deus ex Machina clause gadget for the reduction to cycle cover.A more structured implementation of the clause gadget is depicted in Figure 6.4,which refers to a (hexagon) box to be implemented later. The box contains severalvertices and weighted edges, but only two of these vertices, called terminals, areconnected to the outside (and are shown in Figure 6.4). The clause gadget consistsof �ve copies of this box, where three copies are designated for the three literalsof the clause (and are marked LB1, LB2, and LB3), as well as additional verticesand edges shown in Figure 6.4. In particular, the clause gadget contains the sixaforementioned designated vertices (i.e., a pair of entry and exit vertices per eachliteral), two additional vertices (shown at the two extremes of the �gure), and some

230 CHAPTER 6. RANDOMNESS AND COUNTINGedges (all having weight 1). Each designated vertex has a self-loop, and is incidentto a single additional edge that is outgoing (resp., incoming) in case the vertexis an entry-vertex (resp., exit-vertex) of the gadget. The two terminals of eachbox that is associated with some literal are connected to the corresponding pairof designated vertices (e.g., the outgoing edge of entry1 is incident at the rightterminal of the box LB1). Note that the �ve boxes reside on a directed path (goingfrom left to right), and the only edges going in the opposite direction are thosedrawn below this path.
entry1 entry2 entry3

exit1 exit2 exit3

LB1 LB2 LB3

Figure 6.4: A structured clause gadget for the reduction to cycle cover.
On the left is a box with potential edges adjacent to it (as in thegadget construction). On the right is a box and the four externaledges used in the analysis.Figure 6.5: External edges for the analysis of the boxIn continuation to the foregoing, we wish to state the desired properties of thebox. Again, we do so by considering the augmentation of the box by external edges(of weight 1) incident at the speci�ed vertices. In this case (see Figure 6.5), wehave a pair of anti-parallel edges connecting the two terminals of the box as well as

6.2. COUNTING 231two self-loops (one on each terminal). We postulate the following three propertiesof the box.1. The sum of the weights of all cycle covers (of the box) that do not use anyexternal edge equals zero.2. There exists a constant b (in our case b = 4) such that, for each of the twoanti-parallel edges, the sum of the weights of all cycle covers that use thisedge equals b.3. For any (non-empty) set S of the self-loops, the sum of the weights of allcycle covers (of the box) that use S equals zero.Note that the foregoing three cases exhaust all the possible ones. It can be shownthat the conditions regarding the box imply that the construction presented inFigure 6.4 satis�es the conditions that were postulated for the clause gadget (seeExercise 6.27). Speci�cally, we have c = b5. As for box itself, a smaller Deus exMachina is provided by the following 4-by-4 adjacency matrix0BB@ 0 1 �1 �11 �1 1 10 1 1 20 1 3 0 1CCA (6.4)where the two terminals correspond to the �rst and the fourth vertices. Its va-lidity (for the value b = 4) can be veri�ed by computing the permanent of thecorresponding sub-matrices (see Exercise 6.28).Proof of Proposition 6.22: The proof proceeds in two steps. In the �rststep we show that computing the permanent of integer matrices is reducible tocomputing the permanent of non-negative matrices. This reduction proceeds asfollows. For an n-by-n integer matrix A = (ai;j)i;j2[n], let kAk1 = maxi;j(jai;j j)and QA = 2(n!) � kAkn1+1. We note that, given A, the value QA can be computedin polynomial-time, and in particular log2QA < n2 log kAk1. Given the matrix A,the reduction constructs the non-negative matrix A0 = (ai;j mod QA)i;j2[n] (i.e.,the entries of A0 are in f0; 1; :::; QA � 1g), queries the oracle for the permanent ofA0, and outputs v def= perm(A0) mod QA if v < QA=2 and �(QA � v) otherwise.The key observation is thatperm(A) � perm(A0) (mod QA), while jperm(A)j � (n!) � kAkn1 < QA=2.Thus, perm(A0) mod QA (which is in f0; 1; :::; QA � 1g) determines perm(A). Wenote that perm(A0) is likely to be much larger than QA > jperm(A)j; it is merelythat perm(A0) and perm(A) are equivalent modulo QA.In the second step we show that computing the permanent of non-negativematrices is reducible to computing the permanent of 0/1-matrices. In this reduc-tion, we view the computation of the permanent as the computation of the sumof the weights of all the cycle covers (SWCC) of the corresponding weighted di-rected graph (see proof of Proposition 6.21). Thus, we reduce the computation of

232 CHAPTER 6. RANDOMNESS AND COUNTINGthe SWCC of directed graphs with non-negative weights to the computation of theSWCC of unweighted directed graphs with no parallel edges (which correspond to0/1-matrices). The reduction is via local replacements that preserve the value ofthe SWCC. These local replacements combine the following two local replacements(which preserve the SWCC):1. Replacing an edge of weight w = Qti=1 wi by a path of length t (i.e., t � 1internal nodes) with the corresponding weights w1; :::; wt, and self-loops (withweight 1) on all internal nodes.Note that a cycle-cover that uses the original edge corresponds to a cycle-cover that uses the entire path, whereas a cycle-cover that does not use theoriginal edge corresponds to a cycle-cover that uses all the self-loops.2. Replacing an edge of weight w =Pti=1 wi by t parallel 2-edge paths such thatthe �rst edge on the ith path has weight wi, the second edge has weight 1,and the intermediate node has a self-loop (with weight 1). (Paths of lengthtwo are used because parallel edges are not allowed.)Note that a cycle-cover that uses the original edge corresponds to a collectionof cycle-covers that use one out of the t paths (and the self-loops of all otherintermediate nodes), whereas a cycle-cover that does not use the original edgecorresponds to a cycle-cover that uses all the self-loops.In particular, we may write each positive edge-weight w, having binary expansion�jwj�1 � � ��0, as Pi:�i=1(1 + 1)i, and apply the adequate replacements (i.e., �rstapply the additive replacement to the outer sum (over fi : �i=1g), next apply theproduct replacement to each power 2i, and �nally apply the additive replacementto each 1+1). Applying this process to the matrix A0 obtained in the �rst step, wee�ciently obtain a matrix A00 with 0/1-entries such that perm(A0) = perm(A00). (Inparticular, the dimension of A00 is polynomial in the length of the binary represen-tation of A0, which in turn is polynomial in the length of the binary representationof A.) Combining the two reductions (steps), the proposition follows.6.2.2 Approximate CountingHaving seen that exact counting (for relations in PC) seems even harder thansolving the corresponding search problems, we turn to relaxations of the countingproblem. Before focusing on relative approximation, we briey consider approxi-mation with (large) additive deviation.Let us consider the counting problem associated with an arbitrary R 2 PC.Without loss of generality, we assume that all solutions to n-bit instances have thesame length `(n), where indeed ` is a polynomial. We �rst note that, while it maybe hard to compute #R, given x it is easy to approximate #R(x) up to an additiveerror of 0:01 �2`(jxj) (by randomly sampling potential solutions for x). Indeed, suchan approximation is very rough, but it is not trivial (and in fact we do not know howto obtain it deterministically). In general, we can e�ciently produce at randoman estimate of #R(x) that, with high probability, deviates from the correct value

6.2. COUNTING 233by at most an additive term that is related to the absolute upper-bound on thenumber of solutions (i.e., 2`(jxj)).Proposition 6.23 (approximation with large additive deviation): Let R 2 PCand ` be a polynomial such that R � [n2Nf0; 1gn � f0; 1g`(n). Then, for everypolynomial p, there exists a probabilistic polynomial-time algorithm A such that forevery x 2 f0; 1g� and � 2 (0; 1) it holds thatPr[jA(x; �)�#R(x)j > (1=p(jxj)) � 2`(jxj)] < �: (6.5)As usual, � is presented to A in binary, and hence the running time of A(x; �) isupper-bounded by poly(jxj � log(1=�)).Proof Sketch: On input x and �, algorithm A sets t = �(p(jxj)2 � log(1=�)), selectsuniformly y1; :::; yt and outputs 2`(jxj) � jfi : (x; yi) 2 Rgj=t.Discussion. Proposition 6.23 is meaningful in the case that #R(x) > (1=p(jxj)) �2`(jxj) holds for some x's. But otherwise, a trivial approximation (i.e., outputtingthe constant value zero) meets the bound of Eq. (6.5). In contrast to this no-tion of additive approximation, a relative factor approximation is typically moremeaningful. Speci�cally, we will be interested in approximating #R(x) up-to aconstant factor (or some other reasonable factor). In x6.2.2.1, we consider a natu-ral #P-complete problem for which such a relative approximation can be obtainedin probabilistic polynomial-time. We do not expect this to happen for every count-ing problem in #P , because a relative approximation allows for distinguishinginstances having no solution from instances that do have solutions (i.e.,, decidingmembership in SR is reducible to a relative approximation of #R). Thus, rela-tive approximation for all #P is at least as hard as deciding all problems in NP .However, in x6.2.2.2 we show that the former is not harder than the latter; that is,relative approximation for any problem in #P can be obtained by a randomizedCook-reduction to NP . Before turning to these results, let us state the underlyingde�nition (and actually strengthen it by requiring approximation to within a factorof 1� ", for " 2 (0; 1)).12De�nition 6.24 (approximation with relative deviation): Let f : f0; 1g� ! Nand "; � : N ! [0; 1]. A randomized process � is called an ("; �)-approximator of fif for every x it holds thatPr [j�(x) � f(x)j > "(jxj) � f(x)] < �(jxj): (6.6)We say that f is e�ciently (1 � ")-approximable (or just (1 � ")-approximable) ifthere exists a probabilistic polynomial-time algorithm A that constitute an ("; 1=3)-approximator of f .12We refrain from formally de�ning an F -factor approximation, for an arbitrary F , althoughwe shall refer to this notion in several informal discussions. There are several ways of de�ning theaforementioned term (and they are all equivalent when applied to our informal discussions). Forexample, an F -factor approximation of #Rmay mean that, with high probability, the output A(x)satis�es #R(x)=F (jxj) � A(x) � F (jxj) � #R(x). Alternatively, we may require that #R(x) �A(x) � F (jxj) �#R(x) (or, alternatively, that #R(x)=F (jxj) � A(x) � #R(x).

234 CHAPTER 6. RANDOMNESS AND COUNTINGThe error probability of the latter algorithm A (which has error probability 1=3)can be reduced to � by O(log(1=�)) repetitions (see Exercise 6.29). Typically, therunning time of A will be polynomial in 1=", and " is called the deviation parameter.6.2.2.1 Relative approximation for #RdnfIn this subsection we present a natural #P-complete problem for which constantfactor approximation can be found in probabilistic polynomial-time. Stronger re-sults regarding unnatural #P-complete problems appear in Exercise 6.30.Consider the relation Rdnf consisting of pairs (�; �) such that � is a DNFformula and � is an assignment satisfying it. Recall that the search problem ofRdnf is easy to solve and that the proof of Theorem 6.19 establishes that #Rdnfis #P-complete (via a non-parsimonious reduction). Still, as we shall see, thereexists a probabilistic polynomial-time algorithm that provides a constant factorapproximation of #Rdnf. We warn that the fact that #Rdnf is #P-completevia a non-parsimonious reduction means that the constant factor approximationfor #Rdnf does not seem to imply a similar approximation for all problems in#P . In fact, we should not expect each problem in #P to have a (probabilistic)polynomial-time constant-factor approximation algorithm because this would implyNP � BPP (since a constant factor approximation allows for distinguishing thecase in which the instance has no solution from the case in which the instance hasa solution).The approximation algorithm for #Rdnf is obtained by a deterministic re-duction of the task of ("; 1=3)-approximating #Rdnf to an (additive deviation)approximation of the type provided in Proposition 6.23. Consider a DNF formula� = Wmi=1 Ci, where each Ci : f0; 1gn ! f0; 1g is a conjunction. Our task is to ap-proximate the number of assignments that satisfy at least one of the conjunctions.Actually, we will deal with the more general problem in which we are (implicitly)given m subsets S1; :::; Sm � f0; 1gn and wish to approximate jSi Sij. In our case,each Si is the set of assignments that satisfy the conjunction Ci. In general, wemake two computational assumptions regarding these sets (while letting \e�cient"mean implementable in time polynomial in n �m):1. Given i 2 [m], one can e�ciently determine jSij.2. Given i 2 [m] and J � [m], one can e�ciently approximate Prs2Si hs 2 Sj2J Sjiup to an additive deviation of 1=poly(n+m).These assumptions are satis�ed in our setting (where Si = C�1i (1), see Exer-cise 6.31). Now, the key observation towards approximating jSmi=1 Sij is that����� m[i=1Si����� = mXi=1 ������Si n[j<iSj������ = mXi=1 Prs2Si24s 62 [j<iSj35 � jSij (6.7)

6.2. COUNTING 235and that the probabilities in Eq. (6.7) can be approximated by the second assump-tion. This leads to the following algorithm, where " denotes the desired deviationparameter (i.e., we wish to obtain (1� ") � jSmi=1 Sij).Construction 6.25 Let "0 = "=m. For i = 1 to m do:1. Using the �rst assumption, compute jSij.2. Using the second assumption, obtain an approximation epi = pi � "0, wherepi def= Prs2Si [s 62 Sj<i Sj]. Set ai def= epi � jSij.Output the sum of the ai's.Let Ni = pi � jSij, and note that by Eq. (6.7) it holds that jSi Sij =PiNi. We areinterested in the quality of the approximation to PiNi provided by Pi ai. Usingai = (pi� "0) � jSij = Ni� "0 � jSij (for each i), we havePi ai =PiNi� "0 �Pi jSij.UsingPi jSij � m�jSi Sij = m�PiNi (and " = m"0), we getPi ai = (1�")�PiNi.Thus, we obtain the following result (see Exercise 6.31).Proposition 6.26 For every positive polynomial p, the counting problem of Rdnfis e�ciently (1� (1=p))-approximable.Using the reduction presented in the proof of Theorem 6.19, we conclude that thenumber of unsatisfying assignments to a given CNF formula is e�ciently (1�(1=p))-approximable. We warn, however, that the number of satisfying assignments tosuch a formula is not e�ciently approximable. This concurs with the generalphenomenon by which relative approximation may be possible for one quantity, butnot for the complementary quantity. Needless to say, such a phenomenon does notoccur in the context of additive-deviation approximation.6.2.2.2 Relative approximation for #PRecall that we cannot expect to e�ciently approximate every #P problem, wherethroughout the rest of this section \approximation" is used as a shorthand for \rel-ative approximation" (as in De�nition 6.24). Speci�cally, e�ciently approximating#R yields an e�cient algorithm for deciding membership in SR = fx : R(x) 6=;g.Thus, at best we can hope that approximating #R is not harder than deciding SR(i.e., that approximating #R is reducible in polynomial-time to SR). This is indeedthe case for every NP-complete problem (i.e., if SR is NP-complete). More gener-ally, we show that approximating any problem in #P is reducible in probabilisticpolynomial-time to NP.Theorem 6.27 For every R 2 PC and every positive polynomial p, there exists aprobabilistic polynomial-time oracle machine that when given oracle access to NPconstitutes a (1=p; �)-approximator of #R, where � is a negligible function (e.g.,�(n) = 2�n).

236 CHAPTER 6. RANDOMNESS AND COUNTINGRecall that it su�ces to provide a (1=p; �)-approximator of #R, for any constant� < 0:5, because error reduction is applicable in this context (see Exercise 6.29).Furthermore, it su�ces to provide a (1=2; �)-approximator for every problem in#P (see Exercise 6.32).Teaching note: The following proof relies on the notion of hashing functions, presentedin Appendix D.2. Speci�cally, we shall assume familiarity with the basic de�nition (seeAppendix D.2.1), at least one construction (see Appendix D.2.2), and Lemma D.4(of Appendix D.2.3). The more advanced material of Appendix D.2.3 (which followsLemma D.4) will not be used in the current section (but part of it will be used inx6.2.4.2).Proof: Given x, we show how to approximate jR(x)j to within some constantfactor. The desired (1� (1=p))-approximation can be obtained as in Exercise 6.32.We may also assume that R(x) 6= ;, by starting with the query \is x in SR"and halting (with output 0) if the answer is negative. Without loss of generality,we assume that R(x) � f0; 1g`, where ` = poly(jxj). We focus on �nding somei 2 f1; :::; `g such that 2i�4 � jR(x)j � 2i+4.We proceed in iterations. For i = 1; :::; ` + 1, we �nd out whether or notjR(x)j < 2i. If the answer is positive then we halt with output 2i, and otherwisewe proceed to the next iteration. (Indeed, if we were able to obtain correct answersto all these queries then the output 2i would satisfy 2i�1 � jR(x)j < 2i.)Needless to say, the key issue is how to check whether jR(x)j < 2i. The mainidea is to use a \random sieve" on the set R(x) such that each element passes thesieve with probability 2�i. Thus, we expect jR(x)j=2i elements of R(x) to passthe sieve. Assuming that the number of elements in R(x) that pass the randomsieve is indeed bjR(x)j=2ic, it holds that jR(x)j � 2i if and only if some element ofR(x) passes the sieve. Assuming that the sieve can be implemented e�ciently, thequestion of whether or not some element in R(x) passed the sieve is of an \NP-type" (and thus can be referred to our NP-oracle). Combining both assumptions,we may implement the foregoing process by proceeding to the next iteration aslong as some element of R(x) passes the sieve. Furthermore, this implementationwill provide a reasonably good approximation even if the number of elements inR(x) that pass the random sieve is only approximately equal to jR(x)j=2i. In fact,the level of approximation that this implementation provides is closely related tothe level of approximation that is provided by the random sieve. Details follow.Implementing a random sieve. The random sieve is implemented by using a familyof hashing functions (see Appendix D.2). Speci�cally, in the ith iteration we use afamily H ì such that each h 2 H ì has a poly(`)-bit long description and maps `-bitlong strings to i-bit long strings. Furthermore, the family is accompanied withan e�cient evaluation algorithm (i.e., mapping adequate pairs (h; x) to h(x)) andsatis�es (for every S � f0; 1g`)Prh2H ì [jfy 2 S : h(y) = 0igj 62 (1� "; 1 + ") � 2�ijSj] < 2i"2jSj (6.8)

6.2. COUNTING 237(see Lemma D.4). The random sieve will let y pass if and only if h(y) = 0i. Indeed,this random sieve is not as perfect as we assumed in the foregoing discussion, butEq. (6.8) suggests that in some sense this sieve is good enough. In particular,Eq. (6.8) implies that if i � log2 jSj � O(1) then some string in S is likely to passthe sieve, whereas if i � log2 jSj + O(1) then no string in S is likely to pass thesieve.Implementing the queries. Recall that for some x, i and h 2 H ì, we need to de-termine whether fy2R(x) : h(y)= 0ig = ;. This type of question can be cast asmembership in the setSR;H def= f(x; i; h) : 9y s.t. (x; y)2R ^ h(y)=0ig: (6.9)Using the hypotheses that R 2 PC and that the family of hashing functions has ane�cient evaluation algorithm, it follows that SR;H is in NP .The actual procedure. On input x 2 SR and oracle access to SR;H , we proceed initerations, starting with i = 1 and halting at i = ` (if not before), where ` denotesthe length of the potential solutions for x. In the ith iteration (where i < `), weuniformly select h 2 H ì and query the oracle on whether or not (x; i; h) 2 SR;H .If the answer is negative then we halt with output 2i, and otherwise we proceed tothe next iteration (using i i+ 1). Needless to say, if we reach the last iteration(i.e., i = `) then we just halt with output 2`.Indeed, we have ignored the case that x 62 SR, which can be easily handled bya minor modi�cation of the foregoing procedure. Speci�cally, on input x, we �rstquery SR on x and halt with output 0 if the answer is negative. Otherwise weproceed as in the foregoing procedure.The analysis. We upper-bound separately the probability that the procedure out-puts a value that is too small and the probability that it outputs a value that istoo big. In light of the foregoing discussion, we may assume that jR(x)j > 0, andlet ix = blog2 jR(x)jc � 0. Intuitively, at any iteration i < ix, we expect (at least)2ix�i elements of R(x) to pass the sieve and thus we are unlikely to halt beforeiteration ix �O(1). Similarly, we are unlikely to reach iteration ix +O(1) becauseat this stage we expect no elements of R(x) to pass the sieve (since the actualexpectation is 2�O(1)). A more rigorous analysis (of both cases) follows.1. The probability that the procedure halts in a speci�c iteration i < ix equalsPrh2H ì [jfy 2 R(x) : h(y) = 0igj = 0], which in turn is upper-bounded by2i=jR(x)j (using Eq. (6.8) with " = 1).13 Thus, the probability that theprocedure halts before iteration ix� 3 is upper-bounded byPix�4i=0 2i=jR(x)j,which in turn is less than 1=8 (because ix � log2 jR(x)j). It follows that, withprobability at least 7=8, the output is at least 2ix�3 > jR(x)j=16 (becauseix > (log2 jR(x)j) � 1).2. The probability that the procedure does not halt in iteration i > ix equalsPrh2H ì [jfy 2 R(x) : h(y) = 0igj � 1], which in turn is upper-bounded by13Note that 0 does not reside in the open interval (0; 2�), where � = jR(x)j=2i > 0.

238 CHAPTER 6. RANDOMNESS AND COUNTING�=(� � 1)2, where � = 2i=jR(x)j > 1 (using Eq. (6.8) with " = � � 1).14Thus, the probability that the procedure does not halt by iteration ix + 4 isupper-bounded by 8=49 < 1=6 (because ix > (log2 jR(x)j) � 1). Thus, withprobability at least 5=6, the output is at most 2ix+4 � 16 � jR(x)j (becauseix � log2 jR(x)j).Thus, with probability at least (7=8)�(1=6) > 2=3, the foregoing procedure outputsa value v such that v=16 � jR(x)j < 16v. Reducing the deviation by using the ideaspresented in Exercise 6.32 (and reducing the error probability as in Exercise 6.29),the theorem follows.Digest. The key observation underlying the proof Theorem 6.27 is that, while(even with the help of an NP-oracle) we cannot directly test whether the numberof solutions is greater than a given number, we can test (with the help of an NP-oracle) whether the number of solutions that \survive a random sieve" is greaterthan zero. Since the number of solutions that survive a random sieve reects thetotal number of solutions (normalized by the sieve's density), this o�ers a way ofapproximating the total number of solutions.We mention that one can also test whether the number of solutions that \sur-vive a random sieve" is greater than a small number, where small means polynomialin the length of the input (see Exercise 6.34). Speci�cally, the complexity of thistest is linear in the size of the threshold, and not in the length of its binary de-scription. Indeed, in many settings it is more advantageous to use a threshold thatis polynomial in some e�ciency parameter (rather than using the threshold zero);examples appear in x6.2.4.2 and in [103].6.2.3 Searching for unique solutionsA natural computational problem (regarding search problems), which arises whendiscussing the number of solutions, is the problem of distinguishing instances havinga single solution from instances having no solution (or �nding the unique solutionwhenever such exists). We mention that instances having a single solution facilitatenumerous arguments (see, for example, Exercise 6.24 and x10.2.2.1). Formally,searching for and deciding the existence of unique solutions are de�ned within theframework of promise problems (see Section 2.4.1).De�nition 6.28 (search and decision problems for unique solution instances):The set of instances having unique solutions with respect to the binary relation Ris de�ned as USR def= fx : jR(x)j = 1g, where R(x) def= fy : (x; y)2Rg. As usual, wedenote SR = fx : jR(x)j � 1g, and SR def= f0; 1g� n SR = fx : jR(x)j = 0g.14Here we use the fact that 1 62 (2��1 � 1; 1). A better bound can be obtained by using thehypothesis that, for every y, when h is uniformly selected in H ì, the value of h(y) is uniformlydistributed in f0; 1gi. In this case, Prh2H ì [jfy 2 R(x) : h(y) = 0igj � 1] is upper-bounded byEh2H ì [jfy 2 R(x) : h(y) = 0igj] = jR(x)j=2i.

6.2. COUNTING 239� The problem of �nding unique solutions for R is de�ned as the search problemR with promise USR [SR (see De�nition 2.29).In continuation to De�nition 2.30, candid searching for unique solutions for Ris de�ned as the search problem R with promise USR.� The problem of deciding unique solution for R is de�ned as the promise problem(USR; SR) (see De�nition 2.31).Interestingly, in many natural cases, the promise does not make any of these prob-lems any easier than the original problem. That is, for all known NP-completeproblems, the original problem is reducible in probabilistic polynomial-time to thecorresponding unique instances problem.Theorem 6.29 Let R 2 PC and suppose that every search problem in PC is par-simoniously reducible to R. Then solving the search problem of R (resp., decidingmembership in SR) is reducible in probabilistic polynomial-time to �nding uniquesolutions for R (resp., to the promise problem (USR; SR)). Furthermore, thereexists a probabilistic polynomial-time computable mapping M such that for everyx 2 SR it holds that Pr[M(x) 2 SR] = 1, whereas for every x 2 SR it holds thatPr[M(x)2USR] � 1=poly(jxj).We highlight the fact that the hypothesis asserts that R is PC-complete via parsi-monious reductions; this hypothesis is crucial to Theorem 6.29 (see Exercise 6.35).The large (but bounded-away from 1) error probability of the randomized Karp-reduction M can be reduced by repetitions, yielding a randomized Cook-reductionwith exponentially vanishing error probability. Note that the resulting reductionmay make many queries that violate the promise, and still yields the correct answer(with high probability) by relying on queries that satisfy the promise. (Speci�cally,in the case of search problems, we avoid wrong solutions by checking each solutionobtained, while in the case of decision problems we rely on the fact that for everyx 2 SR it always holds that M(x) 2 SR.)Proof: We focus on establishing the furthermore clause (and the main claimfollows). The proof uses many of the ideas of the proof of Theorem 6.27, and werefer to the latter for motivation. We shall again make essential use of hashingfunctions, and rely on the material presented in Appendix D.2.1{D.2.2.As in the proof of Theorem 6.27, the idea is to apply a \random sieve" on R(x),this time with the hope that a single element survives. Speci�cally, if we let eachelement pass the sieve with probability approximately 1=jR(x)j then with constantprobability a single element survives. In such a case, we shall obtain an instancewith a unique solution (i.e., an instance of SR;H having a single NP-witness), whichwill (essentially) ful�ll our quest. Sieving will be performed by a random functionselected in an adequate hashing family (see Appendix D.2). A couple of questionsarise:1. How do we get an approximation to jR(x)j? Note that we need such an ap-proximation in order to determine the adequate hashing family. Note that

240 CHAPTER 6. RANDOMNESS AND COUNTINGinvoking Theorem 6.27 will not do, because the said oracle machine uses anoracle to NP (which puts us back to square one, let alone that the said reduc-tion makes many queries).15 Instead, we just selectm 2 f0; :::; poly(jxj)g uni-formly and note that (if jR(x)j > 0 then) Pr[m = dlog2 jR(x)je] = 1=poly(jxj).Next, we randomly map x to (x;m; h), where h is uniformly selected in anadequate hashing family.2. How does the question of whether a single element of R(x) pass the randomsieve translate to an instance of the unique-solution problem for R? Recallthat in the proof of Theorem 6.27 the non-emptiness of the set of element ofR(x) that pass the sieve (de�ned by h) was determined by checking mem-bership (of (x;m; h)) in SR;H 2 NP (de�ned in Eq. (6.9)). Furthermore, thenumber of NP-witnesses for (x;m; h) 2 SR;H equals the number of elementsof R(x) that pass the sieve. Thus, a single element of R(x) passes the sieve(de�ned by h) if and only if (x;m; h) 2 SR;H has a single NP-witness. Us-ing the parsimonious reduction of SR;H to SR (which is guaranteed by thetheorem's hypothesis), we obtained the desired instance.Note that in case R(x) = ; the aforementioned mapping always generates a no-instance (of SR;H and thus of SR). Details follow.Implementation (i.e., the mapping M). As in the proof of Theorem 6.27, we as-sume, without loss of generality, that R(x) � f0; 1g`, where ` = poly(jxj). Westart by uniformly selecting m 2 f1; :::; ` + 1g and h 2 Hm̀, where Hm̀ is afamily of e�ciently computable and pairwise-independent hashing functions (seeDe�nition D.1) mapping `-bit long strings to m-bit long strings. Thus, we ob-tain an instance (x;m; h) of SR;H 2 NP such that the set of valid solutions for(x;m; h) equals fy 2 R(x) : h(y) = 0mg. Using the parsimonious reduction g ofthe NP-witness relation of SR;H to R (i.e., the NP-witness relation of SR), wemap (x;m; h) to g(x;m; h), and it holds that jfy 2 R(x) : h(y) = 0mgj equalsjR(g(x;m; h))j. To summarize, on input x the randomized mapping M outputsthe instance M(x) def= g(x;m; h), where m 2 f1; :::; ` + 1g and h 2 Hm̀ are uni-formly selected.The analysis. Note that for any x 2 SR it holds that Pr[M(x) 2 SR] = 1. Assumingthat x 2 SR, with probability exactly 1=(` + 1) it holds that m = mx, wheremx def= dlog2 jR(x)je + 1. Focusing on the case that m = mx, for a uniformlyselected h 2 Hm̀, we shall lower-bound the probability that the set Rh(x) def= fy2R(x) : h(y)=0mg is a singleton. First, using the Inclusion-Exclusion Principle, welower-bound Prh2Hmx` [jRh(x)j > 0] byXy2R(x)Prh2Hmx` [h(y)=0mx] � Xy1<y22R(x)Prh2Hmx` [h(y1)=h(y2)=0mx]:15Needless to say, both problems can be resolved by using a reduction to unique-solution in-stances, but we still do not have such a reduction { we are currently designing it.

6.2. COUNTING 241Next, we upper-bound Prh2Hmx` [jRh(x)j > 1] byXy1<y22R(x)Prh2Hmx` [h(y1)=h(y2)=0mx]:Combining these two bounds, we getPrh2Hmx` [jRh(x)j = 1]= Prh2Hmx` [jRh(x)j > 0] � Prh2Hmx` [jRh(x)j > 1]� Xy2R(x)Prh2Hmx` [h(y)=0mx] � 2 � Xy1<y22R(x)Prh2Hmx` [h(y1)=h(y2)=0mx]= jR(x)j � 2�mx � 2 � �jR(x)j2 � � 2�2mxwhere the last equality is due to the pairwise independence property. Using2mx�2 < jR(x)j � 2mx�1, it follows thatPrh2Hmx` [jRh(x)j = 1] � min1=4<��1=2f�� �2g > 18 :Thus, Pr[M(x) 2 USR] � 1=(8(`+ 1)), and the theorem follows.Comment. Theorem 6.29 is sometimes stated as referring to the unique solutionproblem of SAT. In this case and when using a speci�c family of pairwise indepen-dent hashing functions, the use of the parsimonious reduction can be avoided. Fordetails see Exercise 6.37.Digest. The proof of Theorem 6.29 combines two reduction steps, which referto the NP-witness relation of SR;H , herein denoted R0. The main step is a many-to-one randomized reduction of the search problem of R (resp., of SR) to theproblem of �nding unique solutions for R0 (resp., to (USR0 ; SR0)). The second stepis a deterministic many-to-one reduction of the latter problem to the problem of�nding unique solutions for R. Indeed, the proof of Theorem 6.29 focuses on the�rst step, while the second step is provided by the parsimonious reduction of R0 toR (which is guaranteed by the hypothesis). As stated in the previous comment, inthe case of SAT there is a direct way of performing the second step.6.2.4 Uniform generation of solutionsRecall that approximately counting the number of solutions for a relation R is astraining of the decision problem SR (which asks for distinguishing the case thatsome solutions exist from the case that no solutions exist). We now turn to anew type of computational problems, which may be viewed as a straining of searchproblems. We refer to the task of generating a uniformly distributed solution for agiven instance, rather than merely �nding an adequate solution. Nevertheless, as

242 CHAPTER 6. RANDOMNESS AND COUNTINGwe shall see, for many natural problems (and all NP-complete ones) generating auniformly distributed solution is randomly reducible to �nding a solution.Needless to say, by de�nition, algorithms solving this (\uniform generation")task must be randomized. Focusing on relations in PC we consider two versionsof the problem, which di�er by the level of approximation provided for the desired(uniform) distribution.16De�nition 6.30 (uniform generation): Let R 2 PC and SR = fx : jR(x)j � 1g,and let � be a probabilistic process.1. We say that � solves the uniform generation problem of R if, on input x 2 SR,the process � outputs either an element of R(x) or a special symbol, denoted?, such that Pr[�(x) 2 R(x)] � 1=2 and for every y 2 R(x) it holds thatPr[�(x)=y j�(x)2R(x)] = 1=jR(x)j.2. For " : N ! [0; 1], we say that � solves the (1 � ")-approximate uniformgeneration problem of R if, on input x 2 SR, the distribution �(x) is "(jxj)-close17 to the uniform distribution on R(x).In both cases, without loss of generality, we may require that if x 62 SR thenPr[�(x) = ?] = 1. More generally, we may require that � never outputs a stringnot in R(x).Note that the error probability of uniform generation (as in Item 1) can be madeexponentially vanishing (in jxj) by employing error-reduction. In contrast, we arenot aware of any general way of reducing the deviation of an approximate uniformgeneration procedure (as in Item 2).18In x6.2.4.1 we show that, for many search problems, approximate uniform gener-ation is computationally equivalent to approximate counting. In x6.2.4.2 we presenta direct approach for solving the uniform generation problem of any search prob-lem in PC by using an oracle to NP . Thus, the uniform generation problem ofany NP-complete problem is randomly reducible to the problem itself (either in itssearch or decision version).6.2.4.1 Relation to approximate countingWe show that, for many natural search problems in PC, the approximate countingproblem associated with R is computationally equivalent to approximate uniformgeneration with respect to R. Speci�cally, we refer to search problems R 2 PCsuch that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is strongly parsimoniously reducible toR, where a strongly parsimonious reduction of R0 to R is a parsimonious reduction g16Note that a probabilistic algorithm running in strict polynomial-time is not able to output aperfectly uniform distribution on sets of certain sizes. Speci�cally, referring to the standard modelthat allows only for uniformly selected binary values, such algorithms cannot output a perfectlyuniform distribution on sets having cardinality that is not a power of two.17See Appendix D.1.1.18We note that in some cases, the deviation of an approximate uniform generation procedurecan be reduced. See discussion following Theorem 6.31.

6.2. COUNTING 243that is coupled with an e�ciently computable 1-1 mapping of pairs (g(x); y) 2 R topairs (x; h(x; y)) 2 R0 (i.e., h is e�ciently computable and h(x; �) is a 1-1 mappingof R(g(x)) to R0(x)). For technical reasons, we also assume that jg(x)j � jxj forevery x.19 Note that, for many natural search problems R, the corresponding R0is strongly parsimoniously reducible to R, where the additional technical conditionmay be enforced by adequate padding (cf., Exercise 2.30). This holds, in particular,for the search problems of SAT and Perfect Matching.Recalling that both types of approximation problems are parameterized by thelevel of precision, we obtain the following quantitative form of the aforementionedequivalence.Theorem 6.31 Let R 2 PC and let ` be a polynomial such that for every (x; y)2Rit holds that jyj � `(jxj). Suppose that R0 is strongly parsimoniously reducible toR, where R0(x; y0) def= fy00 : (x; y0y00) 2 Rg.1. From approximate counting to approximate uniform generation: Let "(n) =1=5`(n) and let � :N! (0; 1) be a function satisfying �(n) � exp(�poly(n)).Then, (1 � �)-approximate uniform generation for R is reducible in proba-bilistic polynomial-time to (1� ")-approximating #R.2. From approximate uniform generation to approximate counting: For everynon-increasing and noticeable " : N ! (0; 1) (i.e., "(n) � 1=poly(n) for ev-ery n), the problem of (1� ")-approximating #R is reducible in probabilisticpolynomial-time to (1 � "0)-approximate uniform generation problem of R,where "0(n) = "(n)=7`(n).In fact, Part 1 holds also in case R0 is just parsimoniously reducible to R.Note that the quality of the approximate uniform generation asserted in Part 1(i.e., �) is independent of the quality of the approximate counting procedure (i.e.,") to which the former is reduced, provided that the approximate counter performsbetter than some threshold. On the other hand, the quality of the approximatecounting asserted in Part 2 (i.e., ") does depend on the quality of the approximateuniform generation (i.e., "0), but cannot reach beyond a certain bound (i.e., no-ticeable relative deviation). Recall, that for problems that are NP-complete underparsimonious reductions the quality of approximate counting procedures can beimproved (see Exercise 6.33). However, Theorem 6.31 is most useful when appliedto problems that are not NP-complete, because for problems that are NP-completeboth approximate counting and uniform generation are randomly reducible to thecorresponding search problem (see Exercise 6.39).Proof: Throughout the proof, we assume for simplicity (and in fact without lossof generality) that R(x) 6= ; and R(x) � f0; 1g`(jxj).Towards Part 1, let us �rst reduce the uniform generation problem of R to#R (rather than to approximating #R). On input x 2 SR, we shall generate19This technical condition allows us to replace deviation bounds expressed in terms of jg(x)j bybounds expressed in terms of jxj, while relying on the fact that "(jg(x)j) � "(jxj) holds for anynon-increasing " :N!(0; 1).

244 CHAPTER 6. RANDOMNESS AND COUNTINGa uniformly distributed y 2 R(x) by randomly generating its bits one after theother. We proceed in iterations, entering the ith iteration with an (i � 1)-bitlong string y0 such that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is not empty. Withprobability jR0(x; y01)j=jR0(x; y0)j we set the ith bit to equal 1, and otherwise weset it to equal 0. We obtain both jR0(x; y01)j and jR0(x; y0)j by using a parsimoniousreduction g of R0 = f((x; y0); y00) : (x; y0y00) 2 Rg 2 PC to R. That is, we obtainjR0(x; y0)j by querying for the value of jR(g(x; y0))j. Ignoring integrality issues, allthis works perfectly (i.e., we generate an `(n)-bit string uniformly distributed inR(x)) as long as we have oracle access to #R. Since we only have oracle accessto an approximation of #R, a careful implementation of the foregoing idea is inplace.Let us denote the approximation oracle by A. Firstly, by adequate error reduc-tion, we may assume that, for every z, it holds that Pr[A(z) 2 (1�"(n)) �#R(z)] >1��0(jzj), where �0(n) = �(n)=`(n). In the rest of the analysis we ignore the proba-bility that the estimate of #R(z) provided by the randomized oracle A (on query z)deviates from the aforementioned interval. (We note that these rare events are theonly source of the possible deviation of the output distribution from the uniformdistribution on R(x).)20 Next, let us assume for a moment that A is deterministicand that for every x and y0 it holds thatA(g(x; y00)) +A(g(x; y01)) � A(g(x; y0)): (6.10)We also assume that the approximation is correct at the \trivial level" (where onemay just check whether or not (x; y) is in R); that is, for every y 2 f0; 1g`(jxj), itholds that A(g(x; y)) = 1 if (x; y) 2 R and A(g(x; y)) = 0 otherwise. (6.11)We modify the ith iteration of the foregoing procedure such that, when enteringwith the (i� 1)-bit long pre�x y0, we set the ith bit to � 2 f0; 1g with probabilityA(g(x; y0�))=A(g(x; y0)) and halt (with output ?) with the residual probability(i.e., 1� (A(g(x; y00))=A(g(x; y0)))� (A(g(x; y01))=A(g(x; y0)))). Indeed, Eq. (6.10)guarantees that the latter instruction is sound, since the two main probabilitiessum-up to at most 1. If we completed the last (i.e., `(jxj)th) iteration, then weoutput the `(jxj)-bit long string that was generated. Thus, as long as Eq. (6.10)holds (but regardless of other aspects of the quality of the approximation), everyy = �1 � � ��`(jxj) 2 R(x), is output with probabilityA(g(x;�1))A(g(x;�)) � A(g(x;�1�2))A(g(x;�1)) � � � A(g(x;�1�2 � � ��`(jxj)))A(g(x;�1�2 � � ��`(jxj)�1)) (6.12)which, by Eq. (6.11), equals 1=A(g(x;�)). Thus, the procedure outputs each ele-ment of R(x) with equal probability, and never outputs a non-? value that is out-side R(x). It follows that the quality of approximation only e�ects the probability20Note that the (negligible) e�ect of these rare events may not be easy to correct. For starters,we do not necessarily get an indication when these rare events occur. Furthermore, these rareevents may occur with di�erent probability in the di�erent invocations of algorithm A (i.e., ondi�erent queries).

6.2. COUNTING 245that the procedure outputs a non-? value (which in turn equals jR(x)j=A(g(x;�))).The key point is that, as long as Eq. (6.11) holds, the speci�c approximate valuesobtained by the procedure are immaterial { with the exception of A(g(x;�)), allthese values \cancel out".We now turn to enforcing Eq. (6.10) and Eq. (6.11). We may enforce Eq. (6.11)by performing the straightforward check (of whether or not (x; y) 2 R) ratherthan invoking A(g(x; y)).21 As for Eq. (6.10), we enforce it arti�cially by usingA0(x; y0) def= (1 + "(jxj))3(`(jxj)�jy0j) � A(g(x; y0)) instead of A(g(x; y0)). Recallingthat A(g(x; y0)) = (1� "(jxj)) � jR0(x; y0)j, we haveA0(x; y0) > (1 + "(jxj))3(`(jxj)�jy0j) � (1� "(jxj)) � jR0(x; y0)jA0(x; y0�) < (1 + "(jxj))3(`(jxj)�jy0j�1) � (1 + "(jxj)) � jR0(x; y0�)jand the claim (that Eq. (6.10) holds) follows by using (1� "(jxj)) � (1 + "(jxj))3 >(1+"(jxj)). Note that the foregoing modi�cation only e�ects the probability of out-putting a non-? value; this good event now occurs with probability jR0(x;�)j=A0(x; �),which is lower-bounded by (1 + "(jxj))�(3`(jxj)+1) > 1=2, where the inequality isdue to the setting of " (i.e., "(n) = 1=5`(n)). Finally, we refer to our assump-tion that A is deterministic. This assumption was only used in order to identifythe value of A(g(x; y0)) obtained and used in the (jy0j � 1)st iteration with thevalue of A(g(x; y0)) obtained and used in the jy0jth iteration. The same e�ect canbe obtained by just re-using the former value (in the jy0jth iteration) rather thanre-invoking A in order to obtain it. Part 1 follows.Towards Part 2, let use �rst reduce the task of approximating #R to thetask of (exact) uniform generation for R. On input x 2 SR, the reduction usesthe tree of possible pre�xes of elements of R(x) in a somewhat di�erent manner.Again, we proceed in iterations, entering the ith iteration with an (i� 1)-bit longstring y0 such that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is not empty. At the ithiteration we estimate the bigger among the two fractions jR0(x; y00)j=jR0(x; y0)jand jR0(x; y01)j=jR0(x; y0)j, by uniformly sampling the uniform distribution overR0(x; y0). That is, taking poly(jxj="0(jxj)) uniformly distributed samples in R0(x; y0),we obtain with overwhelmingly high probability an approximation of these frac-tions up to an additive deviation of at most "0(jxj). This means that we obtain arelative approximation up-to a factor of 1� 3"0(jxj) for the fraction (or fractions)that is (resp., are) bigger than 1=3. Indeed, we may not be able to obtain sucha good relative approximation of the other fraction (in the case that the otherfraction is very small), but this does not matter. It also does not matter thatwe cannot tell which is the bigger fraction among the two; it only matter thatwe use an approximation that indicates a quantity that is, say, bigger than 1=3.We proceed to the next iteration by augmenting y0 using the bit that correspondsto such a quantity. Speci�cally, suppose that we obtained the approximationsa0(y0) � jR0(x; y00)j=jR0(x; y0)j and a1(y0) � jR0(x; y01)j=jR0(x; y0)j. Then we ex-21Alternatively, we note that since A is a (1 � ")-approximator for " < 1 it must hold that#R0(z) = 0 implies A(z) = 0. Also, since " < 1=3, if #R0(z) = 1 then A(z) 2 (2=3; 4=3), whichmay be rounded to 1.

246 CHAPTER 6. RANDOMNESS AND COUNTINGtend y0 by the bit 1 if a1(y0) > a0(y0) and extend y0 by the bit 0 otherwise. Finally,when we reach y = �1 � � ��`(jxj) such that (x; y) 2 R, we outputa�1(�)�1 � a�2(�1)�1 � � �a�`(jxj) (�1�2 � � ��`(jxj)�1)�1 (6.13)where for each i it holds that a�i(�1�2 � � ��i�1) is (1� 3"0(jxj)) � jR0(x;�1�2����i)jjR0(x;�1�2����i�1)j .As in Part 1, actions regarding R0 (in this case uniform generation in R0) areconducted via the parsimonious reduction g to R. That is, whenever we need tosample uniformly in the set R0(x; y0), we sample the set R(g(x; y0)) and recoverthe corresponding element of R0(x; y0) by using the mapping guaranteed by thehypothesis that g is strongly parsimonious. Finally, note that so far we assumeda uniform generation procedure for R, but using an (1� "0)-approximate uniformgeneration merely means that all our approximations deviate by another additiveterm of "0. Thus, with overwhelmingly high probability, for each i it holds thata�i(�1�2 � � ��i�1) is (1� 6"0(jxj)) � jR0(x;�1�2 � � ��i)j=jR0(x;�1�2 � � ��i�1)j. It fol-lows that, on input x, when using an oracle that provides a (1 � "0)-approximateuniform generation for R, with overwhelmingly high probability, the output (asde�ned in Eq. (6.13)) is in`(jxj)Yi=1 �(1� 6"0(jxj))�1 � jR0(x;�1 � � ��i�1)jjR0(x;�1 � � ��i)j � (6.14)where the error probability is due to the unlikely case that in one of the iterationsour approximations deviates from the correct value by more than an additive devi-ation term of 2"0(n). Noting that Eq. (6.14) equals (1� 6"0(jxj))�`(jxj) � jR(x)j andusing (1� 6"0(jxj))�`(jxj) � (1� "(jxj)) (which holds for "0 = "=7`), Part 2 follows.6.2.4.2 A direct procedure for uniform generationWe conclude the current chapter by presenting a direct procedure for solving theuniform generation problem of any R 2 PC. This procedure uses an oracle to NP(or to SR itself in case it is NP-complete), which is unavoidable because solving theuniform generation problem of R implies solving the corresponding search prob-lem (which in turn implies deciding membership in SR). One advantage of thisprocedure, over the reduction presented in x6.2.4.1, is that it solves the uniformgeneration problem rather than the approximate uniform generation problem.We are going to use hashing again, but this time we use a family of hashingfunctions having a stronger \uniformity property" (see Appendix D.2.3). Speci�-cally, we will use a family of `-wise independent hashing functions mapping `-bitstrings to m-bit strings, where ` bounds the length of solutions in R, and rely onthe fact that such a family satis�es Lemma D.6. Intuitively, such functions parti-tion f0; 1g` into 2m cells and Lemma D.6 asserts that these partitions \uniformlyshatter" all su�ciently large sets. That is, for every set S � f0; 1g` of size
(` �2m),the partition induced by almost every function in this family is such that each cell

6.2. COUNTING 247contains approximately jSj=2m elements of S. In particular, if jSj = �(` � 2m) theneach cell contains �(`) elements of S. We denote this family of functions by Hm̀,and rely on the fact that its elements have succinct and e�ective representation (asde�ned in Appendix D.2.1).Loosely speaking, the following procedure (for uniform generation) �rst selectsa random hashing function and tests whether it \uniformly shatters" the target setS = R(x). If this condition holds then the procedure selects a cell at random andretrieve all the elements of S residing in the chosen cell. Finally, the procedureeither outputs one of the retrieved elements or halts with no output, where eachretrieved element is output with a �xed probability p (which is independent of theactual number of elements of S that reside in the chosen cell). This guarantees thateach element e 2 S is output with the same probability (i.e., 2�m � p), regardlessof the number of elements of S that resides with e in the same cell.In the following construction, we assume that on input x we also obtain a goodapproximation to the size of R(x). This assumption can be enforced by usingan approximate counting procedure as a preprocessing stage. Alternatively, theideas presented in the following construction yield such an approximate countingprocedure.Construction 6.32 (uniform generation): On input x and m0x 2 fmx;mx + 1g,where mx def= blog2 jR(x)jc and R(x) � f0; 1g`, the oracle machine proceeds asfollows.1. Selecting a partition that \uniformly shatters" R(x). The machine sets m =max(0;m0x� log2 40`) and selects uniformly h 2 Hm̀. Such a function de�nesa partition of f0; 1g` into 2m cells22, and the hope is that each cell containsapproximately the same number of elements of R(x). Next, the machinechecks that this is indeed the case or rather than no cell contains more that120` elements of R(x) (i.e., more than twice the expected number). This isdone by checking whether or not (x; h; 1120`+1) is in the set S(1)R;H de�ned asfollowsS(1)R;H def= f(x0; h0; 1t) : 9v s.t. jfy : (x0; y)2R ^ h0(y)=vgj � tg (6.15)= f(x0; h0; 1t) : 9v; y1; :::; yt s.t. (1)(x0; h0; v; y1; :::; yt)g;where (1)(x0; h0; v; y1; :::; yt) holds if and only if y1<y2 � � �<yt and for everyj 2 [t] it holds that (x0; yj)2R ^ h0(yj)=v. Note that S(1)R;H 2 NP.If the answer is positive (i.e., there exists a cell that contains more that120` elements of R(x)) then the machine halts with output ?. Otherwise,the machine continues with this choice of h. In this case, no cell containsmore that 120` elements of R(x) (i.e., for every v 2 f0; 1gm, it holds thatjfy : (x; y) 2 R ^ h(y) = vgj � 120`). We stress that this is an absoluteguarantee that follows from (x; h; 1120`+1) 62 S(1)R;H .22For sake of uniformity, we allow also the case of m = 0, which is rather arti�cial. In thiscase all hashing functions in H 0̀ map f0; 1g` to the empty string, which is viewed as 00, and thusde�ne a trivial partition of f0; 1g` (i.e., into a single cell).

248 CHAPTER 6. RANDOMNESS AND COUNTING2. Selecting a cell and determining the number of elements of R(x) that arecontained in it. The machine selects uniformly v 2 f0; 1gm and determinessv def= jfy : (x; y)2R ^ h(y)=vgj by making queries to the following NP-setS(2)R;H def= f(x0; h0; v0; 1t) : 9y1; :::; yt s.t. (1)(x0; h0; v0; y1; :::; yt)g: (6.16)Speci�cally, for i = 1; :::; 120`, it checks whether (x; h; v; 1i) is in S(2)R;H , andsets sv to be the largest value of i for which the answer is positive.3. Obtaining all the elements of R(x) that are contained in the selected cell,and outputting one of them at random. Using sv, the procedure reconstructsthe set Sv def= fy : (x; y)2R ^ h(y) = vg, by making queries to the followingNP-setS(3)R;H def= f(x0; h0; v0; 1t; j) : 9y1; :::; yt s.t. (3)(x0; h0; v0; y1; :::; yt; j)g; (6.17)where (3)(x0; h0; v0; y1; :::; yt; j) holds if and only if (1)(x0; h0; v0; y1; :::; yt)holds and the jth bit of y1 � � � yt equals 1. Speci�cally, for j1 = 1; :::; sv andj2 = 1; :::; `, we make the query (x; h; v; 1sv ; (j1 � 1) � ` + j2) in order todetermine the jth2 bit of yj1 . Finally, having recovered Sv, the procedureoutputs each y 2 Sv with probability 1=120`, and outputs ? otherwise (i.e.,with probability 1� (sv=120`)).Recall that for jR(x)j =
(`) and m = m0x � log2 40`, Lemma D.6 implies that,with overwhelmingly high probability (over the choice of h 2 Hm̀), each set fy :(x; y)2R ^ h(y)= vg has cardinality (1 � 0:5)jR(x)j=2m. Thus, ignoring the caseof jR(x)j = O(`), Step 1 can be easily adapted to yield an approximate countingprocedure for #R; see Exercise 6.38, which also handles the case of jR(x)j = O(`)by using ideas as in Step 2. However, our aim is to establish the following result.Proposition 6.33 Construction 6.32 solves the uniform generation problem of R.Proof: Intuitively, by Lemma D.6 (and the setting of m), with overwhelminglyhigh probability, a uniformly selected h 2 Hm̀ partitions R(x) into 2m cells, eachcontaining at most 120` elements. Following is the tedious proof of this fact. Sincem = max(0;m0x � log2 40`), we may focus on the case that m0x > log2 40` (as inthe other case jR(x)j � 2m0x+1 � 80`). In this case, by Lemma D.6 (using " = 0:5and m = m0x � log2 40` � log2 jR(x)j � log2 20` (which implies m � log2 jR(x)j �log2(5`="2))), with overwhelmingly high probability, each set fy : (x; y) 2 R ^h(y) = vg has cardinality (1 � 0:5)jR(x)j=2m. Using m0x > (log2 jR(x)j) � 1 (andm = m0x � log2 40`), it follows that jR(x)j=2m < 80` and hence each cell containsat most 120` elements of R(x). We also note that, using m0x � (log2 jR(x)j) + 1, itfollows that jR(x)j=2m � 20` and hence each cell contains at least 10` elements ofR(x).The key observation, stated in Step 1, is that if the procedure does not haltin Step 1 then it is indeed the case that h induces a partition in which each cell

6.2. COUNTING 249contains at most 120` elements of R(x). The fact that these cells may contain adi�erent number of elements is immaterial, because each element is output withthe same probability (i.e., 1=120`). What matters is that the average number ofelements in the various cells is su�ciently large, because this average number deter-mines the probability that the procedure outputs an element of R(x) (rather than?). Speci�cally, conditioned on not halting in Step 1, the probability that Step 3outputs some element of R(x) equals the average number of elements per cell (i.e.,jR(x)j=2m) divided by 120`. Recalling that for m > 0 (resp., m = 0) it holds thatjR(x)j=2m � 20` (resp., jR(x)j � 1), we conclude that in this case some elementof R(x) is output with probability at least 1=6 (resp., jR(x)j=120`). Recalling thatStep 1 halts with negligible probability, it follows that the procedure outputs someelement of R(x) with probability at least 0:99 �min((jR(x)j=120`); (1=6)).Comments. We can easily improve the performance of Construction 6.32 bydealing separately with the case m = 0. In such a case, Step 3 can be simpli�edand improved by uniformly selecting and outputting an element of S� (which equalsR(x)). Under this modi�cation, the procedure outputs some element of R(x) withprobability at least 1=6. In any case, recall that the probability that a uniformgeneration procedure outputs ? can be deceased by repeated invocations.Digest. Construction 6.32 is the culmination of the \hashing paradigm" thatis aimed at allowing various manipulations of arbitrary sets. In particular, asseen in Construction 6.32, hashing can be used in order to partition a large setinto an adequate number of small subsets that are of approximately the samesize. We stress that hashing is performed by randomly selecting a function in anadequate family. Indeed, the use of randomization for such purposes (i.e., allowingmanipulation of large sets) seems indispensable.Chapter NotesOne key aspect of randomized procedures is their success probability, which is ob-viously a quantitative notion. This aspect provides a clear connection betweenprobabilistic polynomial-time algorithms considered in Section 6.1 and the count-ing problems considered in Section 6.2 (see also Exercise 6.20). More appealingconnections between randomized procedures and counting problems (e.g., the ap-plication of randomization in approximate counting) are presented in Section 6.2.These connections justify the presentation of these two topics in the same chapter.Randomized algorithmsMaking people take an unconventional step requires compelling reasons, and indeedthe study of randomized algorithms was motivated by a few compelling examples.Ironically, the appeal of the two most famous examples (discussed next) has beensomewhat diminished due to subsequent �nding, but the fundamental questionsthat emerged remain fascinating regardless of the status of these two examples.

250 CHAPTER 6. RANDOMNESS AND COUNTINGThese questions refer to the power of randomization in various computational set-tings, and in particular in the context of decision and search problems. We shallreturn to these questions after briey reviewing the story of the aforementionedexamples.The �rst example: primality testing. For more than two decades, primalitytesting was the archetypical example of the usefulness of randomization in the con-text of e�cient algorithms. The celebrated algorithms of Solovay and Strassen [206]and of Rabin [179], proposed in the late 1970's, established that deciding primalityis in coRP (i.e., these tests always recognize correctly prime numbers, but theymay err on composite inputs). (The approach of Construction 6.4, which only es-tablishes that deciding primality is in BPP, is commonly attributed to M. Blum.)In the late 1980's, Adleman and Huang [2] proved that deciding primality is in RP(and thus in ZPP). In the early 2000's, Agrawal, Kayal, and Saxena [3] showedthat deciding primality is actually in P . One should note, however, that strongevidence to the fact that deciding primality is in P was actually available fromthe start: we refer to Miller's deterministic algorithm [161], which relies on theExtended Riemann Hypothesis.The second example: undirected connectivity. Another celebrated exampleto the power of randomization, speci�cally in the context of log-space computa-tions, was provided by testing undirected connectivity. The random-walk algorithmpresented in Construction 6.12 is due to Aleliunas, Karp, Lipton, Lov�asz, and Rack-o� [5]. Recall that a deterministic log-space algorithm was found twenty-�ve yearslater (see Section 5.2.4 or [185]).Another famous example: polynomial identity testing. A third famousexample, which dates back to about the same period, is the polynomial identitytester of [62, 194, 235]. This tester, presented in x6.1.3.1, has found many applica-tions in complexity theory (some are implicit in subsequent chapters). Needless tosay, in the abstract setting of Construction 6.7, randomization is indispensable. In-terestingly, the computational version mentioned in Exercise 6.17 has so far resistedde-randomization attempts (cf. [130]).Other randomized algorithms. In addition to the three foregoing examples,several other appealing randomized algorithms are known. Con�ning ourselves tothe context of search and decision problems, we mention the algorithms for �ndingperfect matchings and minimum cuts in graphs (see, e.g., [87, Apdx. B.1] or [163,Sec. 12.4&10.2]), and note the prominent role of randomization in computationalnumber theory (see, e.g., [22] or [163, Chap. 14]). We mention that randomized al-gorithms are more abundant in the context of approximation problems (let alone inother computational settings (cf., e.g., Chapter 9, Appendix C, and Appendix D.3).For a general textbook on randomized algorithms, we refer the interested readerto [163].

6.2. COUNTING 251While it can be shown that randomization is essential in several importantcomputational settings (cf., e.g., Chapter 9, Section 10.1.2, Appendix C, and Ap-pendix D.3), a fundamental question is whether randomization is essential in thecontext of search and decision problems. The prevailing conjecture is that ran-domization is of limited help in the context of time-bounded and space-boundedalgorithms. For example, it is conjectured that BPP = P and BPL = L. Notethat such conjectures do not rule out the possibility that randomization is helpfulalso in these contexts, they merely says that this help is limited. For example, itmay be the case that any quadratic-time randomized algorithm can be emulatedby a cubic-time deterministic algorithm, but not by a quadratic-time deterministicalgorithm.On the study of BPP. The conjecture BPP = P is referred to as a full deran-domization of BPP, and can be shown to hold under some reasonable intractabilityassumptions. This result (and related ones) will be presented in Section 8.3. Inthe current chapter, we only presented uncoditional results regarding BPP likeBPP � P=poly and BPP � PH. Our presentation of Theorem 6.9 follows theproof idea of Lautemann [146]. A di�erent proof technique, which yields a weakerresult but found more applications (see, e.g., Theorems 6.27 and F.2), was pre-sented (independently) by Sipser [202].On the role of promise problems. In addition to their use in the formula-tion of Theorem 6.9, promise problems allow for establishing complete problemsand hierarchy theorems for randomized computation (see Exercises 6.14 and 6.15,respectively). We mention that such results are not known for the correspond-ing classes of standard decision problems. The technical di�culty is that we donot know how to enumerate and/or recognize probabilistic machines that utilize anon-trivial probabilistic decision rule.On the feasibility of randomized computation. Di�erent perspectives onthis question are o�ered by Chapter 8 and Appendix D.4. Speci�cally, as advocatedin Chapter 8, generating uniformly distributed bit sequences is not really necessaryfor implementing randomized algorithms; it su�ces to generate sequences that look(to their user) as if they are uniformly distributed. In many cases this leads to re-ducing the number of coin tosses in such implementations, and at times even to afull (e�cient) derandomization (see Sections 8.3 and 8.4). A less radical approachis presented in Appendix D.4, which deals with the task of extracting almost uni-formly distributed bit sequences from sources of weak randomness. Needless to say,these two approaches are complimentary and can be combined.Counting problemsThe counting class #P was introduced by Valiant [223], who proved that computingthe permanent of 0/1-matrices is #P-complete (i.e., Theorem 6.20). Interestingly,

252 CHAPTER 6. RANDOMNESS AND COUNTINGlike in the case of Cook's introduction of NP-completeness [55], Valiant's motivationwas determining the complexity of a speci�c problem (i.e., the permanent).Our presentation of Theorem 6.20 is based both on Valiant's paper [223] and onsubsequent studies (most notably [29]). Speci�cally, the high-level structure of thereduction presented in Proposition 6.21 as well as the \structured" design of theclause gadget is taken from [223], whereas the Deus Ex Machina gadget presentedin Figure 6.3 is based on [29]. The proof of Proposition 6.22 is also based on [29](with some variants). Turning back to the design of clause gadgets we regret notbeing able to cite and/or use a systematic study of this design problem.As noted in the main text, we decided not to present a proof of Toda's Theo-rem [215], which asserts that every set in PH is Cook-reducible to #P (i.e., The-orem 6.16). Appendix F.1 contains a proof of a related result, which implies thatPH is reducible to #P via probabilistic polynomial-time reductions. Alternativeproofs can be found in [132, 207, 215].Approximate counting and related problems. The approximation proce-dure for #P is due to Stockmeyer [209], following an idea of Sipser [202]. Ourexposition, however, follows further developments in the area. The randomizedreduction of NP to problems of unique solutions was discovered by Valiant andVazirani [225]. Again, our exposition is a bit di�erent.The connection between approximate counting and uniform generation (pre-sented in x6.2.4.1) was discovered by Jerrum, Valiant, and Vazirani [129], andturned out to be very useful in the design of algorithms (e.g., in the \Markov Chainapproach" (see [163, Sec. 11.3.1])). The direct procedure for uniform generation(presented in x6.2.4.2) is taken from [26].In continuation to x6.2.2.1, which is based on [135], we refer the interested readerto [128], which presents a probabilistic polynomial-time algorithm for approximat-ing the permanent of non-negative matrices. This fascinating algorithm is basedon the fact that knowing (approximately) certain parameters of a non-negativematrix M allows to approximate the same parameters for a matrix M 0, providedthat M and M 0 are su�ciently similar. Speci�cally, M and M 0 may di�er onlyon a single entry, and the ratio of the corresponding values must be su�cientlyclose to one. Needless to say, the actual observation (is not generic but rather)refers to speci�c parameters of the matrix, which include its permanent. Thus,given a matrix M for which we need to approximate the permanent, we consider asequence of matrices M0; :::;Mt �M such that M0 is the all 1's matrix (for whichit is easy to evaluate the said parameters), and each Mi+1 is obtained from Mi byreducing some adequate entry by a factor su�ciently close to one. This process of(polynomially many) gradual changes, allows to transform the dummy matrix M0into a matrix Mt that is very close to M (and hence has a permanent that is veryclose to the permanent of M). Thus, approximately obtaining the parameters ofMt allows to approximate the permanent of M .Finally, we mention that Section 10.1.1 provides a treatment of a di�erent typeof approximation problems. Speci�cally, when given an instance x (for a searchproblem R), rather than seeking an approximation of the number of solutions (i.e.,

6.2. COUNTING 253#R(x)), one seeks an approximation of the value of the best solution (i.e., besty 2 R(x)), where the value of a solution is de�ned by an auxiliary function.ExercisesExercise 6.1 Show that if a search (resp., decision) problem can be solved by aprobabilistic polynomial-time algorithm having zero failure probability, then theproblem can be solve by a deterministic polynomial-time algorithm.(Hint: replace the internal coin tosses by a �xed outcome that is easy to generate deterministically(e.g., the all-zero sequence).)Exercise 6.2 (randomized reductions) In continuation to the de�nitions pre-sented in Section 6.1.1, prove the following:1. If a problem � is probabilistic polynomial-time reducible to a problem thatis solvable in probabilistic polynomial-time then � is solvable in probabilisticpolynomial-time, where by solving we mean solving correctly except withnegligible probability.Warning: Recall that in the case that �0 is a search problem, we requiredthat on input x the solver provides a correct solution with probability at least1� �(jxj), but we did not require that it always returns the same solution.(Hint: without loss of generality, the reduction does not make the same query twice.)2. Prove that probabilistic polynomial-time reductions are transitive.3. Prove that randomized Karp-reductions are transitive and that they yield aspecial case of probabilistic polynomial-time reductions.De�ne one-sided error and zero-sided error randomized (Karp- and Cook-) reduc-tions, and consider the foregoing items when applied to them. Note that theimplications for the case of one-sided error are somewhat subtle.Exercise 6.3 (on the de�nition of probabilistically solving a search problem)In continuation to the discussion at the beginning of Section 6.1.2, suppose thatfor some probabilistic polynomial-time algorithm A and a positive polynomial pthe following holds: for every x 2 SR def= fz : R(z) 6= ;g there exists y 2 R(x)such that Pr[A(x) = y] > 0:5 + (1=p(jxj)), whereas for every x 62 SR it holds thatPr[A(x) = ?] > 0:5 + (1=p(jxj)).1. Show that there exists a probabilistic polynomial-time algorithm that solvesthe search problem of R with negligible error probability.(Hint: See Exercise 6.4 for a related procedure.)2. Reect on the need to require that one (correct) solution occurs with probabil-ity greater than 0:5+(1=p(jxj)). Speci�cally, what can we do if it is only guar-anteed that for every x 2 SR it holds that Pr[A(x) 2 R(x)] > 0:5+ (1=p(jxj))(and for every x 62 SR it holds that Pr[A(x) = ?] > 0:5 + (1=p(jxj)))?

254 CHAPTER 6. RANDOMNESS AND COUNTINGNote that R is not necessarily in PC. Indeed, in the case that R 2 PC we caneliminate the error probability for every x 62 SR, and perform error-reduction forx 2 SR as in the case of RP .Exercise 6.4 (error-reduction for BPP) For " : N ! [0; 1], let BPP" denotethe class of decision problems that can be solved in probabilistic polynomial-timewith error probability upper-bounded by ". Prove the following two claims:1. For every positive polynomial p and "(n) = (1=2)� (1=p(n)), the class BPP"equals BPP.2. For every positive polynomial p and "(n) = 2�p(n), the class BPP equalsBPP".Formulate a corresponding version for the setting of search problem. Speci�cally,for every input that has a solution, consider the probability that a speci�c solutionis output.Guideline: Given an algorithm A for the syntactically weaker class, consider an algo-rithm A0 that on input x invokes A on x for t(jxj) times, and rules by majority. For Part 1set t(n) = O(p(n)2) and apply Chebyshev's Inequality. For Part 2 set t(n) = O(p(n)) andapply the Cherno� Bound.Exercise 6.5 (error-reduction for RP) For � : N ! [0; 1], we de�ne the classof decision problem RP� such that it contains S if there exists a probabilisticpolynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x) =1] � �(jxj) and for every x 62 S it holds that Pr[A(x) = 0] = 1. Prove the followingtwo claims:1. For every positive polynomial p, the class RP1=p equals RP .2. For every positive polynomial p, the class RP equals RP�, where �(n) =1� 2�p(n).(Hint: The one-sided error allows using an \or-rule" (rather than a \majority-rule") for thedecision.)Exercise 6.6 (error-reduction for ZPP) For � : N ! [0; 1], we de�ne the classof decision problem ZPP� such that it contains S if there exists a probabilisticpolynomial-time algorithmA such that for every x it holds that Pr[A(x) = �S(x)] ��(jxj) and Pr[A(x) 2 f�S(x);?g] = 1, where �S(x) = 1 if x 2 S and �S(x) = 0otherwise. Prove the following two claims:1. For every positive polynomial p, the class ZPP1=p equals ZPP.2. For every positive polynomial p, the class ZPP equals ZPP�, where �(n) =1� 2�p(n).

6.2. COUNTING 255Exercise 6.7 (an alternative de�nition of ZPP) We say that the decision prob-lem S is solvable in expected probabilistic polynomial-time if there exists a random-ized algorithm A and a polynomial p such that for every x 2 f0; 1g� it holds thatPr[A(x) = �S(x)] = 1 and the expected number of steps taken by A(x) is at mostp(jxj). Prove that S 2 ZPP if and only if S is solvable in expected probabilisticpolynomial-time.Guideline: Repeatedly invoking a ZPP algorithm until it yields an output other than ?yields an expected probabilistic polynomial-time solver. On the other hand, truncatingruns of an expected probabilistic polynomial-time algorithm once they exceed twice theexpected number of steps (and outputting ? on such runs), we obtain a ZPP algorithm.Exercise 6.8 Prove that for every S 2 NP there exists a probabilistic polynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x) = 1] > 0 and forevery x 62 S it holds that Pr[A(x) = 0] = 1. That is, A has error probability atmost 1 � exp(�poly(jxj)) on yes-instances but never errs on no-instances. Thus,NP may be �ctitiously viewed as having a huge one-sided error probability.Exercise 6.9 Let BPP and coRP be classes of promise problems (as in Theo-rem 6.9).1. Prove that every problem in BPP is reducible to the set f1g 2 P by a two-sided error randomized Karp-reduction.2. Prove that if a set S is Karp-reducible toRP (resp., coRP) via a deterministicreduction then S 2 RP (resp., S 2 coRP).Exercise 6.10 (randomness-e�cient error-reductions) Note that standarderror-reduction (as in Exercise 6.4) yields error probability � at the cost of increas-ing the randomness complexity by a factor of O(log(1=�)). Using the randomness-e�cient error-reductions outlined in xD.4.1.3, show that error probability � can beobtained at the cost of increasing the randomness complexity from r to O(r) +1:5 log2(1=�). Note that this allows satisfying the hypothesis made in the illustra-tive paragraph of the proof of Theorem 6.9.Exercise 6.11 In continuation to the illustrative paragraph in the proof of Theo-rem 6.9, consider the promise problem �0 = (�0yes;�0no) such that �0yes = f(x; r0) :jr0j=p0(jxj) ^ (8r00 2 f0; 1gjr0j)A0(x; r0r00) = 1g and �0no = f(x; r0) : x 62Sg. Recallthat for every x it holds that Prr2f0;1g2p0(jxj) [A0(x; r) 6=�S(x)] < 2�(p0(jxj)+1).1. Show that mapping x to (x; r0), where r0 is uniformly distributed in f0; 1gp0(jxj),constitutes a one-sided error randomized Karp-reduction of S to �0.2. Show that �0 is in the promise problem class coRP .Exercise 6.12 (randomized versions of NP) In continuation to Footnote 7,consider the following two variants ofMA (which we consider the main randomizedversion of NP).

256 CHAPTER 6. RANDOMNESS AND COUNTING1. S 2 MA(1) if there exists a probabilistic polynomial-time algorithm V suchthat for every x 2 S there exists y 2 f0; 1gpoly(jxj) such that Pr[V (x; y)=1] �1=2, whereas for every x 62 S and every y it holds that Pr[V (x; y)=0] = 1.2. S 2 MA(2) if there exists a probabilistic polynomial-time algorithm V suchthat for every x 2 S there exists y 2 f0; 1gpoly(jxj) such that Pr[V (x; y)=1] �2=3, whereas for every x 62 S and every y it holds that Pr[V (x; y)=0] � 2=3.Prove thatMA(1) = NP whereasMA(2) =MA.Guideline: For the �rst part, note that a sequence of internal coin tosses that makesV accept (x; y) can be incorporated into y itself (yielding a standard NP-witness). Forthe second part, apply the ideas underlying the proof of Theorem 6.9, and note that anadequate sequence of shifts (to be used by the veri�er) can be incorporated in the singlemessage sent by the prover.Exercise 6.13 (BPP � ZPPNP) In continuation to the proof of Theorem 6.9,present a zero-error randomized reduction of BPP to NP , where all classes are thestandard classes of decision problems.Guideline: On input x, the ZPP-machine uniformly selects s = (s1; :::; sm), and for each� 2 f0; 1g makes the query (x; �; s), which is answered positively by the (coNP) oracle iffor every r it holds that _i(A(x; r � si) =�). The machine outputs � if and only if thequery (x; �; s) was answered positively, and outputs ? otherwise (i.e., both queries wereanswered negatively).Exercise 6.14 (completeness for promise problem versions of BPP) Referringto the promise problem version of BPP, present a promise problem that is completefor this class under (deterministic log-space) Karp-reductions.Guideline: The promise problem consists of yes-instances that are Boolean circuits thataccept at least a 2=3 fraction of their possible inputs and no-instances that are Booleancircuits that reject at least a 2=3 fraction of their possible inputs. The reduction isessentially the one provided in the proof of Theorem 2.21, and the promise is used in anessential way in order to provide a BPP-algorithm.Exercise 6.15 (hierarchy theorems for promise problem versions of BPtime)Fixing a model of computation, let BPtime(t) denote the class of promise prob-lems that are solvable by a randomized algorithm of time-complexity t that has atwo-sided error probability at most 1=3. (The standard de�nition refers only todecision problems.) Formulate and prove results analogous to Theorem 4.3 andCorollary 4.4.Guideline (by Dieter van Melkebeek): Apply the \delayed diagonalization" methodused to prove Theorem 4.6 rather than the simple diagonalization used in Theorem 4.3.Analogously to the proof of Theorem 4.6, for every � 2 f0; 1g, de�ne AM(x) = � ifPr[M 0(x) = �] � 2=3 and de�ne AM(x) = ? otherwise (i.e., if 1=3 < Pr[M 0(x) = 1] <2=3), whereM 0(x) denotes the computation ofM(x) truncated after t1(jxj) steps. For x 2[�M ; �M�1], de�ne f(x) = AM(x+1), where f(x) = ?means that x violates the promise.

6.2. COUNTING 257De�ne f(�M) = 1 if AM (�M) = 0 and f(�M) = 0 otherwise (i.e., if AM (�M) 2 f1;?g).Note that f(x) is computable in randomized time eO(t1(jxj + 1)) by emulating a singlecomputation of M 0(x) if x 2 [�M ; �M � 1] and emulating all computations of M 0(�M) ifx = �M . Prove that the promise problem f cannot be solved in randomized time t1, bynoting that �M satis�es the promise and that for every x 2 [�M +1; �M] that satis�es thepromise (i.e., f(x) 2 f0; 1g) it holds that if AM (x) = f(x) then f(x�1) = AM(x) 2 f0; 1g.Exercise 6.16 (extracting square roots modulo a prime) Using the follow-ing guidelines, present a probabilistic polynomial-time algorithm that, on input aprime P and a quadratic residue s (mod P), returns r such that r2 � s (mod P).1. Prove that if P � 3 (mod 4) then s(P+1)=4 mod P is a square root of thequadratic residue s (mod P).2. Note that the procedure suggested in Item 1 relies on the ability to �nd anodd integer e such that se � 1 (mod P). Indeed, once such e is found, wemay output s(e+1)=2 mod P . (In Item 1, we used e = (P � 1)=2, which is oddsince P � 3 (mod 4).)Show that it su�ces to �nd an odd integer e together with a residue t andan even integer e0 such that sete0 � 1 (mod P), because s � se+1te0 �(s(e+1)=2te0=2)2.3. Given a prime P � 1 (mod 4), a quadratic residue s, and any quadraticnon-residue t (i.e., residue t such that t(P�1)=2 � �1 (mod P)), show thate and e0 as in Item 2 can be e�ciently found.234. Prove that, for a prime P , with probability 1=2 a uniformly chosen t 2f1; :::; Pg satis�es t(P�1)=2 � �1 (mod P).Note that randomization is used only in the last item, which in turn is used onlyfor P � 1 (mod 4).Exercise 6.17 Referring to the de�nition of arithmetic circuits (cf. Appendix B.3),show that the following decision problem is in coRP : Given a pair of circuits(C1; C2) of depth d over a �eld that has more than 2d+1 elements, determinewhether the circuits compute the same polynomial.Guideline: Note that each of these circuits computes a polynomial of degree at most 2d.Exercise 6.18 (small-space randomized step-counter) As de�ned in Exer-cise 4.5, a step-counter is an algorithm that halts after issuing a number of \signals"as speci�ed in its input, where these signals are de�ned as entering (and leaving)23Write (P � 1)=2 = (2j0 + 1) � 2i0 , and note that s(2j0+1)�2i0 � 1 (mod P), which maybe written as s(2j0+1)�2i0 t(2j0+1)�2i0+1 � 1 (mod P). Given that for some i0 > i > 0 and j0it holds that s(2j0+1)�2i t(2j0+1)�2i0 � 1 (mod P), show how to �nd i00 > i � 1 and j00 suchthat s(2j0+1)�2i�1 t(2j00+1)�2i00 � 1 (mod P). (Extra hint: s(2j0+1)�2i�1 t(2j0+1)�2i0�1 � �1(mod P) and t(2j0+1)�2i0 � �1 (mod P).) Applying this reasoning for i0 times, we get whatwe need.

258 CHAPTER 6. RANDOMNESS AND COUNTINGa designated state (of the algorithm). Recall that a step-counter may be run inparallel to another procedure in order to suspend the execution after a predeter-mined number of steps (of the other procedure) has elapsed. Note that there existsa simple deterministic machine that, on input n, halts after issuing n signals whileusing O(1)+ log2 n space (and eO(n) time). The goal of this exercise is presenting a(randomized) step-counter that allows for many more signals while using the sameamount of space. Speci�cally, present a (randomized) algorithm that, on inputn, uses O(1) + log2 n space (and eO(2n) time) and halts after issuing an expectednumber of 2n signals. Furthermore, prove that, with probability at least 1�2�k+1,this step-counter halts after issuing a number of signals that is between 2n�k and2n+k.Guideline: Repeat the following experiment till reaching success. Each trial consists ofuniformly selecting n bits (i.e., tossing n unbiased coins), and is deemed successful if allbits turn out to equal the value 1 (i.e., all outcomes equal head). Note that such a trialcan be implemented by using space O(1) + log2 n (mainly for implementing a standardcounter for determining the number of bits). Thus, each trial is successful with probability2�n, and the expected number of trials is 2n.Exercise 6.19 (analysis of random walks on arbitrary undirected graphs)In order to complete the proof of Proposition 6.13, prove that if fu; vg is an edgeof the graph G = (V;E) then E[Xu;v] � 2jEj. Recall that, for a �xed graph, Xu;vis a random variable representing the number of steps taken in a random walk thatstarts at the vertex u until the vertex v is �rst encountered.Guideline: Let Zu;v(n) be a random variable counting the number of minimal pathsfrom u to v that appear along a random walk of length n, where the walk starts at thestationary vertex distribution (which is well-de�ned assuming the graph is not bipartite,which in turn may be enforced by adding a self-loop). On one hand, E[Xu;v + Xv;u] =limn!1(n=E[Zu;v(n)]), due to the memoryless property of the walk. On the other hand,letting �v;u(i) def= 1 if the edge fu; vg was traversed from v to u in the ith step of sucha random walk and �v;u(i) def= 0 otherwise, we have Pni=1 �v;u(i) � Zu;v(n) + 1 andE[�v;u(i)] = 1=2jEj (because, in each step, each directed edge appears on the walk withequal probability). It follows that E[Xu;v] < 2jEj.Exercise 6.20 (the class PP � BPP and its relation to #P) In contrast toBPP, which refers to useful probabilistic polynomial-time algorithms, the class PPdoes not capture such algorithms but is rather closely related to #P. A decisionproblem S is in PP if there exists a probabilistic polynomial-time algorithm A suchthat, for every x, it holds that x 2 S if and only if Pr[A(x) = 1] > 1=2. Note thatBPP � PP. Prove that PP is Cook-reducible to #P and vise versa.Guideline: For S 2 PP (by virtue of the algorithm A), consider the relation R such that(x; r) 2 R if and only if A accepts the input x when using the random-input r 2 f0; 1gp(jxj),where p is a suitable polynomial. Thus, x 2 S if and only if jR(x)j > 2p(jxj)�1, whichin turn can de determined by querying the counting function of R. To reduce f 2 #Pto PP, consider the relation R 2 PC that is counted by f (i.e., f(x) = jR(x)j) and the

6.2. COUNTING 259decision problem Sf as de�ned in Proposition 6.15. Let p be the polynomial specifyingthe length of solutions for R (i.e., (x; y) 2 R implies jyj = p(jxj)), and consider thefollowing algorithm A0: On input (x;N), with probability 1=2, algorithm A0 uniformlyselects y 2 f0; 1gp(jxj) and accepts if and only if (x; y) 2 R, and otherwise (i.e., with theremaining probability of 1=2) algorithm A0 accepts with probability exactly 2p(jxj)�N+0:52p(jxj) .Prove that (x;N) 2 Sf if and only if Pr[A0(x) = 1] > 1=2.Exercise 6.21 (enumeration problems) For any binary relation R, de�ne theenumeration problem of R as a function fR : f0; 1g��N ! f0; 1g� [f?g such thatfR(x; i) equals the ith element in jR(x)j if jR(x)j � i and fR(x; i) = ? otherwise.The above de�nition refers to the standard lexicographic order on strings, but anyother e�cient order of strings will do.241. Prove that, for any polynomially bounded R, computing #R is reducible tocomputing fR.2. Prove that, for any R 2 PC, computing fR is reducible to some problem in#P.Guideline: Consider the binary relation R0 = f(hx; bi; y) : (x; y) 2 R ^ y � bg,and show that fR is reducible to #R0. (Extra hint: Note that fR(x; i) = y if and onlyif jR0(hx; yi)j = i and for every y0 < y it holds that jR0(hx; y0i)j < i.)Exercise 6.22 (arti�cial #P-complete problems) Show that there exists a re-lation R 2 PC such that #R is #P-complete and SR = f0; 1g�. Furthermore, provethat for every R0 2 PC there exists R 2 PF \ PC such that for every x it holdsthat #R(x) = #R0(x) + 1. Note that Theorem 6.19 follows by starting with anyrelation R0 2 PC such that #R0 is #P-complete.Exercise 6.23 (computing the permanent of integer matrices) Prove thatcomputing the permanent of matrices with 0/1-entries is computationally equiva-lent to computing the number of perfect matchings in bipartite graphs.Guideline: Given a bipartite graph G = ((X;Y); E), consider the matrixM representingthe edges between X and Y (i.e., the (i; j)-entry in M is 1 if the ith vertex of X isconnected to the jth entry of Y), and note that only perfect matchings in G contributeto the permanent of M .Exercise 6.24 (computing the permanent modulo 3) Combining Proposition 6.21and Theorem 6.29, prove that for every �xed n > 1 that does not divide any powerof c, computing the permanent modulo n is NP-hard under randomized reductions.Since Proposition 6.21 holds for c = 210, hardness holds for every integer n > 1that is not a power of 2. (We mention that, on the other hand, for any �xed n = 2e,the permanent modulo n can be computed in polynomial-time [223, Thm. 3].)24An order of strings is a 1-1 and onto mapping � from the natural numbers to the set of allstrings. Such order is called e�cient if both � and its inverse are e�ciently computable. Thestandard lexicographic order satis�es �(i) = y if the string 1y is the (compact) binary expansionof the integer i; that is �(1) = �, �(2) = 0, �(3) = 1, �(4) = 00, etc.

260 CHAPTER 6. RANDOMNESS AND COUNTINGGuideline: Apply the reduction of Proposition 6.21 to the promise problem of decidingwhether a 3CNF formula has a unique satis�able assignment or is unsatis�able. Note thatfor any m it holds that cm 6� 0 (mod n).Exercise 6.25 (negative values in Proposition 6.21) Assuming P 6= NP , provethat Proposition 6.21 cannot hold for a set I containing only non-negative integers.Note that the claim holds even if the set I is not �nite (and even if I is the set ofall non-negative integers).Guideline: A reduction as in Proposition 6.21 yields a Karp-reduction of 3SAT to decidingwhether the permanent of a matrix with entries in I is non-zero. Note that the permanentof a non-negative matrix is non-zero if and only if the corresponding bipartite graph hasa perfect matching.Exercise 6.26 (high-level analysis of the permanent reduction) Establish thecorrectness of the high-level reduction presented in the proof of Proposition 6.21.That is, show that if the clause gadget satis�es the three conditions postulated inthe said proof, then each satisfying assignment of � contributes exactly cm to theSWCC of G� whereas unsatisfying assignments have no contribution.Guideline: Cluster the cycle covers of G� according to the set of track edges that theyuse (i.e., the edges of the cycle cover that belong to the various tracks). (Note thecorrespondence between these edges and the external edges used in the de�nition of thegadget's properties.) Using the postulated conditions (regarding the clause gadget) provethat, for each such set T of track edges, if the sum of the weights of all cycle covers thatuse the track edges T is non-zero then the following hold:1. The intersection of T with the set of track edges incident at each speci�c clausegadget is non-empty. Furthermore, if this set contains an incoming edge (resp.,outgoing edge) of some entry-vertex (resp., exit-vertex) then it also contains anoutgoing edge (resp., incoming edge) of the corresponding exit-vertex (resp., entry-vertex).2. If T contains an edge that belongs to some track then it contains all edges of thistrack. It follows that, for each variable x, the set T contains the edges of a singletrack associated with x.3. The tracks \picked" by T correspond to a single truth assignment to the variables of�, and this assignment satis�es � (because, for each clause, T contains an externaledge that corresponds to a literal that satis�es this clause).Note that di�erent sets of the aforementioned type yield di�erent satisfying assignments,and that each satisfying assignment is obtained from some set of the aforementioned type.Exercise 6.27 (analysis of the implementation of the clause gadget) Establishthe correctness of the implementation of the clause gadget presented in the proof ofProposition 6.21. That is, show that if the box satisfy the three conditions postu-lated in the said proof, then the clause gadget of Figure 6.4 satis�es the conditionspostulated for it.Guideline: Cluster the cycle covers of a gadget according to the set of non-box edges thatthey use, where non-box edges are the edges shown in Figure 6.4. Using the postulated

6.2. COUNTING 261conditions (regarding the box) prove that, for each set S of non-box edges, if the sum ofthe weights of all cycle covers that use the non-box edges S is non-zero then the followinghold:1. The intersection of S with the set of edges incident at each box must containtwo (non-seloop) edges, one incident at each of the box's terminals. Needless tosay, one edge is incoming and the other outgoing. Referring to the six edges thatconnects one of the six designated vertices (of the gadget) with the correspondingbox terminals as connectives, note that if S contains a connective incident at theterminal of some box then it must also contain the connective incident at the otherterminal. In such a case, we say that this box is picked by S,2. Each of the three (literal-designated) boxes that is not picked by S is \traversed"from left to right (i.e., the cycle cover contains an incoming edge of the left terminaland an outgoing edge of the right terminal). Thus, the set S must contain aconnective, because otherwise no directed cycle may cover the leftmost vertex shownin Figure 6.4. That is, S must pick some box.3. The set S is fully determined by the non-empty set of boxes that it picks.The postulated properties of the clause gadget follow, with c = b5.Exercise 6.28 (analysis of the design of a box for the clause gadget) Provethat the 4-by-4 matrix presented in Eq. (6.4) satis�es the properties postulated forthe \box" used in the second part of the proof of Proposition 6.21. In particular:1. Show a correspondence between the conditions required of the box and con-ditions regarding the value of the permanent of certain sub-matrices of theadjacency matrix of the graph.(Hint: For example, show that the �rst condition correspond to requiring that the valueof the permanent of the entire matrix equals zero. The second condition refers to sub-matrices obtained by omitting either the �rst row and fourth column or the fourth rowand �rst column.)2. Verify that the matrix in Eq. (6.4) satis�es the aforementioned conditions(regarding the value of the permanent of certain sub-matrices).Prove that no 3-by-3 matrix (and thus also no 2-by-2 matrix) can satisfy the afore-mentioned conditions.Exercise 6.29 (error reduction for approximate counting) Show that the er-ror probability � in De�nition 6.24 can be reduced from 1=3 (or even (1=2) +(1=poly(jxj)) to exp(�poly(jxj)).Guideline: Invoke the weaker procedure for an adequate number of times and take themedian value among the values obtained in these invocations.Exercise 6.30 (strong approximation for some #P-complete problems) Showthat there exists #P-complete problems (albeit unnatural ones) for which an ("; 0)-approximation can be found by a (deterministic) polynomial-time algorithm. Fur-thermore, the running-time depends polynomially on 1=".

262 CHAPTER 6. RANDOMNESS AND COUNTINGGuideline: Combine any #P-complete problem referring to some R1 2 PC with atrivial counting problem (e.g., the counting problem associated with the trivial relationR2 = [n2Nf(x; y) : x; y 2 f0; 1gng). Show that, without loss of generality, it holds that#R1(x) � 2jxj=2. Prove that the counting problem of R = f(x; 1y) : (x; y) 2 R1g [f(x; 0y) : (x; y) 2 R2g is #P-complete (by reducing from #R1). Present a deterministicalgorithm that, on input x and " > 0, outputs an ("; 0)-approximation of #R(x) in timepoly(jxj=") (Extra hint: distinguish between " � 2�jxj=2 and " < 2�jxj=2).Exercise 6.31 (relative approximation for DNF satisfaction) Referring tothe text of x6.2.2.1, prove the following claims.1. Both assumptions regarding the general setting hold in case Si = C�1i (1),where C�1i (1) denotes the set of truth assignments that satisfy the conjunc-tion Ci.Guideline: In establishing the second assumption note that it reduces to theconjunction of the following two assumptions:(a) Given i, one can e�ciently generate a uniformly distributed element of Si.Actually, generating a distribution that is almost uniform over Si su�ces.(b) Given i and x, one can e�ciently determine whether x 2 Si.2. Prove Proposition 6.26, relating to details such as the error probability in animplementation of Construction 6.25.3. Note that Construction 6.25 does not require exact computation of jSij. An-alyze the output distribution in the case that we can only approximate jSijup-to a factor of 1� "0.Exercise 6.32 (reducing the relative deviation in approximate counting)Prove that, for any R 2 PC and every polynomial p and constant � < 0:5, thereexists R0 2 PC such that (1=p; �)-approximation for #R is reducible to (1=2; �)-approximation for #R0. Furthermore, for any F (n) = exp(poly(n)), prove thatthere exists R00 2 PC such that (1=p; �)-approximation for #R is reducible to ap-proximating #R00 to within a factor of F with error probability �.Guideline (for the main part): For t(n) = �(p(n)), de�neR0 such that (y1; :::; yt(jxj)) 2R0(x) if and only if (8i) yi 2 R(x). Note that jR(x)j = jR0(x)j1=t(jxj), and thus ifa = (1� (1=2)) � jR0(x)j then a1=t(jxj) = (1� (1=2))1=t(jxj) � jR(x)j.Exercise 6.33 (deviation reduction in approximate counting, cont.) In con-tinuation to Exercise 6.32, prove that if R is NP-complete via parsimonious reduc-tions then, for every positive polynomial p and constant � < 0:5, the problem of(1=p; �)-approximation for #R is reducible to (1=2; �)-approximation for #R.(Hint: Compose the reduction (to the problem of (1=2; �)-approximation for #R0) provided inExercise 6.32 with the parsimonious reduction of #R0 to #R.)Prove that, for every function F 0 such that F 0(n) = exp(no(1)), we can also reducethe aforementioned problems to the problem of approximating #R to within afactor of F 0 with error probability �.

6.2. COUNTING 263Guideline: Using R00 as in Exercise 6.32, we encounter a technical di�culty. The issue isthat the composition of the (\amplifying") reduction of #R to #R00 with the parsimoniousreduction of #R00 to #R may increase the length of the instance. Indeed, the length of thenew instance is polynomial in the length of the original instance, but this polynomial maydepend on R00, which in turn depends on F 0. Thus, we cannot use F 0(n) = exp(n1=O(1))but F 0(n) = exp(no(1)) is �ne.Exercise 6.34 Referring to the procedure in the proof Theorem 6.27, show how touse an NP-oracle in order to determine whether the number of solutions that \passa random sieve" is greater than t. You are allowed queries of length polynomial inthe length of x; h and in the size of t.Guideline: Consider the set S0R;H def= f(x; i; h; 1t) : 9y1; :::; yt s.t. 0(x; h; y1; :::; yt)g,where 0(x; h; y1; :::; yt) holds if and only if the yj are di�erent and for every j it holdsthat (x; yj)2R ^ h(yj)=0i.Exercise 6.35 (parsimonious reductions and Theorem 6.29) Demonstrate theimportance of parsimonious reductions in Theorem 6.29 by proving that there ex-ists a search problem R 2 PC such that every problem in PC is reducible to R(by a non-parsimonious reduction) and still the the promise problem (USR; SR) isdecidable in polynomial-time.Guideline: Consider the following arti�cial witness relation R for SAT in which (�; ��) 2R if � 2 f0; 1g and � satis�es �. Note that the standard witness relation of SAT is reducibleto R, but this reduction is not parsimonious. Also note that USR = ; and thus (USR; SR)is trivial.Exercise 6.36 In continuation to Exercise 6.35, prove that there exists a searchproblem R 2 PC such that #R is #P-complete and still the the promise problem(USR; SR) is decidable in polynomial-time. Provide one proof for the case that Ris PC-complete and another proof for R 2 PF .Guideline: For the �rst case, the relation R suggested in the guideline to Exercise 6.35will do. For the second case, rely on Theorem 6.20 and on the fact that it is easy todecide (USR; SR) when R is the corresponding perfect matching relation (by computingthe determinant).Exercise 6.37 Prove that SAT is randomly reducible to deciding unique solutionfor SAT, without using the fact that SAT is NP-complete via parsimonious reductions.Guideline: Follow the proof of Theorem 6.29, while using the family of pairwise inde-pendent hashing functions provided in Construction D.3. Note that, in this case, thecondition (� 2RSAT(�)) ^ (h(�) = 0i) can be directly encoded as a CNF formula. Thatis, consider the formula �h such that �h(z) def= �(z) ^ (h(z)=0i), and note that h(z)=0ican be written as the conjunction of i conditions, where each condition is a CNF that islogically equivalent to the parity of some of the bits of z (where the identity of these bitsis determined by h).

264 CHAPTER 6. RANDOMNESS AND COUNTINGExercise 6.38 (an alternative procedure for approximate counting) AdaptStep 1 of Construction 6.32 so to obtain an approximate counting procedure for#R.Guideline: For m = 0; 1; :::`, the procedure invokes Step 1 of Construction 6.32 untila negative answer is obtained, and outputs 120` � 2m for the current value of m. ForjR(x)j > 80`, this yields a constant factor approximation of jR(x)j. In fact, we can obtaina better estimate by making additional queries at iteration m (i.e., queries of the form(x; h; 1i) for i = 10`; :::; 120`). The case jR(x)j � 80` can be treated by using Step 2 ofConstruction 6.32, in which case we obtain an exact count.Exercise 6.39 Let R be an arbitrary PC-complete search problem. Show thatapproximate counting and uniform generation for R can be randomly reduced todeciding membership in SR, where by approximate counting we mean a (1� (1=p)-approximation for any polynomial p.Guideline: Note that Construction 6.32 yields such procedures (see also Exercise 6.38),except that they make oracle calls to some other set in NP. Using the NP-completenessof SR, we are done.

Chapter 7The Bright Side of HardnessSo saying she donned her beautiful, glittering golden{Ambrosialsandals, which carry her ying like the wind over the vast landand sea; she grasped the redoubtable bronze-shod spear, so stoutand sturdy and strong, wherewith she quells the ranks of heroeswho have displeased her, the [bright-eyed] daughter of her mightyfather. Homer, Odyssey, 1:96{101The existence of natural computational problems that are (or seem to be) in-feasible to solve is usually perceived as bad news, because it means that we cannotdo things we wish to do. But these bad news have a positive side, because hardproblem can be \put to work" to our bene�t, most notably in cryptography.It seems that utilizing hard problems requires the ability to e�ciently generatehard instances, which is not guaranteed by the notion of worst-case hardness. Inother words, we refer to the gap between \occasional" hardness (e.g., worst-casehardness or mild average-case hardness) and \typical" hardness (with respect tosome tractable distribution). Much of the current chapter is devoted to bridgingthis gap, which is known by the term hardness ampli�cation. The actual applica-tions of typical hardness are presented in Chapter 8 and Appendix C.Summary: We consider two conjectures that are related to P 6= NP .The �rst conjecture is that there are problems that are solvable inexponential-time (i.e., in E) but are not solvable by (non-uniform) fam-ilies of small (say polynomial-size) circuits. We show that this worst-case conjecture can be transformed into an average-case hardness result;speci�cally, we obtain predicates that are strongly \inapproximable" bysmall circuits. Such predicates are used towards derandomizing BPPin a non-trivial manner (see Section 8.3).The second conjecture is that there are problems in NP (i.e., searchproblems in PC) for which it is easy to generate (solved) instances that265

266 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSare typically hard to solve (for a party that did not generate theseinstances). This conjecture is captured in the formulation of one-wayfunctions, which are functions that are easy to evaluate but hard toinvert (in an average-case sense). We show that functions that are hardto invert in a relatively mild average-case sense yield functions thatare hard to invert in a strong average-case sense, and that the latteryield predicates that are very hard to approximate (called hard-corepredicates). Such predicates are useful for the construction of general-purpose pseudorandom generators (see Section 8.2) as well as for a hostof cryptographic applications (see Appendix C).In the rest of this chapter, the actual order of presentation of the two aforemen-tioned conjectures and their consequences is reversed: We start (in Section 7.1)with the study of one-way functions, and only later (in Section 7.2) turn to thestudy of problems in E that are hard for small circuits.Teaching note: We list several reasons for preferring the aforementioned order ofpresentation. First, we mention the great conceptual appeal of one-way functions andthe fact that they have very practical applications. Second, hardness ampli�cationin the context of one-way functions is technically simpler than the ampli�cation ofhardness in the context of E . (In fact, Section 7.2 is the most technical text in thisbook.) Third, some of the techniques that are shared by both treatments seem easier tounderstand �rst in the context of one-way functions. Last, the current order facilitatesthe possibility of teaching hardness ampli�cation only in one incarnation, where thecontext of one-way functions is recommended as the incarnation of choice (for theaforementioned reasons).If you wish to teach hardness ampli�cation and pseudorandomness in the two afore-mentioned incarnations, then we suggest following the order of the current text. Thatis, �rst teach hardness ampli�cation in its two incarnations, and only next teach pseu-dorandomness in the corresponding incarnations.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,standard conventions regarding random variables (presented in Appendix D.1.1)and various \laws of large numbers" (presented in Appendix D.1.2) will be exten-sively used.7.1 One-Way FunctionsLoosely speaking, one-way functions are functions that are easy to evaluate buthard (on the average) to invert. Thus, in assuming that one-way functions exist,we are postulating the existence of e�cient processes (i.e., the computation of thefunction in the forward direction) that are hard to reverse. Analogous phenomenain daily life are known to us in abundance (e.g., the lighting of a match). Thus,the assumption that one-way functions exist is a complexity theoretic analogue ofour daily experience.

7.1. ONE-WAY FUNCTIONS 267One-way functions can also be thought of as e�cient ways for generating \puz-zles" that are infeasible to solve; that is, the puzzle is a random image of thefunction and a solution is a corresponding preimage. Furthermore, the person gen-erating the puzzle knows a solution to it and can e�ciently verify the validity of(possibly other) solutions to the puzzle. In fact, as explained in Section 7.1.1, everymechanism for generating such puzzles can be converted to a one-way function.The reader may note that when presented in terms of generating hard puzzles,one-way functions have a clear cryptographic avor. Indeed, one-way functionsare central to cryptography, but we shall not explore this aspect here (and ratherrefer the reader to Appendix C). Similarly, one-way functions are closely related to(general-purpose) pseudorandom generators, but this connection will be exploredin Section 8.2. Instead, in the current section, we will focus on one-way functionsper se.Teaching note: While we recommend including a basic treatment of pseudorandom-ness within a course on complexity theory, we do not recommend doing so with respectto cryptography. The reason is that cryptography is far more complex than pseudo-randomness (e.g., compare the de�nition of secure encryption to the the de�nition ofpseudorandom generators). The extra complexity is due to conceptual richness, whichis something good, except that some of these conceptual issues are central to cryptog-raphy but not to complexity theory. Thus, teaching cryptography in the context of acourse on complexity theory is likely to either overload the course with material thatis not central to complexity theory or cause a super�cial and misleading treatment ofcryptography. We are not sure as to which of these two possibilities is worse. Still, forthe bene�t of the interested reader, we have included an overview of the foundations ofcryptography as an appendix to the main text (see Appendix C).7.1.1 Generating hard instances and one-way functionsLet us start by examining the prophecy, made in the preface to this chapter, bywhich intractable problems can be used to our bene�t. The basic idea is thatintractable problems o�er a way of generating an obstacle that stands in the wayof our opponents and thus protects our interests. These opponents may be eitherreal (e.g., in the context of cryptography) or imaginary (e.g., in the context ofderandomization), but in both cases we wish to prevent them from seeing somethingor doing something. Hard obstacles seems useful towards this goal.Let us assume that P 6= NP or even that NP is not contained in BPP. Can weuse this assumption to our bene�t? Not really: The NP 6� BPP assumption refersto the worst-case complexity of problems, while bene�ting from hard problemsseems to require the ability to generate hard instances. In particular, the generatedinstances should be typically hard and not merely occasionally hard; that is, weseek average-case hardness and not merely worst-case hardness.Taking a short digression, we mention that in Section 7.2 we shall see that worst-case hardness (of NP or even E) can be transformed into average-case hardnessof E . Such a transformation is not known for NP itself, and in some applications(e.g., in cryptography) we do need the hard-on-the-average problem to be in NP .

268 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSIn this case, we currently need to assume that, for some problem in NP , it is thecase that hard instances are easy to generate (and not merely exist). That is, weassume that NP is \hard on the average" with respect to a distribution that ise�ciently sampleable. This assumption will be further discussed in Section 10.2.However, for the aforementioned applications (e.g., in cryptography) this as-sumption does not seem to su�ce either: we know how to utilize such \hard onthe average" problems only when we can e�ciently generate hard instances coupledwith adequate solutions.1 That is, we assume that, for some search problem inPC (resp., decision problem in NP), we can e�ciently generate instance-solutionpairs (resp., yes-instances coupled with corresponding NP-witnesses) such that theinstance is hard to solve (resp., hard to verify as belonging to the set). Needless tosay, the hardness assumption refers to a person that does not get the solution (resp.,witness). Thus, we can e�ciently generate hard \puzzles" coupled with solutions,and so we may present to others hard puzzles for which we know a solution.Let us formulate the foregoing discussion. Referring to De�nition 2.3, we con-sider a relation R in PC (i.e., R is polynomially bounded and membership in R canbe determined in polynomial-time), and assume that there exists a probabilisticpolynomial-time algorithm G that satis�es the following two conditions:1. On input 1n, algorithm G always generates a pair in R such that the �rstelement has length n. That is, Pr[G(1n) 2 R \ (f0; 1gn � f0; 1g�)] = 1.2. It is typically infeasible to �nd solutions to instances that are generated byG; that is, when only given the �rst element of G(1n), it is infeasible to�nd an adequate solution. Formally, denoting the �rst element of G(1n) byG1(1n), for every probabilistic polynomial-time (solver) algorithm S, it holdsthat Pr[(G1(1n); S(G1(1n)) 2 R] = �(n), where � vanishes faster than anypolynomial fraction (i.e., for every positive polynomial p and all su�cientlylarge n it is the case that �(n) < 1=p(n)).We call G a generator of solved intractable instances for R. We will show that sucha generator exists if and only if one-way functions exist, where one-way functionsare functions that are easy to evaluate but hard (on the average) to invert. Thatis, a function f :f0; 1g�!f0; 1g� is called one-way if there is an e�cient algorithmthat on input x outputs f(x), whereas any feasible algorithm that tries to �nd apreimage of f(x) under f may succeed only with negligible probability (where theprobability is taken uniformly over the choices of x and the algorithm's coin tosses).Associating feasible computations with probabilistic polynomial-time algorithmsand negligible functions with functions that vanish faster than any polynomialfraction, we obtain the following de�nition.De�nition 7.1 (one-way functions): A function f :f0; 1g�!f0; 1g� is called one-way if the following two conditions hold:1We wish to stress the di�erence between the two gaps discussed here. Our feeling is thatthe non-usefulness of worst-case hardness (per se) is far more intuitive than the non-usefulness ofaverage-case hardness that does not correspond to an e�cient generation of \solved" instances.

7.1. ONE-WAY FUNCTIONS 2691. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =f(x) for every x 2 f0; 1g�.2. Hard to invert: For every probabilistic polynomial-time algorithm A0, everypolynomial p, and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 2 f�1(f(x))] < 1p(n) (7.1)where the probability is taken uniformly over all the possible choices of x 2f0; 1gn and all the possible outcomes of the internal coin tosses of algorithmA0.Algorithm A0 is given the auxiliary input 1n so as to allow it to run in time poly-nomial in the length of x, which is important in case f drastically shrinks its input(e.g., jf(x)j = O(log jxj)). Typically (and, in fact, without loss of generality, seeExercise 7.1), f is length preserving, in which case the auxiliary input 1n is re-dundant. Note that A0 is not required to output a speci�c preimage of f(x); anypreimage (i.e., element in the set f�1(f(x))) will do. (Indeed, in case f is 1-1,the string x is the only preimage of f(x) under f ; but in general there may beother preimages.) It is required that algorithm A0 fails (to �nd a preimage) withoverwhelming probability, when the probability is also taken over the input distri-bution. That is, f is \typically" hard to invert, not merely hard to invert in some(\rare") cases.Proposition 7.2 The following two conditions are equivalent:1. There exists a generator of solved intractable instances for some R 2 NP.2. There exist one-way functions.Proof Sketch: Suppose that G is such a generator of solved intractable instancesfor some R 2 NP, and suppose that on input 1n it tosses `(n) coins. For simplicity,we assume that `(n) = n, and consider the function g(r) = G1(1jrj; r), whereG(1n; r) denotes the output of G on input 1n when using coins r (and G1 is asin the foregoing discussion). Then g must be one-way, because an algorithm thatinverts g on input x = g(r) obtains r0 such that G1(1n; r0) = x and G(1n; r0) mustbe in R (which means that the second element of G(1n; r0) is a solution to x). Incase `(n) 6= n (and assuming without loss of generality that `(n) � n), we de�neg(r) = G1(1n; s) where n is the largest integer such that `(n) � jrj and s is the`(n)-bit long pre�x of r.Suppose, on the other hand, that f is a one-way function (and that f islength preserving). Consider G(1n) that uniformly selects r 2 f0; 1gn and out-puts (f(r); r), and let R def= f(f(x); x) : x 2 f0; 1g�g. Then R is in PC and Gis a generator of solved intractable instances for R, because any solver of R (oninstances generated by G) is e�ectively inverting f on f(Un).

270 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSComments. Several candidates one-way functions and variation on the basicde�nition appear in Appendix C.2.1. Here, for the sake of future discussions, wede�ne a stronger version of one-way functions, which refers to the infeasibility ofinverting the function by non-uniform circuits of polynomial-size. We seize theopportunity and use an alternative technical formulation, which is based on theprobabilistic conventions in Appendix D.1.1.2De�nition 7.3 (one-way functions, non-uniformly hard): A one-way function f :f0; 1g� ! f0; 1g� is said to be non-uniformly hard to invert if for every family ofpolynomial-size circuits fCng, every polynomial p, and all su�ciently large n,Pr[Cn(f(Un); 1n) 2 f�1(f(Un))] < 1p(n)We note that if a function is infeasible to invert by polynomial-size circuits then it ishard to invert by probabilistic polynomial-time algorithms; that is, non-uniformity(more than) compensates for lack of randomness. See Exercise 7.2.7.1.2 Ampli�cation of Weak One-Way FunctionsIn the forgoing discussion we have interpreted \hardness on the average" in a verystrong sense. Speci�cally, we required that any feasible algorithm fails to solvethe problem (e.g., invert the one-way function) almost always (i.e., except withnegligible probability). This interpretation is indeed the one that is suitable forvarious applications. Still, a weaker interpretation of hardness on the average,which is also appealing, only requires that any feasible algorithm fails to solve theproblem often enough (i.e., with noticeable probability). The main thrust of thecurrent section is showing that the mild form of hardness on the average can betransformed into the strong form discussed in Section 7.1.1. Let us �rst de�ne themild form of hardness on the average, using the framework of one-way functions.Speci�cally, we de�ne weak one-way functions.De�nition 7.4 (weak one-way functions): A function f :f0; 1g�!f0; 1g� is calledweakly one-way if the following two conditions hold:1. Easy to evaluate: As in De�nition 7.1.2. Weakly hard to invert: There exists a positive polynomial p such that forevery probabilistic polynomial-time algorithm A0 and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 62 f�1(f(x))] > 1p(n) (7.2)where the probability is taken uniformly over all the possible choices of x 2f0; 1gn and all the possible outcomes of the internal coin tosses of algorithmA0. In such a case, we say that f is 1=p-one-way.2Speci�cally, letting Un denote a random variable uniformly distributed in f0; 1gn , we maywrite Eq. (7.1) as Pr[A0(f(Un); 1n) 2 f�1(f(Un))] < 1=p(n), recalling that both occurrences ofUn refer to the same sample.

7.1. ONE-WAY FUNCTIONS 271Here we require that algorithm A0 fails (to �nd an f -preimage for a random f -image) with noticeable probability, rather than with overwhelmingly high prob-ability (as in De�nition 7.1). For clarity, we will occasionally refer to one-wayfunctions as in De�nition 7.1 by the term strong one-way functions.We note that, assuming that one-way functions exist at all, there exists weakone-way functions that are not strongly one-way (see Exercise 7.3). Still, any weakone-way function can be transformed into a strong one-way function. This is indeedthe main result of the current section.Theorem 7.5 (ampli�cation of one-way functions): The existence of weak one-way functions implies the existence of strong one-way functions.Proof Sketch: The construction itself is straightforward. We just parse the argu-ment to the new function into su�ciently many blocks, and apply the weak one-wayfunction on the individual blocks. That is, suppose that f is 1=p-one-way, for somepolynomial p, and consider the following functionF (x1; :::; xt) = (f(x1); :::; f(xt)) (7.3)where t def= n � p(n) and x1; :::; xt 2 f0; 1gn.(Indeed F should be extended to strings of length outside fn2 � p(n) : n 2 Ng andthis extension must be hard to invert on all preimage lengths.)3We warn that the hardness of inverting the resulting function F is not estab-lished by mere \combinatorics" (i.e., considering, for any S � f0; 1gn, the relativevolume of St in (f0; 1gn)t, where S represents the set of f -preimages that aremapped by f to an image that is \easy to invert"). Speci�cally, one may not as-sume that the potential inverting algorithm works independently on each block.Indeed this assumption seems reasonable, but we do not know if nothing is lostby this restriction. (In fact, proving that nothing is lost by this restriction is aformidable research project.) In general, we should not make assumptions regard-ing the class of all e�cient algorithms (as underlying the de�nition of one-wayfunctions), unless we can actually prove that nothing is lost by such assumptions.The hardness of inverting the resulting function F is proved via a so called\reducibility argument" (which is used to prove all conditional results in the area).By a reducibility argument we actually mean a reduction, but one that is analyzedwith respect to average case complexity. Speci�cally, we show that any algorithmthat inverts the resulting function F with non-negligible success probability canbe used to construct an algorithm that inverts the original function f with successprobability that violates the hypothesis (regarding f). In other words, we reducethe task of \strongly inverting" f (i.e., violating its weak one-wayness) to the taskof \weakly inverting" F (i.e., violating its strong one-wayness). In particular, oninput y = f(x), the reduction invokes the F -inverter (polynomially) many times,each time feeding it with a sequence of random f -images that contains y at a3One simple extension is de�ning F (x) to equal F (x1; :::; xn�p(n)), where n is the largest integersatisfying n2p(n) � jxj and xi is the ith consecutive n-bit long string in x (i.e., x = x1 � � �xn�p(n)x0,where x1; :::; xn�p(n) 2 f0; 1gn).

272 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSrandom location. (Indeed such a sequence corresponds to a random image of F .)Details follow.Suppose towards the contradiction that F is not strongly one-way; that is, thereexists a probabilistic polynomial-time algorithm B0 and a polynomial q(�) so thatfor in�nitely many m'sPr[B0(F (Um))2F�1(F (Um))] > 1q(m) (7.4)Focusing on such a generic m and assuming (see Footnote 3) that m = n2p(n), wepresent the following probabilistic polynomial-time algorithm, A0, for inverting f .On input y and 1n (where supposedly y = f(x) for some x 2 f0; 1gn), algorithm A0proceeds by applying the following probabilistic procedure, denoted I , on input yfor t0(n) times, where t0(�) is a polynomial that depends on the polynomials p andq (speci�cally, we set t0(n) def= 2n2 � p(n) � q(n2p(n))).Procedure I (on input y and 1n):For i = 1 to t(n) def= n � p(n) do begin(1) Select uniformly and independently a sequence of strings x1; :::; xt(n) 2 f0; 1gn.(2) Compute (z1; :::; zt(n)) B0(f(x1); :::; f(xi�1); y; f(xi+1); :::; f(xt(n)))(Note that y is placed in the ith position instead of f(xi).)(3) If f(zi) = y then halt and output zi.(This is considered a success).endUsing Eq. (7.4), we now present a lower bound on the success probability of al-gorithm A0, deriving a contradiction to the theorem's hypothesis. To this end wede�ne a set, denoted Sn, that contains all n-bit strings on which the procedure Isucceeds with probability greater than n=t0(n). (The probability is taken only overthe coin tosses of procedure I). Namely,Sn def= �x2f0; 1gn : Pr[I(f(x))2f�1(f(x))] > nt0(n)�In the next two claims we shall show that Sn contains all but at most a 1=2p(n)fraction of the strings of length n, and that for each string x 2 Sn algorithm A0inverts f on f(x) with probability exponentially close to 1. It will follow that A0inverts f on f(Un) with probability greater than 1� (1=p(n)), in contradiction tothe theorem's hypothesis.Claim 7.5.1: For every x 2SnPr �A0(f(x))2f�1(f(x))� > 1� 2�nThis claim follows directly from the de�nitions of Sn and A0.Claim 7.5.2: jSnj > �1� 12p(n)� � 2n

7.1. ONE-WAY FUNCTIONS 273The rest of the proof is devoted to establishing this claim, and indeed combiningClaims 7.5.1 and 7.5.2, the theorem follows.The key observation is that, for every i 2 [t(n)] and every xi 2 f0; 1gn n Sn, itholds that Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ���U (i)n = xi i� Pr �I(f(xi)) 2 f�1(f(xi))� � nt0(n)where U (1)n ; :::; U (n�p(n))n denote the n-bit long blocks in the random variable Un2p(n).It follows that� def= Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ �9i s.t. U (i)n 2f0; 1gn n Sn�i� t(n)Xi=1 Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ U (i)n 2f0; 1gn n Sni� t(n) � nt0(n) = 12q(n2p(n))where the equality is due to t0(n) = 2n2 � p(n) � q(n2p(n)) and t(n) = n � p(n). Onthe other hand, using Eq. (7.4), we have� � Pr �B0(F (Un2p(n)))2F�1(F (Un2p(n)))� � Pr h(8i)U (i)n 2Sni� 1q(n2p(n)) � Pr [Un2Sn]t(n) :Using t(n) = n � p(n), we get Pr[Un 2 Sn] > (1=2q(n2p(n)))1=(n�p(n)), which impliesPr[Un 2 Sn] > 1 � (1=2p(n)) for su�ciently large n. Claim 7.5.2 follows, and sodoes the theorem.Digest. Let us recall the structure of the proof of Theorem 7.5. Given a weakone-way function f , we �rst constructed a polynomial-time computable functionF with the intention of later proving that F is strongly one-way. To prove thatF is strongly one-way, we used a reducibility argument. The argument transformse�cient algorithms that supposedly contradict the strong one-wayness of F intoe�cient algorithms that contradict the hypothesis that f is weakly one-way. HenceF must be strongly one-way. We stress that our algorithmic transformation, whichis in fact a randomized Cook reduction, makes no implicit or explicit assumptionsabout the structure of the prospective algorithms for inverting F . Such assumptions(e.g., the \natural" assumption that the inverter of F works independently on eachblock) cannot be justi�ed (at least not at our current state of understanding of thenature of e�cient computations).We use the term a reducibility argument, rather than just saying a reductionso as to emphasize that we do not refer here to standard (worst-case complexity)reductions. Let us clarify the distinction: In both cases we refer to reducing the

274 CHAPTER 7. THE BRIGHT SIDE OF HARDNESStask of solving one problem to the task of solving another problem; that is, we usea procedure solving the second task in order to construct a procedure that solvesthe �rst task. However, in standard reductions one assumes that the second taskhas a perfect procedure solving it on all instances (i.e., on the worst-case), andconstructs such a procedure for the �rst task. Thus, the reduction may invoke thegiven procedure (for the second task) on very \non-typical" instances. This cannotbe allowed in our reducibility arguments. Here, we are given a procedure thatsolves the second task with certain probability with respect to a certain distribution.Thus, in employing a reducibility argument, we cannot invoke this procedure onany instance. Instead, we must consider the probability distribution, on instancesof the second task, induced by our reduction. In our case (as in many cases)the latter distribution equals the distribution to which the hypothesis (regardingsolvability of the second task) refers, but in general these distributions need onlybe \su�ciently close" in an adequate sense (which depends on the analysis). Inany case, a careful consideration of the distribution induced by the reducibilityargument is due. (Indeed, the same issue arises in the context of reductions among\distributional problems" considered in Section 10.2.)An information theoretic analogue. Theorem 7.5 (or rather its proof) has anatural information theoretic (or \probabilistic") analogue that refers to the am-pli�cation of the success probability by repeated experiments: If some event occurswith probability p in a single experiment, then the event will occur with very highprobability (i.e., 1�e�n) when the experiment is repeated n=p times. The analogyis to evaluating the function F at a random input, where each block of this inputmay be viewed as an attempt to hit the noticeable \hard region" of f . The readeris probably convinced at this stage that the proof of Theorem 7.5 is much morecomplex than the proof of the information theoretic analogue. In the informationtheoretic context the repeated experiments are independent by de�nition, whereasin the computational context no such independence can be guaranteed. (Indeed, theindependence assumption corresponds to the naive argument discussed at the be-ginning of the proof of Theorem 7.5.) Another indication to the di�erence betweenthe two settings follows. In the information theoretic setting, the probability thatthe event did not occur in any of the repeated trials decreases exponentially withthe number of repetitions. In contrast, in the computational setting we can onlyreach an unspeci�ed negligible bound on the inverting probabilities of polynomial-time algorithms. Furthermore, for all we know, it may be the case that F can bee�ciently inverted on F (Un2p(n)) with success probability that is sub-exponentiallydecreasing (e.g., with probability 2�(log2 n)3), whereas the analogous informationtheoretic bound is exponentially decreasing (i.e., e�n).7.1.3 Hard-Core PredicatesOne-way functions per se su�ce for one central application: the construction ofsecure signature schemes (see Appendix C.6). For other applications, one relies notmerely on the infeasibility of fully recovering the preimage of a one-way function,

7.1. ONE-WAY FUNCTIONS 275but rather on the infeasibility of meaningfully guessing bits in the preimage. Thelatter notion is captured by the de�nition of a hard-core predicate.Recall that saying that a function f is one-way means that given a typical y(in the range of f) it is infeasible to �nd a preimage of y under f . This does notmean that it is infeasible to �nd partial information about the preimage(s) of yunder f . Speci�cally, it may be easy to retrieve half of the bits of the preimage(e.g., given a one-way function f consider the function f 0 de�ned by f 0(x; r) def=(f(x); r), for every jxj= jrj). We note that hiding partial information (about thefunction's preimage) plays an important role in more advanced constructs (e.g.,pseudorandom generators and secure encryption). With this motivation in mind,we will show that essentially any one-way function hides speci�c partial informationabout its preimage, where this partial information is easy to compute from thepreimage itself. This partial information can be considered as a \hard core" of thedi�culty of inverting f . Loosely speaking, a polynomial-time computable (Boolean)predicate b, is called a hard-core of a function f if no feasible algorithm, given f(x),can guess b(x) with success probability that is non-negligibly better than one half.
f(x)

x

b(x)The solid arrows depict easily computable transformationwhile the dashed arrows depict infeasible transformations.Figure 7.1: The hard-core of a one-way function { an illustration.De�nition 7.6 (hard-core predicates): A polynomial-time computable predicateb : f0; 1g� ! f0; 1g is called a hard-core of a function f if for every probabilisticpolynomial-time algorithm A0, every positive polynomial p(�), and all su�cientlylarge n's Pr [A0(f(x))=b(x)] < 12 + 1p(n)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gnand all the possible outcomes of the internal coin tosses of algorithm A0.

276 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSNote that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obviousalgorithms that guess b(x) from f(x) with success probability at least one half (e.g.,the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, ifb is a hard-core predicate (of any function) then it follows that b is almost unbiased(i.e., for a uniformly chosen x, the di�erence jPr[b(x)=0]� Pr[b(x)=1]j must be anegligible function in n).Since b itself is polynomial-time computable, the failure of e�cient algorithms toapproximate b(x) from f(x) (with success probability that is non-negligibly higherthan one half) must be due either to an information loss of f (i.e., f not beingone-to-one) or to the di�culty of inverting f . For example, for � 2 f0; 1g andx0 2f0; 1g�, the predicate b(�x0) = � is a hard-core of the function f(�x0) def= 0x0.Hence, in this case the fact that b is a hard-core of the function f is due to the factthat f loses information (speci�cally, the �rst bit: �). On the other hand, in thecase that f loses no information (i.e., f is one-to-one) a hard-core for f may existonly if f is hard to invert. In general, the interesting case is when being a hard-coreis a computational phenomenon rather than an information theoretic one (whichis due to \information loss" of f). It turns out that any one-way function has amodi�ed version that possesses a hard-core predicate.Theorem 7.7 (a generic hard-core predicate): For any one-way function f , theinner-product mod 2 of x and r, denoted b(x; r), is a hard-core of f 0(x; r) =(f(x); r).In other words, Theorem 7.7 asserts that, given f(x) and a random subset S � [jxj],it is infeasible to guess �i2Sxi signi�cantly better than with probability 1=2, wherex = x1 � � �xn is uniformly distributed in f0; 1gn.Proof Sketch: The proof is by a so-called \reducibility argument" (see Sec-tion 7.1.2). Speci�cally, we reduce the task of inverting f to the task of predictingthe hard-core of f 0, while making sure that the reduction (when applied to inputdistributed as in the inverting task) generates a distribution as in the de�nition ofthe predicting task. Thus, a contradiction to the claim that b is a hard-core of f 0yields a contradiction to the hypothesis that f is hard to invert. We stress thatthis argument is far more complex than analyzing the corresponding \probabilis-tic" situation (i.e., the distribution of (r; b(X; r)), where r 2 f0; 1gn is uniformlydistributed and X is a random variable with super-logarithmic min-entropy (whichrepresents the \e�ective" knowledge of x, when given f(x))).4Our starting point is a probabilistic polynomial-time algorithm B that satis�es,for some polynomial p and in�nitely many n's, Pr[B(f(Xn); Un) = b(Xn; Un)] >(1=2) + (1=p(n)), where Xn and Un are uniformly and independently distributedover f0; 1gn. Using a simple averaging argument, we focus on a " def= 1=2p(n)4The min-entropy of X is de�ned as minvflog2(1=Pr[X = v])g; that is, if X has min-entropy mthen maxvfPr[X = v]g = 2�m. The Leftover Hashing Lemma (see Appendix D.2) implies that,in this case, Pr[b(X;Un) = 1jUn] = 12 � 2�
(m), where Un denotes the uniform distribution overf0; 1gn.

7.1. ONE-WAY FUNCTIONS 277fraction of the x's for which Pr[B(f(x); Un) = b(x; Un)] > (1=2) + " holds. We willshow how to use B in order to invert f , on input f(x), provided that x is in thisgood set (which has density ").As a warm-up, suppose for a moment that, for the aforementioned x's, algorithmB succeeds with probability p such that p > 34 + 1=poly(jxj) rather than p >12 + 1=poly(jxj). In this case, retrieving x from f(x) is quite easy: To retrieve theith bit of x, denoted xi, we randomly select r 2 f0; 1gjxj, and obtain B(f(x); r) andB(f(x); r�ei), where ei = 0i�110jxj�i and v�u denotes the addition mod 2 of thebinary vectors v and u. A key observation underlying the foregoing scheme as wellas the rest of the proof is that b(x; r�s) = b(x; r) � b(x; s), which can be readilyveri�ed by writing b(x; y) = Pni=1 xiyi mod 2 and noting that addition modulo 2of bits corresponds to their XOR. Now, note that if both B(f(x); r) = b(x; r)and B(f(x); r� ei) = b(x; r� ei) hold, then B(f(x); r) � B(f(x); r� ei) equalsb(x; r) � b(x; r�ei) = b(x; ei) = xi. The probability that both B(f(x); r)= b(x; r)and B(f(x); r�ei)= b(x; r�ei) hold, for a random r, is at least 1 � 2 � (1 � p) >12 + 1poly(jxj) . Hence, repeating the foregoing procedure su�ciently many times(using independent random choices of such r's) and ruling by majority, we retrievexi with very high probability. Similarly, we can retrieve all the bits of x, andhence invert f on f(x). However, the entire analysis was conducted under (theunjusti�able) assumption that p > 34+ 1poly(jxj) , whereas we only know that p > 12+"for " = 1=poly(jxj).The problem with the foregoing procedure is that it doubles the original errorprobability of algorithm B on inputs of the form (f(x); �). Under the unrealistic(foregoing) assumption that B's average error on such inputs is non-negligiblysmaller than 14 , the \error-doubling" phenomenon raises no problems. However, ingeneral (and even in the special case where B's error is exactly 14) the foregoingprocedure is unlikely to invert f . Note that the average error probability of B (fora �xed f(x), when the average is taken over a random r) can not be decreasedby repeating B several times (e.g., for every x, it may be that B always answercorrectly on three quarters of the pairs (f(x); r), and always err on the remainingquarter). What is required is an alternative way of using the algorithm B, a waythat does not double the original error probability of B.The key idea is generating the r's in a way that allows applying algorithmB only once per each r (and i), instead of twice. Speci�cally, we will invoke Bon (f(x); r� ei) in order to obtain a \guess" for b(x; r� ei), and obtain b(x; r)in a di�erent way (which does not involve using B). The good news is that theerror probability is no longer doubled, since we only use B to get a \guess" ofb(x; r� ei). The bad news is that we still need to know b(x; r), and it is notclear how we can know b(x; r) without applying B. The answer is that we canguess b(x; r) by ourselves. This is �ne if we only need to guess b(x; r) for oner (or logarithmically in jxj many r's), but the problem is that we need to know(and hence guess) the value of b(x; r) for polynomially many r's. The obviousway of guessing these b(x; r)'s yields an exponentially small success probability.Instead, we generate these polynomially many r's such that, on one hand they are\su�ciently random" whereas, on the other hand, we can guess all the b(x; r)'s

278 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSwith noticeable success probability.5 Speci�cally, generating the r's in a speci�cpairwise independent manner will satisfy both these (conicting) requirements. Westress that in case we are successful (in our guesses for all the b(x; r)'s), we canretrieve x with high probability. Hence, we retrieve x with noticeable probability.A word about the way in which the pairwise independent r's are generated(and the corresponding b(x; r)'s are guessed) is indeed in place. To generate m =poly(jxj) many r's, we uniformly (and independently) select ` def= log2(m+1) stringsin f0; 1gjxj. Let us denote these strings by s1; :::; s`. We then guess b(x; s1) throughb(x; s`). Let us denote these guesses, which are uniformly (and independently)chosen in f0; 1g, by �1 through �`. Hence, the probability that all our guessesfor the b(x; si)'s are correct is 2�` = 1poly(jxj) . The di�erent r's correspond tothe di�erent non-empty subsets of f1; 2; :::; `g. Speci�cally, for every such subsetJ , we let rJ def= �j2Jsj . The reader can easily verify that the rJ 's are pairwiseindependent and each is uniformly distributed in f0; 1gjxj; see Exercise 7.5. Thekey observation is that b(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj). Hence, our guessfor b(x; rJ) is �j2J�j , and with noticeable probability all our guesses are correct.Wrapping-up everything, we obtain the following procedure, where " = 1=poly(n)represents a lower-bound on the advantage of B in guessing b(x; �) for an " fractionof the x's (i.e., for these good x's it holds that Pr[B(f(x); Un) = b(x; Un)] > 12 +").Inverting procedure (on input y = f(x) and parameters n and "):Set ` = log2(n="2) +O(1).(1) Select uniformly and independently s1; :::; s` 2 f0; 1gn.Select uniformly and independently �1; :::; �` 2 f0; 1g.(2) For every non-empty J � [`], compute rJ = �j2Jsj and �J = �j2J�j .(3) For i = 1; :::; n determine the bit zi according to the majority voteof the (2` � 1)-long sequence of bits (�J�B(f(x); rJ�ei));6=J�[`].(4) Output z1 � � � zn.Note that the \voting scheme" employed in Step 3 uses pairwise independent sam-ples (i.e., the rJ 's), but works essentially as well as it would have worked withindependent samples (i.e., the independent r's).6 That is, for every i and J , itholds that Prs1;:::;s` [B(f(x); rJ�ei) = b(x; rJ�ei)] > (1=2)+", where rJ = �j2Jsj ,and (for every �xed i) the events corresponding to di�erent J 's are pairwise inde-pendent. It follows that if for every j 2 [`] it holds that �j = b(x; sj), then forevery i and J we havePrs1;:::;s` [�J �B(f(x); rJ�ei) = b(x; ei)] (7.5)5Alternatively, we can try all polynomially many possible guesses. In such a case, we shalloutput a list of candidates that, with high probability, contains x. (See Exercise 7.6.)6Our focus here is on the accuracy of the approximation obtained by the sample, and not somuch on the error probability. We wish to approximate Pr[b(x; r) � B(f(x); r�ei) = 1] up toan additive term of ", because such an approximation allows to correctly determine b(x; ei). Apairwise independent sample of O(t="2) points allows for an approximation of a value in [0; 1] upto an additive term of " with error probability 1=t, whereas a totally random sample of the samesize yields error probability exp(�t). Since we can a�ord setting t = poly(n) and having errorprobability 1=2n, the di�erence in the error probability between the two approximation schemesis not important here. For a wider perspective see Appendix D.1.2 and D.3.

7.1. ONE-WAY FUNCTIONS 279= Prs1;:::;s` [B(f(x); rJ�ei) = b(x; rJ�ei)] > 12 + "where the equality is due to �J = �j2J�j = b(x; rJ) = b(x; rJ�ei)� b(x; ei). Notethat Eq. (7.5) refers to the correctness of a single vote for b(x; ei). Using m =2` � 1 = O(n="2) and noting that these (Boolean) votes are pairwise independent,we infer that the probability that the majority of these votes is wrong is upper-bounded by 1=2n. Using a union bound on all i's, we infer that with probability atleast 1=2, all majority votes are correct and thus x is retrieved correctly. Recall thatthe foregoing is conditioned on �j = b(x; sj) for every j 2 [`], which in turn holdswith probability 2�` = (m + 1)�1 =
("2=n) = 1=poly(n). Thus, x is retrievedcorrectly with probability 1=poly(n), and the theorem follows.Digest. Looking at the proof of Theorem 7.7, we note that it actually refersto an arbitrary black-box Bx(�) that approximates b(x; �); speci�cally, in the caseof Theorem 7.7 we used Bx(r) def= B(f(x); r). In particular, the proof does notuse the fact that we can verify the correctness of the preimage recovered by thedescribed process. Thus, the proof actually establishes the existence of a poly(n=")-time oracle machine that, for every x 2 f0; 1gn, given oracle access to any Bx :f0; 1gn ! f0; 1g satisfyingPrr2f0;1gn [Bx(r) = b(x; r)] � 12 + " (7.6)outputs x with probability at least poly("=n). Speci�cally, x is output with proba-bility at least p def=
("2=n). Noting that x is merely a string for which Eq. (7.6)holds, it follows that the number of strings that satisfy Eq. (7.6) is at most 1=p.Furthermore, by iterating the foregoing procedure for eO(1=p) times we can obtainall these strings (see Exercise 7.7).Theorem 7.8 (Theorem 7.7, revisited): There exists a probabilistic oracle ma-chine that, given parameters n; " and oracle access to any function B : f0; 1gn !f0; 1g, halts after poly(n=") steps and with probability at least 1=2 outputs a list ofall strings x 2 f0; 1gn that satisfyPrr2f0;1gn [B(r) = b(x; r)] � 12 + ";where b(x; r) denotes the inner-product mod 2 of x and r.This machine can be modi�ed such that, with high probability, its output list doesnot include any string x such that Prr2f0;1gn [B(r) = b(x; r)] < 12 + "2 .Theorem 7.8 means that if given some information about x it is hard to recoverx, then given the same information and a random r it is hard to predict b(x; r).This assertion is proved by the counter-positive (see Exercise 7.14). Indeed, theforegoing statement is in the spirit of Theorem 7.7 itself, except that it refers to any\information about x" (rather than to the value f(x)). To demonstrate the point,

280 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSlet us rephrase the foregoing statement as follows: for every randomized process �,if given s it is hard to obtain �(s) then given s and a random r it is hard to predictb(�(s); r).7A coding theory perspective. Theorem 7.8 can be viewed as a list decodingprocedure for the Hadamard Code, where the Hadamard encoding of a string x 2f0; 1gn is the 2n-bit long string containing b(x; r) for every r 2 f0; 1gn. In contrastto standard decoding in which the task is recovering the unique information that isencoded in the codeword that is closest to the given string, in list decoding the taskis recovering all strings having encoding that is at a speci�ed distance from thegiven string.8 We mention that list decoding is applicable and valuable in the casethat the speci�ed distance does not allow for unique decoding (i.e., the speci�eddistance is greater than half the distance of the code).Applications of hard-core predicates. Turning back to hard-core predicates,we mention that they play a central role in the construction of general-purpose pseu-dorandom generators (see Section 8.2), commitment schemes and zero-knowledgeproofs (see Sections 9.2.2 and C.4.3), and encryption schemes (see Appendix C.5).7.1.4 Reections on hardness ampli�cationLet us take notice that something truly amazing happens in Theorems 7.5 and 7.7.We are not talking merely of using an assumption to derive some conclusion; this iscommon practice in Mathematics and Science (and was indeed done several timesin previous chapters, starting with Theorem 2.28). The thing that is special aboutTheorems 7.5 and 7.7 (and we shall see more of this in Section 7.2 as well as inSections 8.2 and 8.3) is that a relatively mild intractability assumption is shown toimply a stronger intractability result.This strengthening of an intractability phenomenon (a.k.a hardness ampli�-cation) takes place while we admit that we do not understand the intractabilityphenomenon (because we do not understand the nature of e�cient computation).Nevertheless, hardness ampli�cation is enabled by the use of the counter-positive,which in this case is called a reducibility argument. At this point things look lessmiraculous: a reducibility argument calls for the design of a procedure (i.e., a re-duction) and a probabilistic analysis of its behavior. The design and analysis ofsuch procedures may not be easy, but it is certainly within the standard exper-tise of computer science. The fact that hardness ampli�cation is achieved via thiscounter-positive is best represented in the statement of Theorem 7.8.7Indeed, Theorem 7.7 is obtained as a special case by letting �(s) be uniformly distributed inf�1(s).8Further discussion of error-correcting codes and list-decoding is provided in Appendix E.1.

7.2. HARD PROBLEMS IN E 2817.2 Hard Problems in EAs in Section 7.1, we start with the assumption P 6= NP and seek to use it toour bene�t. Again, we shall actually use a seemingly stronger assumption; herethe strengthening is in requiring worst-case hardness with respect to non-uniformmodels of computation (rather than average-case hardness with respect to thestandard uniform model). Speci�cally, we shall assume that NP cannot be solvedby (non-uniform) families of polynomial-size circuits; that is, NP is not containedin P=poly (even not in�nitely often).Our goal is to transform this worst-case assumption into an average-case con-dition, which is useful for our applications. Since the transformation will not yielda problem in NP but rather one in E , we might as well take the seemingly weakerassumption by which E is not contained in P=poly (see Exercise 7.9). That is,our starting point is actually that there exists an exponential-time solvable decisionproblem such that any family of polynomial-size circuit fails to solve it correctly onall but �nitely many input lengths.9A di�erent perspective on our assumption is provided by the fact that E con-tains problems that cannot be solved in polynomial-time (cf.. Section 4.2.1). Thecurrent assumption goes beyond this fact by postulating the failure of non-uniformpolynomial-time machines rather than the failure of (uniform) polynomial-timemachines.Recall that our goal is to obtain a predicate (i.e., a decision problem) that iscomputable in exponential-time but is inapproximable by polynomial-size circuits.For sake of later developments, we formulate a general notion of inapproximability.De�nition 7.9 (inapproximability, a general formulation): We say that f : f0; 1g� !f0; 1g is (S; �)-inapproximable if for every family of S-size circuits fCngn2N and allsu�ciently large n it holds thatPr[Cn(Un) 6= f(Un)] � �(n)2 (7.7)We say that f is T -inapproximable if it is (T; 1� (1=T))-inapproximable.We chose the speci�c form of Eq. (7.7) such that the \level of inapproximability"represented by the parameter � will range in (0; 1) and increase with the valueof �. Speci�cally, (almost-everywhere) worst-case hardness for circuits of size Sis represented by (S; �)-inapproximability with �(n) = 2�n+1 (i.e., in this casePr[C(Un) 6= f(Un)] � 2�n for every circuit Cn of size S(n)). On the other hand, nopredicate can be (S; �)-inapproximable for �(n) = 1� 2�n even with S(n) = O(n)(i.e., Pr[C(Un) = f(Un)] � 0:5 + 2�n�1 holds for some linear-size circuit; seeExercise 7.10).We note that Eq. (7.7) can be interpreted as an upper-bound on the correlationof each adequate circuit with f (i.e., Eq. (7.7) is equivalent to E[�(C(Un); f(Un))] �9Note that our starting point is actually stronger than assuming the existence of a function fin E n P=poly. Such an assumption would mean that any family of polynomial-size circuit failsto compute f correctly on in�nitely many input lengths, whereas our starting point postulatesfailures on all but �nitely many lengths.

282 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS1 � �(n), where �(�; �) = 1 if � = � and �(�; �) = �1 otherwise).10 Thus, T -inapproximability means that no family of size T circuits can correlate f betterthan 1=T .We note that the existence of a non-uniformly hard one-way function (as inDe�nition 7.3) implies the existence of an exponential-time computable predicatethat is T -inapproximable for every polynomial T . (For details see Exercise 7.21.)However, our goal in this section is to establish this conclusion under a seeminglyweaker assumption.On almost everywhere hardness. We highlight the fact that both our as-sumptions and conclusions refer to almost everywhere hardness. For example, ourstarting point is not merely that E is not contained in P=poly (or in other circuitsize classes to be discussed), but rather that this is the case almost everywhere.Note that by saying that f has circuit complexity exceeding S, we merely meanthat there are in�nitely many n's such that no circuit of size S(n) can compute fcorrectly on all inputs of length n. In contrast, by saying that f has circuit com-plexity exceeding S almost everywhere, we mean that for all but �nite many n's nocircuit of size S(n) can computes f correctly on all inputs of length n. (Indeed, it isnot known whether an \in�nitely often" type of hardness implies a corresponding\almost everywhere" hardness.)The class E. Recall that E denote the class of exponential-time solvable decisionproblems (equivalently, exponential-time computable Boolean predicates); that is,E = ["Dtime(t"), where t"(n) def= 2"n.The rest of this section. We start (in Section 7.2.1) with a treatment of as-sumptions and hardness ampli�cation regarding polynomial-size circuits, whichsu�ce for non-trivial derandomization of BPP. We then turn (in Section 7.2.2) toassumptions and hardness ampli�cation regarding exponential-size circuits, whichyield a \full" derandomization of BPP (i.e., BPP = P). In fact, both sectionscontain material that is applicable to various other circuit-size bounds, but themotivational focus is as stated.Teaching note: Section 7.2.2 is advanced material, which is best left for independentreading. Furthermore, for one of the central results (i.e., Lemma 7.23) only an outlineis provided and the interested reader is referred to the original paper [125].7.2.1 Ampli�cation wrt polynomial-size circuitsOur goal here is to prove the following result.Theorem 7.10 Suppose that for every polynomial p there exists a problem in Ehaving circuit complexity that is almost-everywhere greater than p. Then there existpolynomial-inapproximable Boolean functions in E; that is, for every polynomial pthere exists a p-inapproximable Boolean function in E.10Indeed, E[�(X;Y)] = Pr[X=Y]� Pr[X 6=Y] = 1� 2Pr[X 6=Y].

7.2. HARD PROBLEMS IN E 283Theorem 7.10 is used towards deriving a meaningful derandomization of BPPunder the aforementioned assumption (see Part 2 of Theorem 8.19). We presenttwo proofs of Theorem 7.10. The �rst proof proceeds in two steps:1. Starting from the worst-case hypothesis, we �rst establish some mild level ofaverage-case hardness (i.e., a mild level of inapproximability). Speci�cally,we show that for every polynomial p there exists a problem in E that is(p; ")-inapproximable for "(n) = 1=n3.2. Using the foregoing mild level of inapproximability, we obtain the desiredstrong level of inapproximability (i.e., p0-inapproximability for every polyno-mial p0). Speci�cally, for every two polynomials p1 and p2, we prove that if thefunction f is (p1; 1=p2)-inapproximable, then the function F (x1; :::; xt(n)) =�t(n)i=1 f(xi), where t(n) = n�p2(n) and x1; :::; xt(n) 2 f0; 1gn, is p0-inapproximablefor p0(t(n) � n) = p1(n)
(1)=poly(t(n)). This claim is known as Yao's XORLemma and its proof is far more complex than the proof of its informationtheoretic analogue (discussed at the beginning of x7.2.1.2).The second proof of Theorem 7.10 consists of showing that the construction em-ployed in the �rst step, when composed with Theorem 7.8, actually yields thedesired end result. This proof will uncover a connection between hardness ampli�-cation and coding theory. Our presentation will thus proceed in three correspondingsteps (presented in x7.2.1.1-7.2.1.3, and schematically depicted in Figure 7.2).
worst-case

HARDNESS HARDNESS

average-case
mild

via list decoding (7.2.1.3)

7.2.1.1 7.2.1.2

Yao’s XOR

derandomized
Yao’s XOR (7.2.2)

inapprox.

Figure 7.2: Proofs of hardness ampli�cation: organization7.2.1.1 From worst-case hardness to mild average-case hardnessThe transformation of worst-case hardness into average-case hardness (even in amild sense) is indeed remarkable. Note that worst-case hardness may be due toa relatively small number of instances, whereas even mild forms of average-casehardness refer to a very large number of possible instances.11 In other words, weshould transform hardness that may occur on a negligible fraction of the instances11Indeed, worst-case hardness with respect to polynomial-size circuits cannot be due to a poly-nomial number of instances, because a polynomial number of instances can be hard-wired into

284 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSinto hardness that occurs on a noticeable fraction of the instances. Intuitively, weshould \spread" the hardness of few instances (of the original problem) over all (ormost) instances (of the transformed problem). The counter-positive view is thatcomputing the value of typical instances of the transformed problem should enablesolving the original problem on every instance.The aforementioned transformation is based on the self-correction paradigm,to be reviewed �rst. The paradigm refers to functions g that can be evaluatedat any desired point by using the value of g at a few random points, where eachof these points is uniformly distributed in the function's domain (but indeed thepoints are not independently distributed). The key observation is that if g(x) canbe reconstructed based on the value of g at t such random points, then such areconstruction can tolerate a 1=3t fraction of errors (regarding the values of g).Thus, if we can correctly obtain the value of g on all but at most a 1=3t fractionof its domain, then we can probabilistically recover the correct value of g at anypoint with very high probability. It follows that if no probabilistic polynomial-timealgorithm can correctly compute g in the worst-case sense, then every probabilisticpolynomial-time algorithm must fail to correctly compute g on more than a 1=3tfraction of its domain.The archetypical example of a self-correctable function is any m-variate poly-nomial of individual degree d over a �nite �eld F such that jF j > dm + 1. Thevalue of such a polynomial at any desired point x can be recovered based on thevalues of dm + 1 points (other than x) that reside on a random line that passesthrough x. Note that each of these points is uniformly distributed in Fm, which isthe function's domain. (For details, see Exercise 7.11.)Recall that we are given an arbitrary function f 2 E that is hard to computein the worst-case. Needless to say, this function is not necessarily self-correctable(based on relatively few points), but it can be extended into such a function.Speci�cally, we extend f : [N]! f0; 1g (viewed as f : [N1=m]m ! f0; 1g) to an m-variate polynomial of individual degree d over a �nite �eld F such that jF j > dm+1and (d + 1)m = N . Intuitively, in terms of worst-case complexity, the extendedfunction is at least as hard as f , which means that it is hard (in the worst-case).The point is that the extended function is self-correctable and thus its worst-casehardness implies that it must be at least mildly hard in the average-case. Detailsfollow.Construction 7.11 (multi-variate extension)12: For any function fn : f0; 1gn !f0; 1g, a �nite �eld F , a set H � F and an integer m such that jH jm = 2n andjF j > (jH j � 1)m + 1, we consider the function f̂n : Fm ! F de�ned as the m-variate polynomial of individual degree jH j�1 that extends fn : Hm ! f0; 1g. Thatsuch circuits. Still, for all we know, worst-case hardness may be due to a small super-polynomialnumber of instances (e.g., nlog2 n instances). In contrast, even mild forms of average-case hardnessmust be due to an exponential number of instances (i.e., 2n=poly(n) instances).12The algebraic fact underlying this construction is that for any function f : Hm ! F thereexists a unique m-variate polynomial f̂ : Fm ! F of individual degree jHj�1 such that for everyx 2 Hm it holds that f̂(x) = f(x). This polynomial is called a multi-variate polynomial extensionof f , and it can be found in poly(jHjm log jF j)-time. For details, see Exercise 7.12.

7.2. HARD PROBLEMS IN E 285is, we identify f0; 1gn with Hm, and de�ne f̂n as the unique m-variate polynomialof individual degree jH j � 1 that satis�es f̂n(x) = fn(x) for every x 2 Hm, wherewe view f0; 1g as a subset of F .Note that f̂n can be evaluated at any desired point, by evaluating fn on its entiredomain, and determining the unique m-variate polynomial of individual degreejH j�1 that agrees with fn onHm (see Exercise 7.12). Thus, for f : f0; 1g� ! f0; 1gin E , the corresponding f̂ (de�ned by separately extending the restriction of f toeach input length) is also in E . For the sake of preserving various complexitymeasures, we wish to have jFmj = poly(2n), which leads to setting m = n= log2 n(yielding jH j = n and jF j = poly(n)). In particular, in this case f̂n is de�ned overstrings of length O(n). The mild average-case hardness of f̂ follows by the forgoingdiscussion. In fact, we state and prove a more general result.Theorem 7.12 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S. Then, there exists anexponential-time computable function f̂ : f0; 1g� ! f0; 1g� such that jf̂(x)j � jxjand for every family of circuit fC 0n0gn02N of size S0(n0) = S(n0=O(1))=poly(n0) itholds that Pr[C 0n0(Un0) 6= f̂(Un0)] > (1=n0)2. Furthermore, f̂ does not depend on S.Theorem 7.12 seems to complete the �rst step of the proof of Theorem 7.10, ex-cept that we desire a Boolean function rather than a function that merely doesnot stretch its input. The extra step of obtaining a Boolean function that is(poly(n); n�3)-inapproximable is taken in Exercise 7.13.13 Essentially, if f̂ is hardto compute on a noticeable fraction of its inputs then the Boolean predicate thaton input (x; i) returns the ith bit of f̂(x) must be mildly inapproximable.Proof Sketch: Given f as in the hypothesis and for every n 2 N , we consider therestriction of f to f0; 1gn, denoted fn, and apply Construction 7.11 to it, whileusing m = n= logn, jH j = n and n2 < jF j = poly(n). Recall that the resultingfunction f̂n maps strings of length n0 = log2 jFmj = O(n) to strings of lengthlog2 jF j = O(log n). Following the foregoing discussion, we shall show that circuitsthat approximate f̂n too well yield circuits that compute fn correctly on each input.Using the hypothesis regarding the size of the latter, we shall derive a lower-boundon the size of the former. The actual (reducibility) argument proceeds as follows.We �x an arbitrary circuit C 0n0 that satis�esPr[C 0n0(Un0) = f̂n(Un0)] � 1� (1=n0)2 > 1� (1=3t); (7.8)where t def= (jH j � 1)m + 1 = o(n2) exceeds the total degree of f̂n. Using theself-correction feature of f̂n, we observe that by making t oracle calls to C 0n0 we canprobabilistically recover the value of (f̂n and thus of) fn on each input, with proba-bility at least 2=3. Using error-reduction and (non-uniform) derandomization as in13A quantitatively stronger bound can be obtained by noting that the proof of Theorem 7.12actually establishes an error lower-bound of
((log n0)=(n0)2) and that jf̂(x)j = O(log jxj).

286 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSthe proof of Theorem 6.3,14 we obtain a circuit of size n3 � jC 0n0 j that computes fn.By the hypothesis n3 � jC 0n0 j > S(n), and so jC 0n0 j > S(n0=O(1))=poly(n0). Recallingthat C 0n0 is an arbitrary circuit that satis�es Eq. (7.8), the theorem follows.Digest. The proof of Theorem 7.12 is actually a worst-case to average-case re-duction. That is, the proof consists of a self-correction procedure that allows forthe evaluation of f at any desired n-bit long point, using oracle calls to any circuitthat computes f̂ correctly on a 1� (1=n0)2 fraction of the n0-bit long inputs. Werecall that if f 2 E then f̂ 2 E , but we do not know how to preserve the complexityof f in case it is in NP . (Various indications to the di�culty of a worst-case toaverage-case reduction for NP are known; see, e.g., [40].)We mention that the ideas underlying the proof of Theorem 7.12 have beenapplied in a large variety of settings. For example, we shall see applications ofthe self-correction paradigm in x9.3.2.1 and in x9.3.2.2. Furthermore, in x9.3.2.2we shall re-encounter the very same multi-variate extension used in the proof ofTheorem 7.12.7.2.1.2 Yao's XOR LemmaHaving obtained a mildly inapproximable predicate, we wish to obtain a stronglyinapproximable one. The information theoretic context provides an appealing sug-gestion: Suppose that X is a Boolean random variable (representing the mildinapproximability of the aforementioned predicate) that equals 1 with probability". Then XORing the outcome of n=" independent samples of X yields a bit thatequals 1 with probability 0:5� exp(�
(n)). It is tempting to think that the sameshould happen in the computational setting. That is, if f is hard to approximatecorrectly with probability exceeding 1 � " then XORing the output of f on n="non-overlapping parts of the input should yield a predicate that is hard to approx-imate correctly with probability that is non-negligibly higher than 1=2. The latterassertion turns out to be correct, but (even more than in Section 7.1.2) the proofof the computational phenomenon is considerably more complex than the analysisof the information theoretic analogue.Theorem 7.13 (Yao's XOR Lemma): There exist a universal constant c > 0 suchthat the following holds. If, for some polynomials p1 and p2, the Boolean function fis (p1; 1=p2)-inapproximable, then the function F (x1; :::; xt(n)) = �t(n)i=1 f(xi), wheret(n) = n � p2(n) and x1; :::; xt(n) 2 f0; 1gn, is p0-inapproximable for p0(t(n) � n) =p1(n)c=t(n)1=c. Furthermore, the claim holds also if the polynomials p1 and p2 arereplaced by any integer functions.14First, we apply the foregoing probabilistic procedure O(n) times and take a majority vote.This yields a probabilistic procedure that, on input x 2 f0; 1gn, invokes C0n0 for o(n3) times andcomputes fn(x) correctly with probability greater than 1 � 2�n. Finally, we just �x a sequenceof random choices that is good for all 2n possible inputs, and obtain a circuit of size n3 � jC0n0 jthat computes fn correctly on every n-bit input.

7.2. HARD PROBLEMS IN E 287Combining Theorem 7.12 (and Exercise 7.13), and Theorem 7.13, we obtain a proofof Theorem 7.10. (Recall that an alternative proof is presented in x7.2.1.3.)We note that proving Theorem 7.13 seems more di�cult than proving Theo-rem 7.5 (i.e., the ampli�cation of one-way functions), due to two issues. Firstly,unlike in Theorem 7.5, the computational problems are not in PC and thus wecannot e�ciently recognize correct solutions to them. Secondly, unlike in Theo-rem 7.5, solutions to instances of the transformed problem do not correspond ofthe concatenation of solutions for the original instances, but are rather a functionof the latter that losses almost all the information about the latter. The proof ofTheorem 7.13 presented next deals with each of these two di�culties separately.Several di�erent proofs of Theorem 7.13 are known. As just stated, the proofthat we present is conceptually appealing because it deal separately with two unre-lated di�culties. Furthermore, this proof bene�ts most from the material alreadypresented in Section 7.1. The proof proceeds in two steps:1. First we prove that the corresponding \direct product" function P (x1; :::; xt(n)) =(f(x1); :::; f(xt(n))) is di�cult to compute in a strong average-case sense.2. Next we establish the desired result by an application of Theorem 7.8.Thus, given Theorem 7.8, our main focus is on the �rst step, which is of independentinterest (and is thus generalized from Boolean functions to arbitrary ones).Theorem 7.14 (The Direct Product Lemma): Let p1 and p2 be two polynomials,and suppose that f : f0; 1g� ! f0; 1g� is such that for every family of p1-sizecircuits, fCngn2N, and all su�ciently large n 2 N , it holds that Pr[Cn(Un) 6=f(Un)] > 1=p2(n). Let P (x1; :::; xt(n)) = (f(x1); :::; f(xt(n))), where x1; :::; xt(n) 2f0; 1gn and t(n) = n � p2(n). Then, for any "0 : N ! [0; 1], setting p0 such thatp0(t(n) � n) = p1(n)=poly(t(n)="0(t(n) � n)), it holds that every family of p0-sizecircuits, fC 0mgm2N, satis�es Pr[C 0m(Um) = P (Um)] < "0(m). Furthermore, theclaim holds also if the polynomials p1 and p2 are replaced by any integer functions.In particular, for an adequate constant c > 0, selecting "0(t(n) � n) = p1(n)�c, weobtain p0(t(n) � n) = p1(n)c=t(n)1=c, and so "0(m) � 1=p0(m).Deriving Theorem 7.13 from Theorem 7.14. Theorem 7.13 follows fromTheorem 7.14 by considering the function P 0(x1; :::; xt(n); r) = b(f(x1) � � � f(xt(n)); r),where f is a Boolean function, r 2 f0; 1gt(n), and b(y; r) is the inner-productmodulo 2 of the t(n)-bit long strings y and r. Note that, for the correspondingP , we have P 0(x1; :::; xt(n); r) � b(P (x1; :::; xt(n)); r), whereas F (x1; :::; xt(n)) =P 0(x1; :::; xt(n); 1t(n)). Intuitively, the inapproximability of P 0 should follow fromthe strong average-case hardness of P (via Theorem 7.8), whereas it should be pos-sible to reduce the approximation of P 0 to the approximation of F (and thus derivethe desired inapproximability of F). Indeed, this intuition does not fail, but detail-ing the argument seems a bit cumbersome (and so we only provide the clues here).Assuming that f is (p1; 1=p2)-inapproximable, we �rst apply Theorem 7.14 (with"0(t(n) � n) = p1(n)�c) and then apply Theorem 7.8 (see Exercise 7.14), inferring

288 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSthat P 0 is p0-inapproximable for p0(t(n) � n) = p1(n)
(1)=poly(t(n)). The less obvi-ous part of the argument is reducing the approximation of P 0 to the approximationof F . The key observation is thatP 0(x1; :::; xt(n); r) = F (z1; :::; zt(n))� Mi:ri=0 f(zi) (7.9)where zi = xi if ri = 1 and is an arbitrary n-bit long string otherwise. Now, ifsomebody provides us with samples of the distribution (Un; f(Un)), then we canuse these samples in the role of the pairs (zi; f(zi)) for the indices i that satisfyri = 0. Considering a best choice of such samples (i.e., one for which we obtain thebest approximation of P 0), we obtain a circuit that approximates P 0 (by using acircuit that approximates F and the said choices of samples). (The details are leftfor Exercise 7.16.) Theorem 7.13 follows.Proving Theorem 7.14. Note that Theorem 7.14 is closely related to Theo-rem 7.5; see Exercise 7.17 for details. This suggests employing an analogous proofstrategy; that is, converting circuits that violate the theorem's conclusion into cir-cuits that violate the theorem's hypothesis. We note, however, that things weremuch simpler in the context of Theorem 7.5: there we could (e�ciently) checkwhether or not a value contained in the output of the circuit that solves the direct-product problem constitutes a correct answer for the corresponding instance of thebasic problem. Lacking such an ability in the current context, we shall have touse such values more carefully. Loosely speaking, we shall take a weighted ma-jority vote among various answers, where the weights reect our con�dence in thecorrectness of the various answers.We establish Theorem 7.14 by applying the following lemma that provides quan-titative bounds on the feasibility of computing the direct product of two functions.In this lemma, fYmgm2N and fZmgm2N are independent probability ensembles suchthat Ym; Zm 2 f0; 1gm, and Xn = (Y`(n); Zn�`(n)) for some function ` : N ! N .The lemma refers to the success probability of computing the direct product func-tion F : f0; 1g�! f0; 1g� de�ned by F (yz) = (F1(y); F2(z)), where jyj = `(jyzj),when given bounds on the success probability of computing F1 and F2 (separately).Needless to say, these probability bounds refer to circuits of certain sizes. We stressthat the lemma is not symmetric with respect to the two functions: it guarantees astronger (and in fact lossless) preservation of circuit sizes for one of the functions(which is arbitrarily chosen to be F1).Lemma 7.15 (Direct Product, a quantitative two argument version): For fYmg,fZmg, F1, F2, `, fXng and F as in the foregoing, let �1(�) be an upper-bound onthe success probability of s1(�)-size circuits in computing F1 over fYmg. That is,for every such circuit family fCmgPr[Cm(Ym)=F1(Ym)] � �1(m):Likewise, suppose that �2(�) is an upper-bound on the probability that s2(�)-sizecircuits compute F2 over fZmg. Then, for every function " :N!R , the function

7.2. HARD PROBLEMS IN E 289� de�ned as �(n) def= �1(`(n)) � �2(n� `(n)) + "(n)is an upper-bound on the probability that families of s(�)-size circuits correctly com-pute F over fXng, wheres(n) def= min�s1(`(n)) ; s2(n� `(n))poly(n="(n))�:Theorem 7.14 is derived from Lemma 7.15 by using a careful induction, whichcapitalizes on the highly quantitative form of Lemma 7.15 and in particular on thefact that no loss is incurred for one of the two functions that are used. We �rstdetail this argument, and next establish Lemma 7.15 itself.Deriving Theorem 7.14 from Lemma 7.15. We write P (x1; x2; :::; xt(n)) asP (t(n))(x1; x2; :::; xt(n)), where P (i)(x1; :::; xi) = (f(x1); :::; f(xi)) and P (i)(x1; :::; xi) �(P (i�1)(x1; :::; xi�1); f(xi)). For any function ", we shall prove by induction on ithat circuits of size s(n) = p1(n)=poly(t(n)="(n)) cannot compute P (i)(Ui�n) withsuccess probability greater than (1�(1=p2(n))i+(i�1) �"(n), where p1 and p2 are asin Theorem 7.14. Thus, no s(n)-size circuit can compute P (t(n))(Ut(n)�n) with suc-cess probability greater than (1�(1=p2(n))t(n)+(t(n)�1)�"(n) = exp(�n)+(t(n)�1) � "(n). Recalling that this is established for any function ", Theorem 7.14 follows(by using "(n) = "0(t(n) �n)=t(n), and observing that the setting s(n) = p0(t(n) �n)satis�es s(n) = p1(n)=poly(t(n)="(n))).Turning to the induction itself, we �rst note that its basis (i.e., i = 1) isguaranteed by the theorem's hypothesis (i.e., the hypothesis of Theorem 7.14regarding f). The induction step (i.e., from i to i + 1) will be proved by us-ing Lemma 7.15 with F1 = P (i) and F2 = f , along with the parameter setting�(i)1 (i �n) = (1� (1=p2(n))i+(i� 1) � "(n), s(i)1 (i �n) = s(n), �(i)2 (n) = 1� (1=p2(n))and s(i)2 (n) = poly(n="(n)) � s(n) = p1(n). Details follow.Note that the induction hypothesis (regarding P (i)) implies that F1 satis�es thehypothesis of Lemma 7.15 (w.r.t size s(i)1 and success rate �(i)1), whereas the theo-rem's hypothesis regarding f implies that F2 satis�es the hypothesis of Lemma 7.15(w.r.t size s(i)2 and success rate �(i)2). Thus, F = P (i+1) satis�es the lemma's conclu-sion with respect to circuits of size min(s(i)1 (i �n); s(i)2 (n)=poly(n="(n))) = s(n) andsuccess rate �(i)1 (i �n) ��(i)2 (n)+"(n) which is upper-bounded by (1� (1=p2(n))i+1+i � "(n). This completes the induction step.We stress the fact that we used induction for a non-constant number of steps,and that this was enabled by the highly quantitative form of the inductive claim andthe small loss incurred by the inductive step. Speci�cally, the size bound did notdecrease during the induction (although we could a�ord a small additive loss in eachstep, but not a constant factor loss). Likewise, the success rate su�ered an additiveincrease of "(n) in each step, which was accommodated by the inductive claim.Thus, assuming the correctness of Lemma 7.15, we have established Theorem 7.14.

290 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSProof of Lemma 7.15: Proceeding (as usual) by the contrapositive, we considera family of s(�)-size circuits fCngn2N that violates the lemma's conclusion; that is,Pr[Cn(Xn) = F (Xn)] > �(n). We will show how to use such circuits in order toobtain either circuits that violate the lemma's hypothesis regarding F1 or circuitsthat violate the lemma's hypothesis regarding F2. Towards this end, it is instructiveto write the success probability of Cn in a conditional form, while denoting the ithoutput of Cn(x) by Cn(x)i (i.e., Cn(x) = (Cn(x)1; Cn(x)2)):Pr[Cn(Y`(n); Zn�`(n))=F (Y`(n); Zn�`(n))]= Pr[Cn(Y`(n); Zn�`(n))1=F1(Y`(n))]� Pr[Cn(Y`(n); Zn�`(n))2=F2(Zn�`(n)) jCn(Y`(n); Zn�`(n))1=F1(Y`(n))]:The basic idea is that if the �rst factor is greater than �1(`(n)) then we imme-diately derive a circuit (i.e., C 0n(y) = Cn(y; Zn�`(n))1) contradicting the lemma'shypothesis regarding F1, whereas if the second factor is signi�cantly greater than�2(n � `(n)) then we can obtain a circuit contradicting the lemma's hypothesisregarding F2. The treatment of the latter case is indeed not obvious. The ideais that a su�ciently large sample of (Y`(n); F1(Y`(n))), which may be hard-wiredinto the circuit, allows using the conditional probability space (in such a circuit)towards an attempt to approximate F2. That is, on input z, we select uniformly astring y satisfying Cn(y; z)1 = F1(y) (from the aforementioned sample), and out-put Cn(y; z)2. For a �xed z, sampling of the conditional space (i.e., y's satisfyingCn(y; z)1 = F1(y)) is possible provided that Pr[Cn(Y`(n); z)1=F1(Y`(n))] holds withnoticeable probability. The last caveat motivates a separate treatment of z's havinga noticeable value of Pr[Cn(Y`(n); z)1=F1(Y`(n))] and of the rest of z's (which areessentially ignored). Details follow.Let us �rst simplify the notations by �xing a generic n and using the abbre-viations C = Cn, " = "(n), ` = `(n), Y = Y`, and Z = Yn�`. We call z goodif Pr[C(Y; z)1 = F1(Y)] � "=2 and let G be the set of good z's. Next, ratherthan considering the event C(Y; Z) = F (Y; Z), we consider the combined eventC(Y; Z)=F (Y; Z) ^ Z2G, which occurs with almost the same probability (up toan additive error term of "=2). This is the case because, for any z 62 G, it holdsthat Pr[C(Y; z)=F (Y; z)] � Pr[C(Y; z)1=F1(Y)] < "=2and thus z's that are not good do not contribute much to Pr[C(Y; Z) =F (Y; Z)];that is, Pr[C(Y; Z)=F (Y; Z) ^ Z2G] is lower-bounded by Pr[C(Y; Z)=F (Y; Z)] �"=2. Using Pr[C(Y; z)=F (Y; z)] > �(n) = �1(`) � �2(n� `) + ", we havePr[C(Y; Z)=F (Y; Z) ^ Z2G] > �1(`) � �2(n� `) + "2 : (7.10)We proceed according to the forgoing outline, �rst showing that if Pr[C(Y; Z)1 =F1(Y)] > �1(`) then we immediately derive circuits violating the hypothesis con-cerning F1. Actually, we prove something stronger (which we will actually need forthe other case).Claim 7.15.1: For every z, it holds that Pr[C(Y; z)1=F1(Y)] � �1(`).

7.2. HARD PROBLEMS IN E 291Proof: Otherwise, using any z 2 f0; 1gn�` that satis�es Pr[C(Y; z)1 = F1(Y)] >�1(`), we obtain a circuit C 0(y) def= C(y; z)1 that contradicts the lemma's hypothesisconcerning F1. 2Using Claim 7.15.1, we show how to obtain a circuit that violates the lemma'shypothesis concerning F2, and doing so we complete the proof of the lemma.Claim 7.15.2: There exists a circuit C 00 of size s2(n� `) such thatPr[C 00(Z)=F2(Z)] � Pr[C(Y; Z)=F (Y; Z) ^ Z2G]�1(`) � "2> �2(n� `)Proof: The second inequality is due to Eq. (7.10), and thus we focus on establish-ing the �rst inequality. We construct the circuit C 00 as suggested in the foregoingoutline. Speci�cally, we take a poly(n=")-large sample, denoted S, from the distri-bution (Y; F1(Y)) and let C 00(z) def= C(y; z)2, where (y; v) is a uniformly selectedamong the elements of S for which C(y; z)1 = v holds. Details follow.Let m be a su�ciently large number that is upper-bounded by a polynomialin n=", and consider a random sequence of m pairs, generated by taking m in-dependent samples from the distribution (Y; F1(Y)). We stress that we do notassume here that such a sample, denoted S, can be produced by an e�cient (uni-form) algorithm (but, jumping ahead, we remark that such a sequence can be�xed non-uniformly). For each z 2 G � f0; 1gn�`, we denote by Sz the set ofpairs (y; v) 2 S for which C(y; z)1 = v. Note that Sz is a random sample of theresidual probability space de�ned by (Y; F1(Y)) conditioned on C(Y; z)1 = F1(Y).Also, with overwhelmingly high probability, jSzj =
(n="2), because z 2 G im-plies Pr[C(Y; z)1=F1(Y)] � "=2 and m =
(n="3).15 Thus, for each z 2 G, withoverwhelming probability (taken over the choices of S), the sample Sz providesa good approximation to the conditional probability space.16 In particular, withprobability greater than 1� 2�n, it holds thatjf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSz j � Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y)]� "2 :(7.11)Thus, with positive probability, Eq. (7.11) holds for all z 2 G � f0; 1gn�`. Thecircuit C 00 computing F2 is now de�ned as follows. The circuit will contain a setS = f(yi; vi) : i = 1; :::;mg (i.e., S is \hard-wired" into the circuit C 00) such thatthe following two conditions hold:1. For every i 2 [m] it holds that vi = F1(yi).2. For each good z the set Sz = f(y; v)2S : C(y; z)1=vg satis�es Eq. (7.11).(In particular, Sz is not empty for any good z.)15Note that the expected size of Sz is m � "=2 =
(n="2). Using Cherno� Bound, we getPrS [jSzj < m"=4] = exp(�
(n="2)) < 2�n.16For Tz = fy : C(y; z)1 = F1(y)g, we are interested in a sample S0 of Tz such thatjfy 2 S0 : C(y; z)2=F2(z)gj=jS0j approximates Pr[C(Y; z)2 = F2(z) jY 2 Tz] up-to an additiveterm of "=2. Using Cherno� Bound again, we note that a random S0 � Tz of size
(n="2)provides such an approximation with probability greater than 1� 2�n.

292 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSOn input z, the circuit C 00 �rst determines the set Sz, by running C form times andchecking, for each i = 1; :::;m, whether or not C(yi; z) = vi. In case Sz is empty,the circuit returns an arbitrary value. Otherwise, the circuit selects uniformly apair (y; v) 2 Sz and outputs C(y; z)2. (The latter random choice can be eliminatedby an averaging argument; see Exercise 7.15.) Using the de�nition of C 00 andEq. (7.11), we have:Pr[C 00(Z)=F2(Z)] � Xz2GPr[Z=z] � Pr[C 00(z)=F2(z)]= Xz2GPr[Z=z] � jf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSzj� Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y)] � "2�= Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) ^ C(Y; z)1=F1(Y)]Pr[C(Y; z)1=F1(Y)] � "2�Next, using Claim 7.15.1, we have:Pr[C 00(Z)=F2(Z)] � Xz2GPr[Z=z] � Pr[C(Y; z)=F (Y; z)]�1(`) ! � "2= Pr[C(Y; Z)=F (Y; Z) ^ Z2G]�1(`) � "2Finally, using Eq. (7.10), the claim follows. 2This completes the proof of the lemma.Comments. Firstly, we wish to call attention to the care with which an inductiveargument needs to be carried out in the computational setting, especially when anon-constant number of inductive steps is concerned. Indeed, our inductive proofof Theorem 7.14 involves invoking a quantitative lemma (i.e., Lemma 7.15) thatallows to keep track of the relevant quantities (e.g., success probability and circuitsize) throughout the induction process. Secondly, we mention that Lemma 7.15(as well as Theorem 7.14) has a uniform complexity version that assumes that onecan e�ciently sample the distribution (Y`(n); F1(Y`(n))) (resp., (Un; f(Un))). Fordetails see [99]. Indeed, a good lesson from the proof of Lemma 7.15 is that non-uniform circuits can \e�ectively sample" any distribution. Lastly, we mention thatTheorem 7.5 (the ampli�cation of one-way functions) and Theorem 7.13 (Yao'sXOR Lemma) also have (tight) quantitative versions (see, e.g., [88, Sec. 2.3.2] and[99, Sec. 3], respectively).7.2.1.3 List decoding and hardness ampli�cationRecall that Theorem 7.10 was proved in x7.2.1.1-7.2.1.2, by �rst constructing amildly inapproximable predicate via Construction 7.11, and then amplifying its

7.2. HARD PROBLEMS IN E 293hardness via Yao's XOR Lemma. In this subsection we show that the construc-tion used in the �rst step (i.e., Construction 7.11) actually yields a strongly in-approximable predicate. Thus, we provide an alternative proof of Theorem 7.10.Speci�cally, we show that a strongly inapproximable predicate (as asserted in The-orem 7.10) can be obtained by combining Construction 7.11 (with a suitable choiceof parameters) and the inner-product construction (of Theorem 7.8). The mainingredient of this argument is captured by the following result.Proposition 7.16 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S, and let " : N ! [0; 1] sat-isfying "(n) > 2�n. Let fn be the restriction of f to f0; 1gn, and let f̂n be the func-tion obtained from fn when applying Construction 7.1117 with jH j = n="(n) andjF j = jH j3. Then, the function f̂ : f0; 1g� ! f0; 1g�, de�ned by f̂(x) = f̂jxj=3(x),is computable in exponential-time and for every family of circuit fC 0n0gn02N of sizeS0(n0) = poly("(n0=3)=n0) � S(n0=3) it holds that Pr[C 0n0(Un0) = f̂(Un0)] < "0(n0) def="(n0=3).Before turning to the proof of Proposition 7.16, let us describe how it yields analternative proof of Theorem 7.10. Firstly, for some > 0, Proposition 7.16 yieldsan exponential-time computable function f̂ such that jf̂(x)j � jxj and for ev-ery family of circuit fC 0n0gn02N of size S0(n0) = S(n0=3)=poly(n0) it holds thatPr[C 0n0(Un0) = f̂(Un0)] < 1=S0(n0). Combining this with Theorem 7.8 (cf. Ex-ercise 7.14), we infer that P (x; r) = b(f̂(x); r), where jrj = jf̂(x)j � jxj, is S00-inapproximable for S00(n00) = S0(n00=2)
(1)=poly(n00). In particular, for every poly-nomial p, we obtain a p-inapproximable predicate in E by applying the foregoingwith S(n) = poly(n; p(n)). Thus, Theorem 7.10 follows.Teaching note: The following material is very advanced and is best left for indepen-dent reading. Furthermore, its understanding requires being comfortable with basicnotions of error-correcting codes (as presented in Appendix E.1).Proposition 7.16 is proven by observing that the transformation of fn to f̂nconstitutes a \good" code (see xE.1.1.4) and that any such code provides a worst-case to (strongly) average-case reduction. We start by de�ning the class of codesthat su�ces for the latter reduction, while noting that the code underlying themapping fn 7! f̂n is actually stronger than needed.De�nition 7.17 (e�cient codes supporting implicit decoding): For �xed functionsq; ` : N ! N and � : N ! [0; 1], the mapping � : f0; 1g� ! f0; 1g� is said tobe e�cient and supports implicit decoding with parameters q; `; � if it satis�es thefollowing two conditions:17Recall that in Construction 7.11 we have jHjm = 2n, which may yield a non-integer m if weinsist on jHj = n="(n). This problem was avoided in the proof of Theorem 7.12 (where jHj = nwas used), but is more acute in the current context because of " (e.g., we may have "(n) = 2�2n=7).Thus, we should either relax the requirement jHjm = 2n (e.g., allow 2n � jHjm < 22n) or relaxthe requirement jHj = n="(n). However, for the sake of simplicity, we ignore this issue in thepresentation.

294 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS1. Encoding (or e�ciency): The mapping � is polynomial-time computable.It is instructive to view � as mapping N-bit long strings to sequences oflength `(N) over [q(N)], and to view each (codeword) �(x) 2 [q(jxj)]`(jxj) asa mapping from [`(jxj)] to [q(jxj)].2. Decoding (in implicit form): There exists a polynomial p such that the fol-lowing holds. For every w : [`(N)]! [q(N)] and every x2 f0; 1gN such that�(x) is (1��(N))-close to w, there exists an oracle-aided18 circuit C of sizep((logN)=�(N)) such that, for every i 2 [N], it holds that Cw(i) equals theith bit of x.The encoding condition implies that ` is polynomially bounded. The decodingcondition refers to any �-codeword that agrees with the oracle w : [`(N)]! [q(N)]on an �(N) fraction of the `(N) coordinates, where �(N) may be very small.We highlight the non-triviality of the decoding condition: There are N bits ofinformation in x, while the size of the circuit C is only p((logN)=�(N)) and yet Cshould be able to recover any desired entry of x by making queries to w, which maybe a highly corrupted version of �(x). Needless to say, the number of queries madeby C is upper-bounded by its size (i.e.,p((logN)=�(N))). On the other hand, thedecoding condition does not refer to the complexity of obtaining the aforementionedoracle-aided circuits.Let us relate the transformation of fn to f̂n, which underlies Proposition 7.16,to De�nition 7.17. We view fn as a binary string of length N = 2n (representingthe truth-table of fn : Hm ! f0; 1g) and analogously view f̂n : Fm ! F as anelement of F jF jm = FN3 (or as a mapping from [N3] to [jF j]).19 Recall that thetransformation of fn to f̂n is e�cient. We mention that this transformation alsosupports implicit decoding with parameters q; `; � such that `(N) = N3, �(N) ="(n), and q(N) = (n="(n))3, where N = 2n. The latter fact is highly non-trivial,but establishing it is beyond the scope of the current text (and the interested readeris referred to [213]).We mention that the transformation of fn to f̂n enjoys additional features,which are not required in De�nition 7.17 and will not be used in the current context.For example, there are at most O(1=�(2n)2) codewords (i.e., f̂n's) that are (1 ��(2n))-close to any �xed w : [`(2n)]! [q(2n)], and the corresponding oracle-aidedcircuits can be constructed in probabilistic p(n=�(2n))-time.20 These results are18Oracle-aided circuits are de�ned analogously to oracle Turing machines. Alternatively, wemay consider here oracle machines that take advice such that both the advice length and themachine's running time are upper-bounded by p((logN)=�(N)). The relevant oracles may beviewed either as blocks of binary strings that encode sequences over [q(N)] or as sequences over[q(N)]. Indeed, in the latter case we consider non-binary oracles, which return elements in [q(N)].19Recall that N = 2n = jHjm and jF j = jHj3. Hence, jF jm = N3.20The construction may yield also oracle-aided circuits that compute the decoding of codewordsthat are almost (1 � �(2n))-close to w. That is, there exists a probabilistic p(n=�(2n))-timealgorithm that outputs a list of circuits that, with high probability, contains an oracle-aidedcircuit for the decoding of each codeword that is (1� �(2n))-close to w. Furthermore, with highprobability, the list contains only circuits that decode codewords that are (1 � �(2n)=2)-close tow.

7.2. HARD PROBLEMS IN E 295termed \list decoding with implicit representations" (and we refer the interestedreader again to [213]).Our focus is on showing that e�cient codes that supports implicit decodingsu�ce for worst-case to (strongly) average-case reductions. We state and prove ageneral result, noting that in the special case of Proposition 7.16 gn = f̂n (and`(2n) = 23n).Theorem 7.18 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S, and let " : N ! [0; 1].Consider a polynomial ` : N ! N such that n 7! log2 `(2n) is a 1-1 map of theintegers, and let m(n) = log2 `(2n); e.g., if `(N) = N3 then m(n) = 3n. Supposethat the mapping � : f0; 1g� ! f0; 1g� is e�cient and supports implicit decodingwith parameters q; `; � such that �(N) = "(blog2Nc). De�ne gn : [`(2n)]! [q(2n)]such that gn(i) equals the ith element of �(hfni) 2 [q(2n)]`(2n), where hfni denotesthe 2n-bit long description of the truth-table of fn. Then, the function g : f0; 1g� !f0; 1g�, de�ned by g(z) = gm�1(jzj)(z), is computable in exponential-time and forevery family of circuit fC 0n0gn02N of size S0(n0) = poly("(m�1(n0))=n0) �S(m�1(n0))it holds that Pr[C 0n0(Un0) = g(Un0)] < "0(n0) def= "(m�1(n0)).Proof Sketch: First note that we can generate the truth-table of fn in exponential-time, and by the encoding condition of � it follows that gn can be evaluated inexponential-time. The average-case hardness of g is established via a reducibil-ity argument as follows. We consider a circuit C 0 = C 0n0 of size S0 such thatPr[C 0n0(Un0) = g(Un0)] < "0(n0), let n = m�1(n0), and recall that "0(n0) = "(n) =�(2n). Then, C 0 : f0; 1gn0 ! f0; 1g (viewed as a function) is (1 � �(2n))-close tothe function gn, which in turn equals �(hfni). The decoding condition of � assertsthat we can recover each bit of hfni (i.e., evaluate fn) by an oracle-aided circuitD of size p(n=�(2n)) that uses (the function) C 0 as an oracle. Combining (thecircuit C 0) with the oracle-aided circuit D, we obtain a (standard) circuit of sizep(n=�(2n)) � S0(n0) < S(n) that computes fn. The theorem follows (i.e., the viola-tion of the conclusion regarding g implies the violation of the hypothesis regardingf).Advanced comment. For simplicity, we formulated De�nition 7.17 in a crudemanner that su�ces for the proving Proposition 7.16, where q(N) = ((log2N)=�(N))3.The issue is the existence of codes that satisfy De�nition 7.17: In general, suchcodes may exist only when using a more careful formulation of the decoding condi-tion that refers to codewords that are (1� ((1=q(N)) + �(N)))-close to the oraclew : [`(N)]! [q(N)] rather than being (1� �(N))-close to it.21 Needless to say, thedi�erence is insigni�cant in the case that �(N)� 1=q(N) (as in Proposition 7.16),21Note that this is the \right" formulation, because in the case that �(N) < 1=q(N) it seemsimpossible to satisfy the decoding condition (as stated in De�nition 7.17). Speci�cally, a random`(N)-sequence over [q(N)] is expected to be (1 � (1=q(N)))-close to any �xed codeword, andwith overwhelmingly high probability it will be (1 � ((1 � o(1))=q(N)))-close to almost all thecodewords, provided `(N) � q(N)2. But in case N > poly(q(N)), we cannot hope to recoveralmost all N-bit long strings based on poly(q(N) logN) bits of advice (per each of them).

296 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSbut it is signi�cant in case we care about binary codes (i.e., q(N) = 2, or codesover other small alphabets). We mention that Theorem 7.18 can be adapted tothis context (of q(N) = 2), and directly yields strongly inapproximable predicates.For details, see Exercise 7.18.7.2.2 Ampli�cation wrt exponential-size circuitsFor the purpose of stronger derandomization of BPP, we start with a stronger as-sumption regarding the worst-case circuit complexity of E and turn it to a strongerinapproximability result.Theorem 7.19 Suppose that there exists a decision problem L 2 E having almost-everywhere exponential circuit complexity; that is, there exists a constant b > 0 suchthat, for all but �nitely many n's, any circuit that correctly decides L on f0; 1gnhas size at least 2b�n. Then, for some constant c > 0 and T (n) def= 2c�n, there existsa T -inapproximable Boolean function in E.Theorem 7.19 can be used for deriving a full derandomization of BPP (i.e., BPP =P) under the aforementioned assumption (see Part 1 of Theorem 8.19).Theorem 7.19 follows as a special case of Proposition 7.16 (combined with The-orem 7.8; see Exercise 7.19). An alternative proof, which uses di�erent ideas thatare of independent interest, will be briey reviewed next. The starting point of thelatter proof is a mildly inapproximable predicate, as provided by Theorem 7.12.However, here we cannot a�ord to apply Yao's XOR Lemma (i.e., Theorem 7.13),because the latter relates the size of circuits that strongly fail to approximate apredicate de�ned over poly(n)-bit long strings to the size of circuits that fail tomildly approximate a predicate de�ned over n-bit long strings. That is, Yao'sXOR Lemma asserts that if f : f0; 1gn ! f0; 1g is mildly inapproximable bySf -size circuits then F : f0; 1gpoly(n) ! f0; 1g is strongly inapproximable by SF -size circuits, where SF (poly(n)) is polynomially related to Sf (n). In particular,SF (poly(n)) < Sf (n) seems inherent in this reasoning. For the case of polynomiallower-bounds, this is good enough (i.e., if Sf can be an arbitrarily large polynomialthen so can SF), but for Sf (n) = exp(
(n)) we cannot obtain SF (m) = exp(
(m))(but rather only obtain SF (m) = exp(m
(1))).The source of trouble is that ampli�cation of inapproximability was achievedby taking a polynomial number of independent instances. Indeed, we cannot hopeto amplify hardness without applying f on many instances, but these instancesneed not be independent. Thus, the idea is to de�ne F (r) = �poly(n)i=1 f(xi), wherex1; :::; xpoly(n) 2 f0; 1gn are generated from r and still jrj = O(n). That is, weseek a \derandomized" version of Yao's XOR Lemma. In other words, we seek a\pseudorandom generator" of a type appropriate for expanding r to dependent xi'ssuch that the XOR of the f(xi)'s is as inapproximable as it would have been forindependent xi's.2222Indeed, this falls within the general paradigm discussed in Section 8.1. Furthermore, this sug-gestion provides another perspective on the connection between randomness and computationaldi�culty, which is the focus of much discussion in Chapter 8 (see, e.g., x8.2.7.2).

7.2. HARD PROBLEMS IN E 297Teaching note: In continuation to Footnote 22, we note that there is a strong con-nection between the rest of this section and Chapter 8. On top of the aforementionedconceptual aspect, we will use technical tools from Chapter 8 towards establishing thederandomized version of the XOR Lemma. These tools include pairwise independencegenerators (see Section 8.5.1), random walks on expanders (see Section 8.5.3), and theNisan-Wigderson Construction (Construction 8.17). Indeed, recall that Section 7.2.2 isadvanced material, which is best left for independent reading.The pivot of the proof is the notion of a hard region of a Boolean function.Loosely speaking, S is a hard region of a Boolean function f if f is strongly inap-proximable on a random input in S; that is, for every (relatively) small circuit Cn,it holds that Pr[Cn(Un) = f(Un)jUn 2 S] � 1=2. By de�nition, f0; 1g� is a hardregion of any strongly inapproximable predicate. As we shall see, any mildly inap-proximable predicate has a hard region of density related to its inapproximabilityparameter. Loosely speaking, hardness ampli�cation will proceed via methods forgenerating related instances that hit the hard region with su�ciently high proba-bility. But, �rst let us study the notion of a hard region.7.2.2.1 Hard regionsWe actually generalize the notion of hard regions to arbitrary distributions. Theimportant special case of uniform distributions (on n-bit long strings) is obtainedfrom De�nition 7.20 by letting Xn equal Un (i.e., the uniform distribution overf0; 1gn). In general, we only assume that Xn 2 f0; 1gn.De�nition 7.20 (hard region relative to arbitrary distribution): Let f :f0; 1g�!f0; 1g be a Boolean predicate, fXngn2N be a probability ensemble, s :N !N and" :N! [0; 1].� We say that a set S is a hard region of f relative to fXngn2N with respectto s(�)-size circuits and advantage "(�) if for every n and every circuit Cn ofsize at most s(n), it holds thatPr[Cn(Xn)=f(Xn)jXn2S] � 12 + "(n):� We say that f has a hard region of density �(�) relative to fXngn2N (withrespect to s(�)-size circuits and advantage "(�)) if there exists a set S thatis a hard region of f relative to fXngn2N (with respect to the foregoingparameters) such that Pr[Xn2Sn] � �(n).Note that a Boolean function f is (s; 1� 2")-inapproximable if and only if f0; 1g�is a hard region of f relative to fUngn2N with respect to s(�)-size circuits andadvantage "(�). Thus, strongly inapproximable predicates (e.g., S-inapproximablepredicates for super-polynomial S) have a hard region of density 1 (with respect toa negligible advantage).23 But this trivial observation does not provide hard regions23Likewise, mildly inapproximable predicates have a hard region of density 1 with respect toan advantage that is noticeably smaller than 1=2.

298 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS(with respect to a small (i.e., close to zero) advantage) for mildly inapproximablepredicates. Providing such hard regions is the contents of the following theorem.Theorem 7.21 (hard regions for mildly inapproximable predicates): Let f :f0; 1g�!f0; 1g be a Boolean predicate, fXngn2N be a probability ensemble, s :N! N , and� : N ! [0; 1] such that �(n) > 1=poly(n). Suppose that, for every circuit Cn ofsize at most s(n), it holds that Pr[Cn(Xn) = f(Xn)] � 1 � �(n). Then, for every" :N! [0; 1], the function f has a hard region of density �0(�) relative to fXngn2Nwith respect to s0(�)-size circuits and advantage "(�), where �0(n) def= (1�o(1)) ��(n)and s0(n) def= s(n)=poly(n="(n)).In particular, if f is (s; 2�)-inapproximable then f has a hard region of density�0(�) � �(�) relative to the uniform distribution (with respect to s0(�)-size circuitsand advantage "(�)).Proof Sketch:24 The proof proceeds by �rst establishing that fXng is \related" to(or rather \dominates") an ensemble fYng such that f is strongly inapproximableon fYng, and next showing that this implies the claimed hard region. Indeed, thisnotion of \related ensembles" plays a central role in the proof.For � :N! [0; 1], we say that fXng �-dominates fYng if for every x it holds thatPr[Xn= x] � �(n) � Pr[Yn = x]. In this case we also say that fYng is �-dominatedby fXng. We say that fYng is critically �-dominated by fXng if for every x eitherPr[Yn=x] = (1=�(n)) � Pr[Xn=x] or Pr[Yn=x] = 0.25The notions of domination and critical domination play a central role in theproof, which consists of two parts. In the �rst part (Claim 7.21.1), we provethat, for fXng and � as in the theorem's hypothesis, there exists a ensemble fYngthat is �-dominated by fXng such that f is strongly inapproximable on fYng. Inthe second part (Claim 7.21.2), we prove that the existence of such a dominatedensemble implies the existence of an ensemble fZng that is critically �0-dominatedby fXng such that f is strongly inapproximable on fZng. Finally, we note thatsuch a critically dominated ensemble yields a hard region of f relative to fXng,and the theorem follows.Claim 7.21.1: Under the hypothesis of the theorem it holds that there exists aprobability ensemble fYng that is �-dominated by fXng such that, for every s0(n)-size circuit Cn, it holds thatPr[Cn(Yn)=f(Yn)] � 12 + "(n)2 : (7.12)Proof: We start by assuming, towards the contradiction, that for every distri-bution Yn that is �-dominated by Xn there exists a s0(n)-size circuits Cn suchthat Pr[Cn(Yn) = f(Yn)] > 0:5 + "0(n), where "0(n) = "(n)=2. One key observa-tion is that there is a correspondence between the set of all distributions that are24See details in [99, Apdx. A].25Actually, we should allow one point of exception; that is, relax the requirement by sayingthat for at most one string x 2 f0; 1gn it holds that 0 < Pr[Yn=x] < Pr[Xn=x]=�(n). This pointhas little e�ect on the proof, and is ignored in our presentation.

7.2. HARD PROBLEMS IN E 299each �-dominated by Xn and the set of all the convex combinations of critically �-dominated (by Xn) distributions; that is, each �-dominated distribution is a convexcombinations of critically �-dominated distributions and vice versa (cf., a specialcase in xD.4.1.1). Thus, considering an enumeration Y (1)n ; :::; Y (t)n of the critically�-dominated (by Xn) distributions, we conclude that for every distribution � on[t] there exists a s0(n)-size circuits Cn such thattXi=1 �(i) � Pr[Cn(Y (i)n) = f(Y (i)n)] > 0:5 + "0(n): (7.13)Now, consider a �nite game between two players, where the �rst player selects a crit-ically �-dominated (by Xn) distribution, and the second player selects a s0(n)-sizecircuit and obtains a payo� as determined by the corresponding success probability;that is, if the �rst player selects the ith critically dominated distribution and thesecond player selects the circuit C then the payo� equals Pr[C(Y (i)n) = f(Y (i)n)].Eq. (7.13) may be interpreted as saying that for any randomized strategy for the�rst player there exists a deterministic strategy for the second player yielding aver-age payo� greater than 0:5+"0(n). The Min-Max Principle (cf. von Neumann [227])asserts that in such a case there exists a randomized strategy for the second playerthat yields average payo� greater than 0:5 + "0(n) no matter what strategy is em-ployed by the �rst player. This means that there exists a distribution, denoted Dn,on s0(n)-size circuits such that for every i it holds thatPr[Dn(Y (i)n) = f(Y (i)n)] > 0:5 + "0(n); (7.14)where the probability refers both to the choice of the circuit Dn and to the randomvariable Yn. Let Bn = fx : Pr[Dn(x) = f(x)] � 0:5 + "0(n)g. Then, Pr[Xn 2Bn] < �(n), because otherwise we reach a contradiction to Eq. (7.14) by de�ningYn such that Pr[Yn= x] = Pr[Xn=x]=Pr[Xn 2 Bn] if x 2 Bn and Pr[Yn =x] = 0otherwise.26 By employing standard ampli�cation to Dn, we obtain a distributionD0n over poly(n="0(n)) � s0(n)-size circuits such that for every x 2 f0; 1gn n Bn itholds that Pr[D0n(x) = f(x)] > 1 � 2�n. It follows that there exists a s(n)-sizedcircuit Cn such that Cn(x) = f(x) for every x 2 f0; 1gn n Bn, which implies thatPr[Cn(Xn) = f(Xn)] � Pr[Xn 2 f0; 1gn n Bn] > 1 � �(n), in contradiction to thetheorem's hypothesis. The claim follows. 2We next show that the conclusion of Claim 7.21.1 (which was stated for ensemblesthat are �-dominated by fXng) essentially holds also when allowing only critically�-dominated (by fXng) ensembles. The following precise statement involves someloss in the domination parameter � (as well as in the advantage ").Claim 7.21.2: If there exists a probability ensemble fYng that is �-dominatedby fXng such that for every s0(n)-size circuit Cn it holds that Pr[Cn(Yn) =26Note that Yn is �-dominated by Xn, whereas by the hypothesis Pr[Dn(Yn) = f(Yn)] �0:5+"0(n). Using the fact that any �-dominated distribution is a convex combination of critically�-dominated distributions, it follows that Pr[Dn(Y (i)n) = f(Y (i)n)] � 0:5 + "0(n) holds for somecritically �-dominated Y (i)n .

300 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSf(Yn)] � 0:5 + ("(n)=2), then there exists a probability ensemble fZng that iscritically �0-dominated by fXng such that for every s0(n)-size circuit Cn it holdsthat Pr[Cn(Zn) = f(Zn)] � 0:5 + "(n).In other words, Claim 7.21.2 asserts that the function f has a hard region ofdensity �0(�) relative to fXng with respect to s0(�)-size circuits and advantage "(�),thus establishing the theorem. The proof of Claim 7.21.2 uses the ProbabilisticMethod (cf. [10]). Speci�cally, we select a set Sn at random by including eachn-bit long string x with probabilityp(x) def= �(n) � Pr[Yn=x]Pr[Xn=x] � 1 (7.15)independently of the choice of all other strings. It can be shown that, with highprobability over the choice of Sn, it holds that Pr[Xn 2 Sn] � �(n) and thatPr[Cn(Xn) = f(Xn)jXn 2Sn] < 0:5 + "(n) for every circuit Cn of size s0(n). Thelatter assertion is proved by a union bound on all relevant circuits, while showingthat for each such circuit Cn, with probability 1� exp(�s0(n)2) over the choice ofSn, it holds that jPr[Cn(Xn) = f(Xn)jXn 2 Sn] � Pr[Cn(Yn) = f(Yn)]j < "(n)=2.For details, see [99, Apdx. A]. (This completes the proof of the theorem.)7.2.2.2 Hardness ampli�cation via hard regionsBefore showing how to use the notion of a hard region in order to prove a deran-domized version of Yao's XOR Lemma, we show how to use it in order to provethe original version of Yao's XOR Lemma (i.e., Theorem 7.13).An alternative proof of Yao's XOR Lemma. Let f , p1, and p2 be asin Theorem 7.13. Then, by Theorem 7.21, for �0(n) = 1=3p2(n) and s0(n) =p1(n)
(1)=poly(n), the function f has a hard region S of density �0 (relative tofUng) with respect to s0(�)-size circuits and advantage 1=s0(�). Thus, for t(n) =n � p2(n) and F as in Theorem 7.13, with probability at least 1� (1� �0(n))t(n) =1 � exp(�
(n)), one of the t(n) random (n-bit long) blocks of F resides in S(i.e., the hard region of f). Intuitively, this su�ces for establishing the stronginapproximability of F . Indeed, suppose towards the contradiction that a small(i.e., p0(t(n) � n)-size) circuit Cn can approximate F (over Ut(n)�n) with advantage"(n) + exp(�
(n)), where "(n) > 1=s0(n). Then, the "(n) term must be due tot(n) �n-bit long inputs that contain a block in S. Using an averaging argument, wecan �rst �x the index of this block and then the contents of the other blocks, andinfer the following: for some i 2 [t(n)] and x1; :::; xt(n) 2 f0; 1gn it holds thatPr[Cn(x0; Un; x00) = F (x0; Un; x00) jUn 2 S] � 12 + "(n)where x0 = (x1; :::; xi�1) 2 f0; 1g(i�1)�n and x00 = (xi+1; :::; xt(n)) 2 f0; 1g(t(n)�i)�n.Hard-wiring i 2 [t(n)], x0 = (x1; :::; xi�1) and x00 = (xi+1; :::; xt(n)) as well as� def= �j 6=if(xj) in Cn, we obtain a contradiction to the (established) fact that

7.2. HARD PROBLEMS IN E 301S is a hard region of f (by using the circuit C 0n(z) = Cn(x0; z; x00) � �). Thus,Theorem 7.13 follows (for any p0(t(n) � n) � s0(n)� 1).Derandomized versions of Yao's XOR Lemma. We �rst show how to usethe notion of a hard region in order to amplify very mild inapproximability toa constant level of inapproximability. Recall that our goal is to obtain such anampli�cation while applying the given function on many (related) instances, whereeach instance has length that is linearly related to the length of the input of theresulting function. Indeed, these related instances are produced by applying anadequate \pseudorandom generator" (see Chapter 8). The following ampli�cationutilizes a pairwise independence generator (see Section 8.5.1), denoted G, thatstretches 2n-bit long seeds to sequences of n strings, each of length n.Lemma 7.22 (derandomized XOR Lemma up to constant inapproximability):Suppose that f : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for �(n) > 1=poly(n),and assume for simplicity that �(n) � 1=n. Let b denote the inner-product mod 2predicate, and G be the aforementioned pairwise independence generator. ThenF1(s; r) = b(f(x1) � � � f(xn); r), where jrj = n = jsj=2 and (x1; :::; xn) = G(s), is(T 0; �0)-inapproximable for T 0(n0) = T (n0=3)=poly(n0) and �0(n0) =
(n0 � �(n0=3)).Needless to say, if f 2 E then F1 2 E . By applying Lemma 7.22 for a constantnumber of times, we may transform an (T; 1=poly)-inapproximable predicate intoan (T 00;
(1))-inapproximable one, where T 00(n00) = T (n00=O(1))=poly(n00).Proof Sketch: As in the foregoing proof (of the original version of Yao's XORLemma), we �rst apply Theorem 7.21. This time we set the parameters so to inferthat, for �(n) = �(n)=3 and t0(n) = T (n)=poly(n), the function f has a hard regionS of density � (relative to fUng) with respect to t0(�)-size circuits and advantage0:01. Next, as in x7.2.1.2, we shall consider the corresponding (derandomized)direct product problem; that is, the function P1(s) = (f(x1); :::; f(xn)), wherejsj = 2n and (x1; :::; xn) = G(s). We will �rst show that P1 is hard to computeon an
(n � �(n)) fraction of the domain, and the quanti�ed inapproximality of F1will follow.One key observation is that, by Exercise 7.20, with probability at least �(n) def=n � �(n)=2, at least one of the n strings output by G(U2n) resides in S. Intuitively,we expect every t0(n)-sized circuit to fail in computing P1(U2n) with probabilityat least 0:49�(n), because with probability �(n) the sequence G(U2n) contains anelement in the hard region of f (and in this case the value can be guessed correctlywith probability at most 0:51). The actual proof relies on a reducibility argument,which is less straightforward than the argument used in the non-derandomized case.For technical reasons27, we use the condition �(n) < 1=2n (which is guaranteedby the hypothesis that �(n) � 1=n and our setting of �(n) = �(n)=3). In thiscase Exercise 7.20 implies that, with probability at least �(n) def= 0:75 � n � �(n),at least one of the n strings output by G(U2n) resides in S. We shall show that27The following argument will rely on the fact that �(n) � (n) > 0:51n � �(n), where (n) =
(�(n)).

302 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSevery (t0(n)� poly(n))-sized circuit fails in computing P1 with probability at least(n) = 0:3�(n). As usual, the claim is proved by a reducibility argument. Let G(s)idenote the ith string in the sequence G(s) (i.e., G(s) = (G(s)1; :::; G(s)n)), and notethat given i and x we can e�ciently sample G�1i (x) def= fs2f0; 1g2n : G(s)i=xg.Given a circuit Cn that computes P1(U2n) correctly with probability 1� (n), weconsider the circuit C 0n that, on input x, uniformly selects i 2 [n] and s 2 G�1i (x),and outputs the ith bit in Cn(s). Then, by the construction (of C 0n) and thehypothesis regarding Cn, it holds thatPr[C 0n(Un)=f(Un)jUn2S] � nXi=1 1n � Pr[Cn(U2n)=P1(U2n)jG(U2n)i2S]� Pr[Cn(U2n)=P1(U2n) ^ 9iGi(U2n)i2S]n �maxifPr[G(U2n)i2S]g� (1� (n))� (1� �(n))n � �(n)= 0:7�(n)n � �(n) > 0:52 :This contradicts the fact that S is a hard region of f with respect to t0(�)-size circuitsand advantage 0:01. Thus, we have established that every (t0(n) � poly(n))-sizedcircuit fails in computing P1 with probability at least (n) = 0:3�(n).Having established the hardness of P1, we now infer the mild inapproximabilityof F1, where F1(s; r) = b(P1(s); r). It su�ces to employ the simple (warm-up)case discussed at the beginning of the proof of Theorem 7.7 (where the predic-tor errs with probability less than 1=4, rather than the full-edged result thatrefers to prediction error that is only smaller than 1=2). Denoting by �C(s) =Prr2f0;1gn [C(s; r) 6=b(P1(s); r)] the prediction error of the circuit C, we recall thatif �C(s) � 0:24 then C can be used to recover P1(s). Thus, for circuits C of sizeT 0(3n) = t0(n)=poly(n) it must hold that Prs[�C(s)>0:24] � (n). It follows thatEs[�C(s)] > 0:24(n), which means that every T 0(3n)-sized circuits fails to com-pute (s; r) 7! b(P1(s); r) with probability at least �(jsj+ jrj) def= 0:24 � (jrj). Thismeans that F1 is (T 0; 2�)-inapproximable, and the lemma follows (when noting that�(n0) =
(n0 � �(n0=3))).The next lemma o�ers an ampli�cation of constant inapproximability to stronginapproximability. Indeed, combining Theorem 7.12 with Lemmas 7.22 and 7.23,yields Theorem 7.19 (as a special case).Lemma 7.23 (derandomized XOR Lemma starting with constant inapproxima-bility): Suppose that f : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for some con-stant �, and let b denote the inner-product mod 2 predicate. Then there exists anexponential-time computable function G such that F2(s; r) = b(f(x1) � � � f(xn); r),where (x1; :::; xn) = G(s) and n =
(jsj) = jrj = jx1j = � � � = jxnj, is T 0-inapproximable for T 0(n0) = T (n0=O(1))
(1)=poly(n0).

7.2. HARD PROBLEMS IN E 303Again, if f 2 E then F2 2 E .Proof Outline:28 As in the proof of Lemma 7.22, we start by establishinga hard region of density �=3 for f (this time with respect to circuits of sizeT (n)
(1)=poly(n) and advantage T (n)�
(1)), and focus on the analysis of the(derandomized) direct product problem corresponding to computing the functionP2(s) = (f(x1); :::; f(xn)), where jsj = O(n) and (x1; :::; xn) = G(s). The \gen-erator" G is de�ned such that G(s0s00) = G1(s0) � G2(s00), where js0j = js00j,jG1(s0)j = jG2(s00)j, and the following conditions hold:1. G1 is the Expander Random Walk Generator discussed in Section 8.5.3. Itcan be shown that G1(UO(n)) outputs a sequence of n strings such that forany set S of density �, with probability 1 � exp(�
(�n)), at least
(�n)of the strings hit S. Note that this property is inherited by G, providedjG1(s0)j = jG2(s00)j for any js0j = js00j. It follows that, with probability1 � exp(�
(�n)), a constant fraction of the xi's in the de�nition of P2 hitthe hard region of f .It is tempting to say that small circuits cannot compute P2 better than withprobability exp(�
(�n)), but this is clear only in the case that the xi's thathit the hard region are distributed independently (and uniformly) in it, whichis hardly the case here. Indeed, G2 is used to handle this problem.2. G2 is the \set projection" system underlying Construction 8.17; speci�cally,G2(s) = (sS1 ; :::; sSn), where each Si is an n-subset of [jsj] and the Si's havepairwise intersections of size at most n=O(1).29 An analysis as in the proofof Theorem 8.18 can be employed for showing that the dependency amongthe xi's does not help for computing a particular f(xi) when given xi as wellas all the other f(xj)'s. (Note that this property of G2 is inherited by G.)The actual analysis of the construction (via a guessing game presented in [125,Sec. 3]), links the success probability of computing P2 to the advantage of guessingf on its hard region. The interested reader is referred to [125].Digest. Both Lemmas 7.22 and 7.23 are proved by �rst establishing correspond-ing derandomized versions of the \direct product" lemma (Theorem 7.14); in fact,the core of these proofs is proving adequate derandomized \direct product" lemmas.We call the reader's attention to the seemingly crucial role of this step (especiallyin the proof of Lemma 7.23): We cannot treat the values f(x1); :::f(xn) as if theywere independent (at least not for the generator G as postulated in these lemmas),and so we seek to avoid analyzing the probability of correctly computing the XORof all these values. In contrast, we have established that it is very hard to correctlycompute all n values, and thus XORing a random subset of these values yields astrongly inapproximable predicate. (Note that the argument used in Exercise 7.1628For details, see [125].29Recall that sS denotes the projection of s on coordinates S � [jsj]; that is, for s = �1 � � ��kand S = fij : j = 1; :::; ng, we have sS = �i1 � � ��in .

304 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSfails here, because the xi's are not independent, which is the reason that we XORa random subset of these values rather than all of them.)Chapter NotesThe notion of a one-way function was suggested by Di�e and Hellman [63]. Thenotion of weak one-way functions as well as the ampli�cation of one-way functions(i.e., Theorem 7.5) were suggested by Yao [231]. A proof of Theorem 7.5 has �rstappeared in [84].The concept of hard-core predicates was suggested by Blum and Micali [37].They also proved that a particular predicate constitutes a hard-core for the \DLPfunction" (i.e., exponentiation in a �nite �eld), provided that the latter functionis one-way. The generic hard-core predicate (of Theorem 7.7) was suggested byLevin, and proven as such by Goldreich and Levin [96]. The proof presented herewas suggested by Racko�. We comment that the original proof has its own merits(cf., e.g., [102]).The construction of canonical derandomizers (see Section 8.3) and, speci�cally,the Nisan-Wigderson framework (i.e., Construction 8.17) has been the driving forcebehind the study of inapproximable predicates in E . Theorem 7.10 is due to [20],whereas Theorem 7.19 is due to [125]. Both results rely heavily of variants of Yao'sXOR Lemma, to be reviewed next.Like several other fundamental insights attributed to Yao's paper [231], Yao'sXOR Lemma (i.e., Theorem 7.13) is not even stated in [231] but is rather dueto Yao's oral presentations of his work. The �rst published proof of Yao's XORLemma was given by Levin (see [99, Sec. 3]). The proof presented in x7.2.1.2 isdue to Goldreich, Nisan and Wigderson [99, Sec. 5].The notion of a hard region and its applications to proving the original versionof Yao's XOR Lemma as well as the �rst derandomization of it (i.e., Lemma 7.22)are due to Impagliazzo [123]. The second derandomization (i.e., Lemma 7.23) aswell as Theorem 7.19 are due to Impagliazzo and Wigderson [125].Theorem 7.12 is due to [20], and the presentation in x7.2.1.1 is based on thiswork. The connection between list decoding and hardness ampli�cation (i.e.,x7.2.1.3), yielding an alternative proof of Theorem 7.19, is due to Sudan, Trevisan,and Vadhan [213].Hardness ampli�cation for NP has been the subject of recent attention: Anampli�cation of mild inapproximability to strong inapproximability is providedin [118], and an indication to the impossibility of a worst-case to average-casereductions (at least non-adaptive ones) is provided in [40].ExercisesExercise 7.1 Prove that if one way-functions exist then there exists one-way func-tions that are length preserving (i.e., jf(x)j = jxj for every x 2 f0; 1gn).

7.2. HARD PROBLEMS IN E 305Guideline: Clearly, for some polynomial p, it holds that jf(x)j < p(jxj) for all x. Assume,without loss of generality that n 7! p(n) is 1-1 and increasing, and let p�1(m) = n ifp(n) � m < p(n + 1). De�ne f 0(z) = f(x)01jzj�jf(x)j�1, where x is the p�1(jzj)-bit longpre�x of z.Exercise 7.2 Prove that if a function f is hard to invert in the sense of De�ni-tion 7.3 then it is hard to invert in the sense of De�nition 7.1.Guideline: Consider a sequence of internal coin tosses that maximizes the probabilityin Eq. (7.1).Exercise 7.3 Assuming the existence of one-way functions, prove that there existsa weak one-way function that is not strongly one-way.Exercise 7.4 (a universal one-way function (by L. Levin)) Using the notionof a universal machine, present a polynomial-time computable function that is hardto invert (in the sense of De�nition 7.1) if and only if there exist one-way functions.Guideline: Consider the function F that parses its input into a pair (M;x) and emulatesjxj3 steps of M on input x. Note that if there exists a one-way function that can beevaluated in cubic time then F is a weak one-way function. Using padding, prove thatthere exists a one-way function that can be evaluated in cubic time if and only if thereexist one-way functions.Exercise 7.5 For ` > 1, prove that the following 2` � 1 samples are pairwiseindependent and uniformly distributed in f0; 1gn. The samples are generated byuniformly and independently selecting ` strings in f0; 1gn. Denoting these stringsby s1; :::; s`, we generate 2` � 1 samples corresponding to the di�erent non-emptysubsets of f1; 2; :::; `g such that for subset J we let rJ def= �j2Jsj .Guideline: For J 6= J 0, it holds that rJ�rJ0 = �j2Ksj , where K denotes the symmetricdi�erence of J and J 0. See related material in Section 8.5.1.Exercise 7.6 (a variant on the proof of Theorem 7.7) Provide a detailed pre-sentation of the alternative procedure outlined in Footnote 5. That is, prove thatfor every x 2 f0; 1gn, given oracle access to any Bx : f0; 1gn ! f0; 1g that satis�esEq. (7.6), this procedure makes poly(n=") steps and outputs a list of strings that,with probability at least 1=2, contains x.Exercise 7.7 (proving Theorem 7.8) Recall that the proof of Theorem 7.7 es-tablishes the existence of a poly(n=")-time oracle machine M such that, for everyB : f0; 1gn ! f0; 1g and every x 2 f0; 1gn that satisfy Prr[B(r) = b(x; r)] � 12 + ",it holds that Pr[MB(n; ") = x] =
("2=n). Show that this implies Theorem 7.8.(Indeed, an alternative proof can be derived by adapting Exercise 7.6.)Guideline: Apply a \coupon collector" argument.Exercise 7.8 A polynomial-time computable predicate b :f0; 1g�!f0; 1g is calleda universal hard-core predicate if for every one-way function f , the predicate b is

306 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSa hard-core of f . Note that the predicate presented in Theorem 7.7 is \almostuniversal" (i.e., for every one-way function f , that predicate is a hard-core off 0(x; r) = (f(x); r), where jxj = jrj). Prove that there exist no universal hard-core predicate.Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitraryone-way function. Then consider the function f 0(x) = (f(x); b(x)).Exercise 7.9 Prove that if NP is not contained in P=poly then neither is E .Furthermore, for every S : N ! N , if some problem in NP does not have circuitsof size S then for some constant " > 0 there exists a problem in E that does nothave circuits of size S0, where S0(n) = S(n"). Repeat the exercise for the \almosteverywhere" case.Guideline: Although NP is not known to be in E , it is the case that SAT is in E , whichimplies that NP is reducible to a problem in E . For the \almost everywhere" case, addressthe fact that the said reduction may not preserve the length of the input.Exercise 7.10 For every function f : f0; 1gn ! f0; 1g, present a linear-size circuitCn such that Pr[C(Un) = f(Un)] � 0:5 + 2�n. Furthermore, for every t � 2n�1,present a circuit Cn of size O(t � n) such that Pr[C(Un) = f(Un)] � 0:5 + t � 2�n.Warning: you may not assume that Pr[f(Un) = 1] = 0:5.Exercise 7.11 (self-correction of low-degree polynomials) Let d;m be in-tegers, and F be a �nite �eld of cardinality greater than t def= dm + 1. Letp : Fm ! F be a polynomial of individual degree d, and �1; :::; �t be t distinctnon-zero elements of F .1. Show that, for every x; y 2 Fm, the value of p(x) can be e�ciently computedfrom the values of p(x + �1y); :::; p(x + �ty), where x and y are viewed asm-ary vectors over F .2. Show that, for every x 2 Fm and � 2 F n f0g, if we uniformly select r 2 Fmthen the point x+ �r is uniformly distributed in Fm.Conclude that p(x) can be recovered based on t random points, where each pointis uniformly distributed in Fm.Exercise 7.12 (low degree extension) Prove that for any H � F and everyfunction f : Hm ! F there exists an m-variate polynomial f̂ : Fm ! F ofindividual degree jH j � 1 such that for every x 2 Hm it holds that f̂(x) = f(x).Guideline: De�ne f̂(x) = Pa2Hm �a(x) � f(a), where �a is an m-variate of individualdegree jHj�1 such that �a(a) = 1 whereas �a(x) = 0 for every x 2 Hm nfag. Speci�cally,�a1;:::;am(x1; :::; xm) =Qmi=1Qb2Hnfaig((xi � b)=(ai � b)).Exercise 7.13 Suppose that f̂ and S0 are as in the conclusion of Theorem 7.12.Prove that there exists a Boolean function g in E that is (S00; ")-inapproximablefor S00(n0 +O(log n0)) = S0(n0)=n0 and "(m) = 1=m3.Guideline: Consider the function g de�ned such that g(x; i) equals the ith bit of f̂(x).

7.2. HARD PROBLEMS IN E 307Exercise 7.14 (a generic application of Theorem 7.8) For any ` : N!N ,let h : f0; 1g� ! f0; 1g� be a function such that jh(x)j = `(jxj) for every x 2 f0; 1g�,and fXngn2N be a probability ensemble. Suppose that, for some s : N ! N and" : N ! [0; 1], for every family of s-size circuits fCngn2N and all su�ciently large nit holds that Pr[Cn(Xn) = h(Xn)] � "(n). Suppose that s0 : N ! N and "0 : N ![0; 1] satisfy s0(n + `(n)) � s(n)=poly(n="0(n + `(n))) and "0(n + `(n)) � 2"(n).Show that Theorem 7.8 implies that for every family of s0-size circuits fC 0n0gn02Nand all su�ciently large n0 = n+ `(n) it holds thatPr[C 0n+`(n)(Xn; U`(n)) = b(h(Xn); U`(n))] � 12 + "0(n+ `(n)):Note that if Xn is uniform over f0; 1gn then the predicate h0(x; r) = b(h(x); r),where jrj = jh(x)j, is (s0; 1 � 2"0)-inapproximable. Conclude that, in this case, if"(n) = 1=s(n) and s0(n+ `(n)) = s(n)
(1)=poly(n), then h0 is s0-inapproximable.Exercise 7.15 (derandomization via averaging arguments) Let C : f0; 1gn�f0; 1gm ! f0; 1g` be a circuit, which may represent a \probabilistic circuit" thatprocesses the �rst input using a sequence of choices that are given as a secondinput. Let X and Z be two independent random variables distributed over f0; 1gnand f0; 1gm, respectively, and let � be a Boolean predicate (which may representa success event regarding the behavior of C). Prove that there exists a stringz 2 f0; 1gm such that for Cz(x) def= C(x; z) it holds that Pr[�(X;Cz(X)) = 1] �Pr[�(X;C(X;Z))=1].Exercise 7.16 (from \selective XOR" to \standard XOR") Let f be a Booleanfunction, and b(y; r) denote the inner-product modulo 2 of the equal-length strings yand r. Suppose that F 0(x1; :::; xt(n); r) def= b(f(x1) � � � f(xt(n)); r), where x1; :::; xt(n) 2f0; 1gn and r 2 f0; 1gt(n), is T 0-inapproximable. Assuming that n 7! t(n) �n is 1-1,prove that F (x) def= F 0(x; 1t0(jxj)), where t0(t(n) �n) = t(n), is T -inapproximable forT (m) = T (m+ t0(m))�O(m).Guideline: Reduce the approximation of F 0 to the approximation of F . An importantobservation is that for any x = (x1; :::; xt(n)), x0 = (x01; :::; x0t(n)), and r = r1 � � � rt(n) suchthat x0i = xi if ri = 1, it holds that F 0(x; r) = F (x0) � �i:ri=0f(x0i). This suggests anon-uniform reduction of F 0 to F , which uses \adequate" z1; :::; zt(n) 2 f0; 1gn as well asthe corresponding values f(zi)'s as advice. On input x1; :::; xt(n); r1 � � � rt(n), the reductionsets x0i = xi if ri = 1 and x0i = zi otherwise, makes the query x0 = (x01; :::; x0t(n)) to F ,and returns F (x0) �i:ri=0 f(zi). Analyze this reduction in the case that z1; :::; zt(n) 2f0; 1gn are uniformly distributed, and infer that they can be set to some �xed values (seeExercise 7.15).Exercise 7.17 (Theorem 7.14 versus Theorem 7.5) Consider a generalizationof Theorem 7.14 in which f and P are functions from strings to sets of strings suchthat P (x1; :::; xt) = f(x1)� � � � � f(xt).1. Prove that if for every family of p1-size circuits, fCngn2N, and all su�cientlylarge n 2 N , it holds that Pr[Cn(Un) 62 f(Un)] > 1=p2(n) then for every

308 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSfamily of p0-size circuits, fC 0mgm2N, it holds that Pr[C 0m(Um) 2 P (Um)] <"0(m), where "0 and p0 are as in Theorem 7.14. Further generalize the claimby replacing fUngn2N with an arbitrary distribution ensemble fXngn2N, andreplacing Um by a t(n)-fold Cartesian product of Xn (where m = t(n) � n).2. Show that the foregoing generalizes both Theorem 7.14 and a non-uniformcomplexity version of Theorem 7.5.Exercise 7.18 (re�nement of the main theme of x7.2.1.3) Consider the fol-lowing modi�cation of De�nition 7.17, in which the decoding condition refers toan agreement threshold of (1=q(N)) + �(N) rather than to a threshold of �(N).The modi�ed de�nition reads as follows (where p is a �xed polynomial): For everyw : [`(N)]! [q(N)] and x2f0; 1gN such that �(x) is (1� ((1=q(N)) +�(N)))-closeto w, there exists an oracle-aided circuit C of size p((logN)=�(N)) such that Cw(i)yields the ith bit of x for every i 2 [N].1. Formulate and prove a version of Theorem 7.18 that refers to the modi�edde�nition (rather than to the original one).Guideline: The modi�ed version should refer to computing g(Um(n)) with successprobability greater than (1=q(n)) + "(n) (rather than greater than "(n)).2. Prove that, when applied to binary codes (i.e., q � 2), the version in Item 1yields S00-inapproximable predicates, for S00(n0) = S(m�1(n0))
(1)=poly(n0).3. Prove that the Hadamard Code allows implicit decoding under the modi�edde�nition (but not according to the original one).30Guideline: This is the actual contents of Theorem 7.8.Show that if � : f0; 1gN ! [q(N)]`(N) is a (non-binary) code that allows implicitdecoding then encoding its symbols by the Hadamard code yields a binary code(f0; 1gN ! f0; 1g`(N)�2dlog2 q(N)e) that allows implicit decoding. Note that e�cientencoding is preserved only if q(N) � poly(N).Exercise 7.19 (using Proposition 7.16 to prove Theorem 7.19) Prove The-orem 7.19 by combining Proposition 7.16 and Theorem 7.8.Guideline: Note that, for some > 0, Proposition 7.16 yields an exponential-time com-putable function f̂ such that jf̂(x)j � jxj and for every family of circuit fC0n0gn02N ofsize S0(n0) = S(n0=3)=poly(n0) it holds that Pr[C0n0(Un0) = f̂(Un0)] < 1=S0(n0). Com-bining this with Theorem 7.8, infer that P (x; r) = b(f̂(x); r), where jrj = jf̂(x)j � jxj, isS00-inapproximable for S00(n00) = S(n00=2)
(1)=poly(n00). Note that if S(n) = 2
(n) thenS00(n00) = 2
(n00).Exercise 7.20 LetG be a pairwise independent generator (i.e., as in Lemma 7.22),S � f0; 1gn and � def= jSj=2n. Prove that, with probability at least min(n��; 1)=2, at30Needless to say, the Hadamard Code is not e�cient (for the trivial reason that its codewordshave exponential length).

7.2. HARD PROBLEMS IN E 309least one of the n strings output by G(U2n) resides in S. Furthermore, if � � 1=2nthen this probability is at least 0:75 � n � �.Guideline: Using the pairwise independence property and employing the Inclusion-Exclusion formula, we lower-bound the aforementioned probability by n � � � �n2� � �2.If � � 1=n then the claim follows, otherwise we employ the same reasoning to the �rst1=� elements in the output of G(U2n).Exercise 7.21 (one-way functions versus inapproximable predicates) Provethat the existence of a non-uniformly hard one-way function (as in De�nition 7.3)implies the existence of an exponential-time computable predicate that is T -inapproximable(as per De�nition 7.9), for every polynomial T .Guideline: Suppose �rst that the one-way function f is length-preserving and 1-1. Con-sider the hard-core predicate b guaranteed by Theorem 7.7 for g(x; r) = (f(x); r), de�nethe Boolean function h such that h(z) = b(g�1(z)), and show that h is T -inapproximablefor every polynomial T . For the general case a di�erent approach seems needed. Specif-ically, given a (length preserving) one-way function f , consider the Boolean function hde�ned as h(z; i; �) = 1 if and only if the ith bit of the lexicographically �rst element inf�1(z) = fx : f(x) = zg equals �. (In particular, if f�1(z) = ; then h(z; i; �) = 0 forevery i and �.)31 Note that h is computable in exponential-time, but is not (worst-case)computable by polynomial-size circuits. Applying Theorem 7.10, we are done.

31Thus, h may be easy to computed in the average-case sense (e.g., if f(x) = 0jxjf 0(x) for someone-way function f 0).

310 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

Chapter 7The Bright Side of HardnessSo saying she donned her beautiful, glittering golden{Ambrosialsandals, which carry her ying like the wind over the vast landand sea; she grasped the redoubtable bronze-shod spear, so stoutand sturdy and strong, wherewith she quells the ranks of heroeswho have displeased her, the [bright-eyed] daughter of her mightyfather. Homer, Odyssey, 1:96{101The existence of natural computational problems that are (or seem to be) in-feasible to solve is usually perceived as bad news, because it means that we cannotdo things we wish to do. But these bad news have a positive side, because hardproblem can be \put to work" to our bene�t, most notably in cryptography.It seems that utilizing hard problems requires the ability to e�ciently generatehard instances, which is not guaranteed by the notion of worst-case hardness. Inother words, we refer to the gap between \occasional" hardness (e.g., worst-casehardness or mild average-case hardness) and \typical" hardness (with respect tosome tractable distribution). Much of the current chapter is devoted to bridgingthis gap, which is known by the term hardness ampli�cation. The actual applica-tions of typical hardness are presented in Chapter 8 and Appendix C.Summary: We consider two conjectures that are related to P 6= NP .The �rst conjecture is that there are problems that are solvable inexponential-time (i.e., in E) but are not solvable by (non-uniform) fam-ilies of small (say polynomial-size) circuits. We show that this worst-case conjecture can be transformed into an average-case hardness result;speci�cally, we obtain predicates that are strongly \inapproximable" bysmall circuits. Such predicates are used towards derandomizing BPPin a non-trivial manner (see Section 8.3).The second conjecture is that there are problems in NP (i.e., searchproblems in PC) for which it is easy to generate (solved) instances that265

266 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSare typically hard to solve (for a party that did not generate theseinstances). This conjecture is captured in the formulation of one-wayfunctions, which are functions that are easy to evaluate but hard toinvert (in an average-case sense). We show that functions that are hardto invert in a relatively mild average-case sense yield functions thatare hard to invert in a strong average-case sense, and that the latteryield predicates that are very hard to approximate (called hard-corepredicates). Such predicates are useful for the construction of general-purpose pseudorandom generators (see Section 8.2) as well as for a hostof cryptographic applications (see Appendix C).In the rest of this chapter, the actual order of presentation of the two aforemen-tioned conjectures and their consequences is reversed: We start (in Section 7.1)with the study of one-way functions, and only later (in Section 7.2) turn to thestudy of problems in E that are hard for small circuits.Teaching note: We list several reasons for preferring the aforementioned order ofpresentation. First, we mention the great conceptual appeal of one-way functions andthe fact that they have very practical applications. Second, hardness ampli�cationin the context of one-way functions is technically simpler than the ampli�cation ofhardness in the context of E . (In fact, Section 7.2 is the most technical text in thisbook.) Third, some of the techniques that are shared by both treatments seem easier tounderstand �rst in the context of one-way functions. Last, the current order facilitatesthe possibility of teaching hardness ampli�cation only in one incarnation, where thecontext of one-way functions is recommended as the incarnation of choice (for theaforementioned reasons).If you wish to teach hardness ampli�cation and pseudorandomness in the two afore-mentioned incarnations, then we suggest following the order of the current text. Thatis, �rst teach hardness ampli�cation in its two incarnations, and only next teach pseu-dorandomness in the corresponding incarnations.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,standard conventions regarding random variables (presented in Appendix D.1.1)and various \laws of large numbers" (presented in Appendix D.1.2) will be exten-sively used.7.1 One-Way FunctionsLoosely speaking, one-way functions are functions that are easy to evaluate buthard (on the average) to invert. Thus, in assuming that one-way functions exist,we are postulating the existence of e�cient processes (i.e., the computation of thefunction in the forward direction) that are hard to reverse. Analogous phenomenain daily life are known to us in abundance (e.g., the lighting of a match). Thus,the assumption that one-way functions exist is a complexity theoretic analogue ofour daily experience.

7.1. ONE-WAY FUNCTIONS 267One-way functions can also be thought of as e�cient ways for generating \puz-zles" that are infeasible to solve; that is, the puzzle is a random image of thefunction and a solution is a corresponding preimage. Furthermore, the person gen-erating the puzzle knows a solution to it and can e�ciently verify the validity of(possibly other) solutions to the puzzle. In fact, as explained in Section 7.1.1, everymechanism for generating such puzzles can be converted to a one-way function.The reader may note that when presented in terms of generating hard puzzles,one-way functions have a clear cryptographic avor. Indeed, one-way functionsare central to cryptography, but we shall not explore this aspect here (and ratherrefer the reader to Appendix C). Similarly, one-way functions are closely related to(general-purpose) pseudorandom generators, but this connection will be exploredin Section 8.2. Instead, in the current section, we will focus on one-way functionsper se.Teaching note: While we recommend including a basic treatment of pseudorandom-ness within a course on complexity theory, we do not recommend doing so with respectto cryptography. The reason is that cryptography is far more complex than pseudo-randomness (e.g., compare the de�nition of secure encryption to the the de�nition ofpseudorandom generators). The extra complexity is due to conceptual richness, whichis something good, except that some of these conceptual issues are central to cryptog-raphy but not to complexity theory. Thus, teaching cryptography in the context of acourse on complexity theory is likely to either overload the course with material thatis not central to complexity theory or cause a super�cial and misleading treatment ofcryptography. We are not sure as to which of these two possibilities is worse. Still, forthe bene�t of the interested reader, we have included an overview of the foundations ofcryptography as an appendix to the main text (see Appendix C).7.1.1 Generating hard instances and one-way functionsLet us start by examining the prophecy, made in the preface to this chapter, bywhich intractable problems can be used to our bene�t. The basic idea is thatintractable problems o�er a way of generating an obstacle that stands in the wayof our opponents and thus protects our interests. These opponents may be eitherreal (e.g., in the context of cryptography) or imaginary (e.g., in the context ofderandomization), but in both cases we wish to prevent them from seeing somethingor doing something. Hard obstacles seems useful towards this goal.Let us assume that P 6= NP or even that NP is not contained in BPP. Can weuse this assumption to our bene�t? Not really: The NP 6� BPP assumption refersto the worst-case complexity of problems, while bene�ting from hard problemsseems to require the ability to generate hard instances. In particular, the generatedinstances should be typically hard and not merely occasionally hard; that is, weseek average-case hardness and not merely worst-case hardness.Taking a short digression, we mention that in Section 7.2 we shall see that worst-case hardness (of NP or even E) can be transformed into average-case hardnessof E . Such a transformation is not known for NP itself, and in some applications(e.g., in cryptography) we do need the hard-on-the-average problem to be in NP .

268 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSIn this case, we currently need to assume that, for some problem in NP , it is thecase that hard instances are easy to generate (and not merely exist). That is, weassume that NP is \hard on the average" with respect to a distribution that ise�ciently sampleable. This assumption will be further discussed in Section 10.2.However, for the aforementioned applications (e.g., in cryptography) this as-sumption does not seem to su�ce either: we know how to utilize such \hard onthe average" problems only when we can e�ciently generate hard instances coupledwith adequate solutions.1 That is, we assume that, for some search problem inPC (resp., decision problem in NP), we can e�ciently generate instance-solutionpairs (resp., yes-instances coupled with corresponding NP-witnesses) such that theinstance is hard to solve (resp., hard to verify as belonging to the set). Needless tosay, the hardness assumption refers to a person that does not get the solution (resp.,witness). Thus, we can e�ciently generate hard \puzzles" coupled with solutions,and so we may present to others hard puzzles for which we know a solution.Let us formulate the foregoing discussion. Referring to De�nition 2.3, we con-sider a relation R in PC (i.e., R is polynomially bounded and membership in R canbe determined in polynomial-time), and assume that there exists a probabilisticpolynomial-time algorithm G that satis�es the following two conditions:1. On input 1n, algorithm G always generates a pair in R such that the �rstelement has length n. That is, Pr[G(1n) 2 R \ (f0; 1gn � f0; 1g�)] = 1.2. It is typically infeasible to �nd solutions to instances that are generated byG; that is, when only given the �rst element of G(1n), it is infeasible to�nd an adequate solution. Formally, denoting the �rst element of G(1n) byG1(1n), for every probabilistic polynomial-time (solver) algorithm S, it holdsthat Pr[(G1(1n); S(G1(1n)) 2 R] = �(n), where � vanishes faster than anypolynomial fraction (i.e., for every positive polynomial p and all su�cientlylarge n it is the case that �(n) < 1=p(n)).We call G a generator of solved intractable instances for R. We will show that sucha generator exists if and only if one-way functions exist, where one-way functionsare functions that are easy to evaluate but hard (on the average) to invert. Thatis, a function f :f0; 1g�!f0; 1g� is called one-way if there is an e�cient algorithmthat on input x outputs f(x), whereas any feasible algorithm that tries to �nd apreimage of f(x) under f may succeed only with negligible probability (where theprobability is taken uniformly over the choices of x and the algorithm's coin tosses).Associating feasible computations with probabilistic polynomial-time algorithmsand negligible functions with functions that vanish faster than any polynomialfraction, we obtain the following de�nition.De�nition 7.1 (one-way functions): A function f :f0; 1g�!f0; 1g� is called one-way if the following two conditions hold:1We wish to stress the di�erence between the two gaps discussed here. Our feeling is thatthe non-usefulness of worst-case hardness (per se) is far more intuitive than the non-usefulness ofaverage-case hardness that does not correspond to an e�cient generation of \solved" instances.

7.1. ONE-WAY FUNCTIONS 2691. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =f(x) for every x 2 f0; 1g�.2. Hard to invert: For every probabilistic polynomial-time algorithm A0, everypolynomial p, and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 2 f�1(f(x))] < 1p(n) (7.1)where the probability is taken uniformly over all the possible choices of x 2f0; 1gn and all the possible outcomes of the internal coin tosses of algorithmA0.Algorithm A0 is given the auxiliary input 1n so as to allow it to run in time poly-nomial in the length of x, which is important in case f drastically shrinks its input(e.g., jf(x)j = O(log jxj)). Typically (and, in fact, without loss of generality, seeExercise 7.1), f is length preserving, in which case the auxiliary input 1n is re-dundant. Note that A0 is not required to output a speci�c preimage of f(x); anypreimage (i.e., element in the set f�1(f(x))) will do. (Indeed, in case f is 1-1,the string x is the only preimage of f(x) under f ; but in general there may beother preimages.) It is required that algorithm A0 fails (to �nd a preimage) withoverwhelming probability, when the probability is also taken over the input distri-bution. That is, f is \typically" hard to invert, not merely hard to invert in some(\rare") cases.Proposition 7.2 The following two conditions are equivalent:1. There exists a generator of solved intractable instances for some R 2 NP.2. There exist one-way functions.Proof Sketch: Suppose that G is such a generator of solved intractable instancesfor some R 2 NP, and suppose that on input 1n it tosses `(n) coins. For simplicity,we assume that `(n) = n, and consider the function g(r) = G1(1jrj; r), whereG(1n; r) denotes the output of G on input 1n when using coins r (and G1 is asin the foregoing discussion). Then g must be one-way, because an algorithm thatinverts g on input x = g(r) obtains r0 such that G1(1n; r0) = x and G(1n; r0) mustbe in R (which means that the second element of G(1n; r0) is a solution to x). Incase `(n) 6= n (and assuming without loss of generality that `(n) � n), we de�neg(r) = G1(1n; s) where n is the largest integer such that `(n) � jrj and s is the`(n)-bit long pre�x of r.Suppose, on the other hand, that f is a one-way function (and that f islength preserving). Consider G(1n) that uniformly selects r 2 f0; 1gn and out-puts (f(r); r), and let R def= f(f(x); x) : x 2 f0; 1g�g. Then R is in PC and Gis a generator of solved intractable instances for R, because any solver of R (oninstances generated by G) is e�ectively inverting f on f(Un).

270 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSComments. Several candidates one-way functions and variation on the basicde�nition appear in Appendix C.2.1. Here, for the sake of future discussions, wede�ne a stronger version of one-way functions, which refers to the infeasibility ofinverting the function by non-uniform circuits of polynomial-size. We seize theopportunity and use an alternative technical formulation, which is based on theprobabilistic conventions in Appendix D.1.1.2De�nition 7.3 (one-way functions, non-uniformly hard): A one-way function f :f0; 1g� ! f0; 1g� is said to be non-uniformly hard to invert if for every family ofpolynomial-size circuits fCng, every polynomial p, and all su�ciently large n,Pr[Cn(f(Un); 1n) 2 f�1(f(Un))] < 1p(n)We note that if a function is infeasible to invert by polynomial-size circuits then it ishard to invert by probabilistic polynomial-time algorithms; that is, non-uniformity(more than) compensates for lack of randomness. See Exercise 7.2.7.1.2 Ampli�cation of Weak One-Way FunctionsIn the forgoing discussion we have interpreted \hardness on the average" in a verystrong sense. Speci�cally, we required that any feasible algorithm fails to solvethe problem (e.g., invert the one-way function) almost always (i.e., except withnegligible probability). This interpretation is indeed the one that is suitable forvarious applications. Still, a weaker interpretation of hardness on the average,which is also appealing, only requires that any feasible algorithm fails to solve theproblem often enough (i.e., with noticeable probability). The main thrust of thecurrent section is showing that the mild form of hardness on the average can betransformed into the strong form discussed in Section 7.1.1. Let us �rst de�ne themild form of hardness on the average, using the framework of one-way functions.Speci�cally, we de�ne weak one-way functions.De�nition 7.4 (weak one-way functions): A function f :f0; 1g�!f0; 1g� is calledweakly one-way if the following two conditions hold:1. Easy to evaluate: As in De�nition 7.1.2. Weakly hard to invert: There exists a positive polynomial p such that forevery probabilistic polynomial-time algorithm A0 and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 62 f�1(f(x))] > 1p(n) (7.2)where the probability is taken uniformly over all the possible choices of x 2f0; 1gn and all the possible outcomes of the internal coin tosses of algorithmA0. In such a case, we say that f is 1=p-one-way.2Speci�cally, letting Un denote a random variable uniformly distributed in f0; 1gn , we maywrite Eq. (7.1) as Pr[A0(f(Un); 1n) 2 f�1(f(Un))] < 1=p(n), recalling that both occurrences ofUn refer to the same sample.

7.1. ONE-WAY FUNCTIONS 271Here we require that algorithm A0 fails (to �nd an f -preimage for a random f -image) with noticeable probability, rather than with overwhelmingly high prob-ability (as in De�nition 7.1). For clarity, we will occasionally refer to one-wayfunctions as in De�nition 7.1 by the term strong one-way functions.We note that, assuming that one-way functions exist at all, there exists weakone-way functions that are not strongly one-way (see Exercise 7.3). Still, any weakone-way function can be transformed into a strong one-way function. This is indeedthe main result of the current section.Theorem 7.5 (ampli�cation of one-way functions): The existence of weak one-way functions implies the existence of strong one-way functions.Proof Sketch: The construction itself is straightforward. We just parse the argu-ment to the new function into su�ciently many blocks, and apply the weak one-wayfunction on the individual blocks. That is, suppose that f is 1=p-one-way, for somepolynomial p, and consider the following functionF (x1; :::; xt) = (f(x1); :::; f(xt)) (7.3)where t def= n � p(n) and x1; :::; xt 2 f0; 1gn.(Indeed F should be extended to strings of length outside fn2 � p(n) : n 2 Ng andthis extension must be hard to invert on all preimage lengths.)3We warn that the hardness of inverting the resulting function F is not estab-lished by mere \combinatorics" (i.e., considering, for any S � f0; 1gn, the relativevolume of St in (f0; 1gn)t, where S represents the set of f -preimages that aremapped by f to an image that is \easy to invert"). Speci�cally, one may not as-sume that the potential inverting algorithm works independently on each block.Indeed this assumption seems reasonable, but we do not know if nothing is lostby this restriction. (In fact, proving that nothing is lost by this restriction is aformidable research project.) In general, we should not make assumptions regard-ing the class of all e�cient algorithms (as underlying the de�nition of one-wayfunctions), unless we can actually prove that nothing is lost by such assumptions.The hardness of inverting the resulting function F is proved via a so called\reducibility argument" (which is used to prove all conditional results in the area).By a reducibility argument we actually mean a reduction, but one that is analyzedwith respect to average case complexity. Speci�cally, we show that any algorithmthat inverts the resulting function F with non-negligible success probability canbe used to construct an algorithm that inverts the original function f with successprobability that violates the hypothesis (regarding f). In other words, we reducethe task of \strongly inverting" f (i.e., violating its weak one-wayness) to the taskof \weakly inverting" F (i.e., violating its strong one-wayness). In particular, oninput y = f(x), the reduction invokes the F -inverter (polynomially) many times,each time feeding it with a sequence of random f -images that contains y at a3One simple extension is de�ning F (x) to equal F (x1; :::; xn�p(n)), where n is the largest integersatisfying n2p(n) � jxj and xi is the ith consecutive n-bit long string in x (i.e., x = x1 � � �xn�p(n)x0,where x1; :::; xn�p(n) 2 f0; 1gn).

272 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSrandom location. (Indeed such a sequence corresponds to a random image of F .)Details follow.Suppose towards the contradiction that F is not strongly one-way; that is, thereexists a probabilistic polynomial-time algorithm B0 and a polynomial q(�) so thatfor in�nitely many m'sPr[B0(F (Um))2F�1(F (Um))] > 1q(m) (7.4)Focusing on such a generic m and assuming (see Footnote 3) that m = n2p(n), wepresent the following probabilistic polynomial-time algorithm, A0, for inverting f .On input y and 1n (where supposedly y = f(x) for some x 2 f0; 1gn), algorithm A0proceeds by applying the following probabilistic procedure, denoted I , on input yfor t0(n) times, where t0(�) is a polynomial that depends on the polynomials p andq (speci�cally, we set t0(n) def= 2n2 � p(n) � q(n2p(n))).Procedure I (on input y and 1n):For i = 1 to t(n) def= n � p(n) do begin(1) Select uniformly and independently a sequence of strings x1; :::; xt(n) 2 f0; 1gn.(2) Compute (z1; :::; zt(n)) B0(f(x1); :::; f(xi�1); y; f(xi+1); :::; f(xt(n)))(Note that y is placed in the ith position instead of f(xi).)(3) If f(zi) = y then halt and output zi.(This is considered a success).endUsing Eq. (7.4), we now present a lower bound on the success probability of al-gorithm A0, deriving a contradiction to the theorem's hypothesis. To this end wede�ne a set, denoted Sn, that contains all n-bit strings on which the procedure Isucceeds with probability greater than n=t0(n). (The probability is taken only overthe coin tosses of procedure I). Namely,Sn def= �x2f0; 1gn : Pr[I(f(x))2f�1(f(x))] > nt0(n)�In the next two claims we shall show that Sn contains all but at most a 1=2p(n)fraction of the strings of length n, and that for each string x 2 Sn algorithm A0inverts f on f(x) with probability exponentially close to 1. It will follow that A0inverts f on f(Un) with probability greater than 1� (1=p(n)), in contradiction tothe theorem's hypothesis.Claim 7.5.1: For every x 2SnPr �A0(f(x))2f�1(f(x))� > 1� 2�nThis claim follows directly from the de�nitions of Sn and A0.Claim 7.5.2: jSnj > �1� 12p(n)� � 2n

7.1. ONE-WAY FUNCTIONS 273The rest of the proof is devoted to establishing this claim, and indeed combiningClaims 7.5.1 and 7.5.2, the theorem follows.The key observation is that, for every i 2 [t(n)] and every xi 2 f0; 1gn n Sn, itholds that Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ���U (i)n = xi i� Pr �I(f(xi)) 2 f�1(f(xi))� � nt0(n)where U (1)n ; :::; U (n�p(n))n denote the n-bit long blocks in the random variable Un2p(n).It follows that� def= Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ �9i s.t. U (i)n 2f0; 1gn n Sn�i� t(n)Xi=1 Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ U (i)n 2f0; 1gn n Sni� t(n) � nt0(n) = 12q(n2p(n))where the equality is due to t0(n) = 2n2 � p(n) � q(n2p(n)) and t(n) = n � p(n). Onthe other hand, using Eq. (7.4), we have� � Pr �B0(F (Un2p(n)))2F�1(F (Un2p(n)))� � Pr h(8i)U (i)n 2Sni� 1q(n2p(n)) � Pr [Un2Sn]t(n) :Using t(n) = n � p(n), we get Pr[Un 2 Sn] > (1=2q(n2p(n)))1=(n�p(n)), which impliesPr[Un 2 Sn] > 1 � (1=2p(n)) for su�ciently large n. Claim 7.5.2 follows, and sodoes the theorem.Digest. Let us recall the structure of the proof of Theorem 7.5. Given a weakone-way function f , we �rst constructed a polynomial-time computable functionF with the intention of later proving that F is strongly one-way. To prove thatF is strongly one-way, we used a reducibility argument. The argument transformse�cient algorithms that supposedly contradict the strong one-wayness of F intoe�cient algorithms that contradict the hypothesis that f is weakly one-way. HenceF must be strongly one-way. We stress that our algorithmic transformation, whichis in fact a randomized Cook reduction, makes no implicit or explicit assumptionsabout the structure of the prospective algorithms for inverting F . Such assumptions(e.g., the \natural" assumption that the inverter of F works independently on eachblock) cannot be justi�ed (at least not at our current state of understanding of thenature of e�cient computations).We use the term a reducibility argument, rather than just saying a reductionso as to emphasize that we do not refer here to standard (worst-case complexity)reductions. Let us clarify the distinction: In both cases we refer to reducing the

274 CHAPTER 7. THE BRIGHT SIDE OF HARDNESStask of solving one problem to the task of solving another problem; that is, we usea procedure solving the second task in order to construct a procedure that solvesthe �rst task. However, in standard reductions one assumes that the second taskhas a perfect procedure solving it on all instances (i.e., on the worst-case), andconstructs such a procedure for the �rst task. Thus, the reduction may invoke thegiven procedure (for the second task) on very \non-typical" instances. This cannotbe allowed in our reducibility arguments. Here, we are given a procedure thatsolves the second task with certain probability with respect to a certain distribution.Thus, in employing a reducibility argument, we cannot invoke this procedure onany instance. Instead, we must consider the probability distribution, on instancesof the second task, induced by our reduction. In our case (as in many cases)the latter distribution equals the distribution to which the hypothesis (regardingsolvability of the second task) refers, but in general these distributions need onlybe \su�ciently close" in an adequate sense (which depends on the analysis). Inany case, a careful consideration of the distribution induced by the reducibilityargument is due. (Indeed, the same issue arises in the context of reductions among\distributional problems" considered in Section 10.2.)An information theoretic analogue. Theorem 7.5 (or rather its proof) has anatural information theoretic (or \probabilistic") analogue that refers to the am-pli�cation of the success probability by repeated experiments: If some event occurswith probability p in a single experiment, then the event will occur with very highprobability (i.e., 1�e�n) when the experiment is repeated n=p times. The analogyis to evaluating the function F at a random input, where each block of this inputmay be viewed as an attempt to hit the noticeable \hard region" of f . The readeris probably convinced at this stage that the proof of Theorem 7.5 is much morecomplex than the proof of the information theoretic analogue. In the informationtheoretic context the repeated experiments are independent by de�nition, whereasin the computational context no such independence can be guaranteed. (Indeed, theindependence assumption corresponds to the naive argument discussed at the be-ginning of the proof of Theorem 7.5.) Another indication to the di�erence betweenthe two settings follows. In the information theoretic setting, the probability thatthe event did not occur in any of the repeated trials decreases exponentially withthe number of repetitions. In contrast, in the computational setting we can onlyreach an unspeci�ed negligible bound on the inverting probabilities of polynomial-time algorithms. Furthermore, for all we know, it may be the case that F can bee�ciently inverted on F (Un2p(n)) with success probability that is sub-exponentiallydecreasing (e.g., with probability 2�(log2 n)3), whereas the analogous informationtheoretic bound is exponentially decreasing (i.e., e�n).7.1.3 Hard-Core PredicatesOne-way functions per se su�ce for one central application: the construction ofsecure signature schemes (see Appendix C.6). For other applications, one relies notmerely on the infeasibility of fully recovering the preimage of a one-way function,

7.1. ONE-WAY FUNCTIONS 275but rather on the infeasibility of meaningfully guessing bits in the preimage. Thelatter notion is captured by the de�nition of a hard-core predicate.Recall that saying that a function f is one-way means that given a typical y(in the range of f) it is infeasible to �nd a preimage of y under f . This does notmean that it is infeasible to �nd partial information about the preimage(s) of yunder f . Speci�cally, it may be easy to retrieve half of the bits of the preimage(e.g., given a one-way function f consider the function f 0 de�ned by f 0(x; r) def=(f(x); r), for every jxj= jrj). We note that hiding partial information (about thefunction's preimage) plays an important role in more advanced constructs (e.g.,pseudorandom generators and secure encryption). With this motivation in mind,we will show that essentially any one-way function hides speci�c partial informationabout its preimage, where this partial information is easy to compute from thepreimage itself. This partial information can be considered as a \hard core" of thedi�culty of inverting f . Loosely speaking, a polynomial-time computable (Boolean)predicate b, is called a hard-core of a function f if no feasible algorithm, given f(x),can guess b(x) with success probability that is non-negligibly better than one half.
f(x)

x

b(x)The solid arrows depict easily computable transformationwhile the dashed arrows depict infeasible transformations.Figure 7.1: The hard-core of a one-way function { an illustration.De�nition 7.6 (hard-core predicates): A polynomial-time computable predicateb : f0; 1g� ! f0; 1g is called a hard-core of a function f if for every probabilisticpolynomial-time algorithm A0, every positive polynomial p(�), and all su�cientlylarge n's Pr [A0(f(x))=b(x)] < 12 + 1p(n)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gnand all the possible outcomes of the internal coin tosses of algorithm A0.

276 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSNote that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obviousalgorithms that guess b(x) from f(x) with success probability at least one half (e.g.,the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, ifb is a hard-core predicate (of any function) then it follows that b is almost unbiased(i.e., for a uniformly chosen x, the di�erence jPr[b(x)=0]� Pr[b(x)=1]j must be anegligible function in n).Since b itself is polynomial-time computable, the failure of e�cient algorithms toapproximate b(x) from f(x) (with success probability that is non-negligibly higherthan one half) must be due either to an information loss of f (i.e., f not beingone-to-one) or to the di�culty of inverting f . For example, for � 2 f0; 1g andx0 2f0; 1g�, the predicate b(�x0) = � is a hard-core of the function f(�x0) def= 0x0.Hence, in this case the fact that b is a hard-core of the function f is due to the factthat f loses information (speci�cally, the �rst bit: �). On the other hand, in thecase that f loses no information (i.e., f is one-to-one) a hard-core for f may existonly if f is hard to invert. In general, the interesting case is when being a hard-coreis a computational phenomenon rather than an information theoretic one (whichis due to \information loss" of f). It turns out that any one-way function has amodi�ed version that possesses a hard-core predicate.Theorem 7.7 (a generic hard-core predicate): For any one-way function f , theinner-product mod 2 of x and r, denoted b(x; r), is a hard-core of f 0(x; r) =(f(x); r).In other words, Theorem 7.7 asserts that, given f(x) and a random subset S � [jxj],it is infeasible to guess �i2Sxi signi�cantly better than with probability 1=2, wherex = x1 � � �xn is uniformly distributed in f0; 1gn.Proof Sketch: The proof is by a so-called \reducibility argument" (see Sec-tion 7.1.2). Speci�cally, we reduce the task of inverting f to the task of predictingthe hard-core of f 0, while making sure that the reduction (when applied to inputdistributed as in the inverting task) generates a distribution as in the de�nition ofthe predicting task. Thus, a contradiction to the claim that b is a hard-core of f 0yields a contradiction to the hypothesis that f is hard to invert. We stress thatthis argument is far more complex than analyzing the corresponding \probabilis-tic" situation (i.e., the distribution of (r; b(X; r)), where r 2 f0; 1gn is uniformlydistributed and X is a random variable with super-logarithmic min-entropy (whichrepresents the \e�ective" knowledge of x, when given f(x))).4Our starting point is a probabilistic polynomial-time algorithm B that satis�es,for some polynomial p and in�nitely many n's, Pr[B(f(Xn); Un) = b(Xn; Un)] >(1=2) + (1=p(n)), where Xn and Un are uniformly and independently distributedover f0; 1gn. Using a simple averaging argument, we focus on a " def= 1=2p(n)4The min-entropy of X is de�ned as minvflog2(1=Pr[X = v])g; that is, if X has min-entropy mthen maxvfPr[X = v]g = 2�m. The Leftover Hashing Lemma (see Appendix D.2) implies that,in this case, Pr[b(X;Un) = 1jUn] = 12 � 2�
(m), where Un denotes the uniform distribution overf0; 1gn.

7.1. ONE-WAY FUNCTIONS 277fraction of the x's for which Pr[B(f(x); Un) = b(x; Un)] > (1=2) + " holds. We willshow how to use B in order to invert f , on input f(x), provided that x is in thisgood set (which has density ").As a warm-up, suppose for a moment that, for the aforementioned x's, algorithmB succeeds with probability p such that p > 34 + 1=poly(jxj) rather than p >12 + 1=poly(jxj). In this case, retrieving x from f(x) is quite easy: To retrieve theith bit of x, denoted xi, we randomly select r 2 f0; 1gjxj, and obtain B(f(x); r) andB(f(x); r�ei), where ei = 0i�110jxj�i and v�u denotes the addition mod 2 of thebinary vectors v and u. A key observation underlying the foregoing scheme as wellas the rest of the proof is that b(x; r�s) = b(x; r) � b(x; s), which can be readilyveri�ed by writing b(x; y) = Pni=1 xiyi mod 2 and noting that addition modulo 2of bits corresponds to their XOR. Now, note that if both B(f(x); r) = b(x; r)and B(f(x); r� ei) = b(x; r� ei) hold, then B(f(x); r) � B(f(x); r� ei) equalsb(x; r) � b(x; r�ei) = b(x; ei) = xi. The probability that both B(f(x); r)= b(x; r)and B(f(x); r�ei)= b(x; r�ei) hold, for a random r, is at least 1 � 2 � (1 � p) >12 + 1poly(jxj) . Hence, repeating the foregoing procedure su�ciently many times(using independent random choices of such r's) and ruling by majority, we retrievexi with very high probability. Similarly, we can retrieve all the bits of x, andhence invert f on f(x). However, the entire analysis was conducted under (theunjusti�able) assumption that p > 34+ 1poly(jxj) , whereas we only know that p > 12+"for " = 1=poly(jxj).The problem with the foregoing procedure is that it doubles the original errorprobability of algorithm B on inputs of the form (f(x); �). Under the unrealistic(foregoing) assumption that B's average error on such inputs is non-negligiblysmaller than 14 , the \error-doubling" phenomenon raises no problems. However, ingeneral (and even in the special case where B's error is exactly 14) the foregoingprocedure is unlikely to invert f . Note that the average error probability of B (fora �xed f(x), when the average is taken over a random r) can not be decreasedby repeating B several times (e.g., for every x, it may be that B always answercorrectly on three quarters of the pairs (f(x); r), and always err on the remainingquarter). What is required is an alternative way of using the algorithm B, a waythat does not double the original error probability of B.The key idea is generating the r's in a way that allows applying algorithmB only once per each r (and i), instead of twice. Speci�cally, we will invoke Bon (f(x); r� ei) in order to obtain a \guess" for b(x; r� ei), and obtain b(x; r)in a di�erent way (which does not involve using B). The good news is that theerror probability is no longer doubled, since we only use B to get a \guess" ofb(x; r� ei). The bad news is that we still need to know b(x; r), and it is notclear how we can know b(x; r) without applying B. The answer is that we canguess b(x; r) by ourselves. This is �ne if we only need to guess b(x; r) for oner (or logarithmically in jxj many r's), but the problem is that we need to know(and hence guess) the value of b(x; r) for polynomially many r's. The obviousway of guessing these b(x; r)'s yields an exponentially small success probability.Instead, we generate these polynomially many r's such that, on one hand they are\su�ciently random" whereas, on the other hand, we can guess all the b(x; r)'s

278 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSwith noticeable success probability.5 Speci�cally, generating the r's in a speci�cpairwise independent manner will satisfy both these (conicting) requirements. Westress that in case we are successful (in our guesses for all the b(x; r)'s), we canretrieve x with high probability. Hence, we retrieve x with noticeable probability.A word about the way in which the pairwise independent r's are generated(and the corresponding b(x; r)'s are guessed) is indeed in place. To generate m =poly(jxj) many r's, we uniformly (and independently) select ` def= log2(m+1) stringsin f0; 1gjxj. Let us denote these strings by s1; :::; s`. We then guess b(x; s1) throughb(x; s`). Let us denote these guesses, which are uniformly (and independently)chosen in f0; 1g, by �1 through �`. Hence, the probability that all our guessesfor the b(x; si)'s are correct is 2�` = 1poly(jxj) . The di�erent r's correspond tothe di�erent non-empty subsets of f1; 2; :::; `g. Speci�cally, for every such subsetJ , we let rJ def= �j2Jsj . The reader can easily verify that the rJ 's are pairwiseindependent and each is uniformly distributed in f0; 1gjxj; see Exercise 7.5. Thekey observation is that b(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj). Hence, our guessfor b(x; rJ) is �j2J�j , and with noticeable probability all our guesses are correct.Wrapping-up everything, we obtain the following procedure, where " = 1=poly(n)represents a lower-bound on the advantage of B in guessing b(x; �) for an " fractionof the x's (i.e., for these good x's it holds that Pr[B(f(x); Un) = b(x; Un)] > 12 +").Inverting procedure (on input y = f(x) and parameters n and "):Set ` = log2(n="2) +O(1).(1) Select uniformly and independently s1; :::; s` 2 f0; 1gn.Select uniformly and independently �1; :::; �` 2 f0; 1g.(2) For every non-empty J � [`], compute rJ = �j2Jsj and �J = �j2J�j .(3) For i = 1; :::; n determine the bit zi according to the majority voteof the (2` � 1)-long sequence of bits (�J�B(f(x); rJ�ei));6=J�[`].(4) Output z1 � � � zn.Note that the \voting scheme" employed in Step 3 uses pairwise independent sam-ples (i.e., the rJ 's), but works essentially as well as it would have worked withindependent samples (i.e., the independent r's).6 That is, for every i and J , itholds that Prs1;:::;s` [B(f(x); rJ�ei) = b(x; rJ�ei)] > (1=2)+", where rJ = �j2Jsj ,and (for every �xed i) the events corresponding to di�erent J 's are pairwise inde-pendent. It follows that if for every j 2 [`] it holds that �j = b(x; sj), then forevery i and J we havePrs1;:::;s` [�J �B(f(x); rJ�ei) = b(x; ei)] (7.5)5Alternatively, we can try all polynomially many possible guesses. In such a case, we shalloutput a list of candidates that, with high probability, contains x. (See Exercise 7.6.)6Our focus here is on the accuracy of the approximation obtained by the sample, and not somuch on the error probability. We wish to approximate Pr[b(x; r) � B(f(x); r�ei) = 1] up toan additive term of ", because such an approximation allows to correctly determine b(x; ei). Apairwise independent sample of O(t="2) points allows for an approximation of a value in [0; 1] upto an additive term of " with error probability 1=t, whereas a totally random sample of the samesize yields error probability exp(�t). Since we can a�ord setting t = poly(n) and having errorprobability 1=2n, the di�erence in the error probability between the two approximation schemesis not important here. For a wider perspective see Appendix D.1.2 and D.3.

7.1. ONE-WAY FUNCTIONS 279= Prs1;:::;s` [B(f(x); rJ�ei) = b(x; rJ�ei)] > 12 + "where the equality is due to �J = �j2J�j = b(x; rJ) = b(x; rJ�ei)� b(x; ei). Notethat Eq. (7.5) refers to the correctness of a single vote for b(x; ei). Using m =2` � 1 = O(n="2) and noting that these (Boolean) votes are pairwise independent,we infer that the probability that the majority of these votes is wrong is upper-bounded by 1=2n. Using a union bound on all i's, we infer that with probability atleast 1=2, all majority votes are correct and thus x is retrieved correctly. Recall thatthe foregoing is conditioned on �j = b(x; sj) for every j 2 [`], which in turn holdswith probability 2�` = (m + 1)�1 =
("2=n) = 1=poly(n). Thus, x is retrievedcorrectly with probability 1=poly(n), and the theorem follows.Digest. Looking at the proof of Theorem 7.7, we note that it actually refersto an arbitrary black-box Bx(�) that approximates b(x; �); speci�cally, in the caseof Theorem 7.7 we used Bx(r) def= B(f(x); r). In particular, the proof does notuse the fact that we can verify the correctness of the preimage recovered by thedescribed process. Thus, the proof actually establishes the existence of a poly(n=")-time oracle machine that, for every x 2 f0; 1gn, given oracle access to any Bx :f0; 1gn ! f0; 1g satisfyingPrr2f0;1gn [Bx(r) = b(x; r)] � 12 + " (7.6)outputs x with probability at least poly("=n). Speci�cally, x is output with proba-bility at least p def=
("2=n). Noting that x is merely a string for which Eq. (7.6)holds, it follows that the number of strings that satisfy Eq. (7.6) is at most 1=p.Furthermore, by iterating the foregoing procedure for eO(1=p) times we can obtainall these strings (see Exercise 7.7).Theorem 7.8 (Theorem 7.7, revisited): There exists a probabilistic oracle ma-chine that, given parameters n; " and oracle access to any function B : f0; 1gn !f0; 1g, halts after poly(n=") steps and with probability at least 1=2 outputs a list ofall strings x 2 f0; 1gn that satisfyPrr2f0;1gn [B(r) = b(x; r)] � 12 + ";where b(x; r) denotes the inner-product mod 2 of x and r.This machine can be modi�ed such that, with high probability, its output list doesnot include any string x such that Prr2f0;1gn [B(r) = b(x; r)] < 12 + "2 .Theorem 7.8 means that if given some information about x it is hard to recoverx, then given the same information and a random r it is hard to predict b(x; r).This assertion is proved by the counter-positive (see Exercise 7.14). Indeed, theforegoing statement is in the spirit of Theorem 7.7 itself, except that it refers to any\information about x" (rather than to the value f(x)). To demonstrate the point,

280 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSlet us rephrase the foregoing statement as follows: for every randomized process �,if given s it is hard to obtain �(s) then given s and a random r it is hard to predictb(�(s); r).7A coding theory perspective. Theorem 7.8 can be viewed as a list decodingprocedure for the Hadamard Code, where the Hadamard encoding of a string x 2f0; 1gn is the 2n-bit long string containing b(x; r) for every r 2 f0; 1gn. In contrastto standard decoding in which the task is recovering the unique information that isencoded in the codeword that is closest to the given string, in list decoding the taskis recovering all strings having encoding that is at a speci�ed distance from thegiven string.8 We mention that list decoding is applicable and valuable in the casethat the speci�ed distance does not allow for unique decoding (i.e., the speci�eddistance is greater than half the distance of the code).Applications of hard-core predicates. Turning back to hard-core predicates,we mention that they play a central role in the construction of general-purpose pseu-dorandom generators (see Section 8.2), commitment schemes and zero-knowledgeproofs (see Sections 9.2.2 and C.4.3), and encryption schemes (see Appendix C.5).7.1.4 Reections on hardness ampli�cationLet us take notice that something truly amazing happens in Theorems 7.5 and 7.7.We are not talking merely of using an assumption to derive some conclusion; this iscommon practice in Mathematics and Science (and was indeed done several timesin previous chapters, starting with Theorem 2.28). The thing that is special aboutTheorems 7.5 and 7.7 (and we shall see more of this in Section 7.2 as well as inSections 8.2 and 8.3) is that a relatively mild intractability assumption is shown toimply a stronger intractability result.This strengthening of an intractability phenomenon (a.k.a hardness ampli�-cation) takes place while we admit that we do not understand the intractabilityphenomenon (because we do not understand the nature of e�cient computation).Nevertheless, hardness ampli�cation is enabled by the use of the counter-positive,which in this case is called a reducibility argument. At this point things look lessmiraculous: a reducibility argument calls for the design of a procedure (i.e., a re-duction) and a probabilistic analysis of its behavior. The design and analysis ofsuch procedures may not be easy, but it is certainly within the standard exper-tise of computer science. The fact that hardness ampli�cation is achieved via thiscounter-positive is best represented in the statement of Theorem 7.8.7Indeed, Theorem 7.7 is obtained as a special case by letting �(s) be uniformly distributed inf�1(s).8Further discussion of error-correcting codes and list-decoding is provided in Appendix E.1.

7.2. HARD PROBLEMS IN E 2817.2 Hard Problems in EAs in Section 7.1, we start with the assumption P 6= NP and seek to use it toour bene�t. Again, we shall actually use a seemingly stronger assumption; herethe strengthening is in requiring worst-case hardness with respect to non-uniformmodels of computation (rather than average-case hardness with respect to thestandard uniform model). Speci�cally, we shall assume that NP cannot be solvedby (non-uniform) families of polynomial-size circuits; that is, NP is not containedin P=poly (even not in�nitely often).Our goal is to transform this worst-case assumption into an average-case con-dition, which is useful for our applications. Since the transformation will not yielda problem in NP but rather one in E , we might as well take the seemingly weakerassumption by which E is not contained in P=poly (see Exercise 7.9). That is,our starting point is actually that there exists an exponential-time solvable decisionproblem such that any family of polynomial-size circuit fails to solve it correctly onall but �nitely many input lengths.9A di�erent perspective on our assumption is provided by the fact that E con-tains problems that cannot be solved in polynomial-time (cf.. Section 4.2.1). Thecurrent assumption goes beyond this fact by postulating the failure of non-uniformpolynomial-time machines rather than the failure of (uniform) polynomial-timemachines.Recall that our goal is to obtain a predicate (i.e., a decision problem) that iscomputable in exponential-time but is inapproximable by polynomial-size circuits.For sake of later developments, we formulate a general notion of inapproximability.De�nition 7.9 (inapproximability, a general formulation): We say that f : f0; 1g� !f0; 1g is (S; �)-inapproximable if for every family of S-size circuits fCngn2N and allsu�ciently large n it holds thatPr[Cn(Un) 6= f(Un)] � �(n)2 (7.7)We say that f is T -inapproximable if it is (T; 1� (1=T))-inapproximable.We chose the speci�c form of Eq. (7.7) such that the \level of inapproximability"represented by the parameter � will range in (0; 1) and increase with the valueof �. Speci�cally, (almost-everywhere) worst-case hardness for circuits of size Sis represented by (S; �)-inapproximability with �(n) = 2�n+1 (i.e., in this casePr[C(Un) 6= f(Un)] � 2�n for every circuit Cn of size S(n)). On the other hand, nopredicate can be (S; �)-inapproximable for �(n) = 1� 2�n even with S(n) = O(n)(i.e., Pr[C(Un) = f(Un)] � 0:5 + 2�n�1 holds for some linear-size circuit; seeExercise 7.10).We note that Eq. (7.7) can be interpreted as an upper-bound on the correlationof each adequate circuit with f (i.e., Eq. (7.7) is equivalent to E[�(C(Un); f(Un))] �9Note that our starting point is actually stronger than assuming the existence of a function fin E n P=poly. Such an assumption would mean that any family of polynomial-size circuit failsto compute f correctly on in�nitely many input lengths, whereas our starting point postulatesfailures on all but �nitely many lengths.

282 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS1 � �(n), where �(�; �) = 1 if � = � and �(�; �) = �1 otherwise).10 Thus, T -inapproximability means that no family of size T circuits can correlate f betterthan 1=T .We note that the existence of a non-uniformly hard one-way function (as inDe�nition 7.3) implies the existence of an exponential-time computable predicatethat is T -inapproximable for every polynomial T . (For details see Exercise 7.24.)However, our goal in this section is to establish this conclusion under a seeminglyweaker assumption.On almost everywhere hardness. We highlight the fact that both our as-sumptions and conclusions refer to almost everywhere hardness. For example, ourstarting point is not merely that E is not contained in P=poly (or in other circuitsize classes to be discussed), but rather that this is the case almost everywhere.Note that by saying that f has circuit complexity exceeding S, we merely meanthat there are in�nitely many n's such that no circuit of size S(n) can compute fcorrectly on all inputs of length n. In contrast, by saying that f has circuit com-plexity exceeding S almost everywhere, we mean that for all but �nite many n's nocircuit of size S(n) can computes f correctly on all inputs of length n. (Indeed, it isnot known whether an \in�nitely often" type of hardness implies a corresponding\almost everywhere" hardness.)The class E. Recall that E denote the class of exponential-time solvable decisionproblems (equivalently, exponential-time computable Boolean predicates); that is,E = ["Dtime(t"), where t"(n) def= 2"n.The rest of this section. We start (in Section 7.2.1) with a treatment of as-sumptions and hardness ampli�cation regarding polynomial-size circuits, whichsu�ce for non-trivial derandomization of BPP. We then turn (in Section 7.2.2) toassumptions and hardness ampli�cation regarding exponential-size circuits, whichyield a \full" derandomization of BPP (i.e., BPP = P). In fact, both sectionscontain material that is applicable to various other circuit-size bounds, but themotivational focus is as stated.Teaching note: Section 7.2.2 is advanced material, which is best left for independentreading. Furthermore, for one of the central results (i.e., Lemma 7.23) only an outlineis provided and the interested reader is referred to the original paper [127].7.2.1 Ampli�cation wrt polynomial-size circuitsOur goal here is to prove the following result.Theorem 7.10 Suppose that for every polynomial p there exists a problem in Ehaving circuit complexity that is almost-everywhere greater than p. Then there existpolynomial-inapproximable Boolean functions in E; that is, for every polynomial pthere exists a p-inapproximable Boolean function in E.10Indeed, E[�(X;Y)] = Pr[X=Y]� Pr[X 6=Y] = 1� 2Pr[X 6=Y].

7.2. HARD PROBLEMS IN E 283Theorem 7.10 is used towards deriving a meaningful derandomization of BPPunder the aforementioned assumption (see Part 2 of Theorem 8.19). We presenttwo proofs of Theorem 7.10. The �rst proof proceeds in two steps:1. Starting from the worst-case hypothesis, we �rst establish some mild level ofaverage-case hardness (i.e., a mild level of inapproximability). Speci�cally,we show that for every polynomial p there exists a problem in E that is(p; ")-inapproximable for "(n) = 1=n3.2. Using the foregoing mild level of inapproximability, we obtain the desiredstrong level of inapproximability (i.e., p0-inapproximability for every polyno-mial p0). Speci�cally, for every two polynomials p1 and p2, we prove that if thefunction f is (p1; 1=p2)-inapproximable, then the function F (x1; :::; xt(n)) =�t(n)i=1 f(xi), where t(n) = n�p2(n) and x1; :::; xt(n) 2 f0; 1gn, is p0-inapproximablefor p0(t(n) � n) = p1(n)
(1)=poly(t(n)). This claim is known as Yao's XORLemma and its proof is far more complex than the proof of its informationtheoretic analogue (discussed at the beginning of x7.2.1.2).The second proof of Theorem 7.10 consists of showing that the construction em-ployed in the �rst step, when composed with Theorem 7.8, actually yields thedesired end result. This proof will uncover a connection between hardness ampli�-cation and coding theory. Our presentation will thus proceed in three correspondingsteps (presented in x7.2.1.1-7.2.1.3, and schematically depicted in Figure 7.2).
worst-case

HARDNESS HARDNESS

average-case
mild

via list decoding (7.2.1.3)

7.2.1.1 7.2.1.2

Yao’s XOR

derandomized
Yao’s XOR (7.2.2)

inapprox.

Figure 7.2: Proofs of hardness ampli�cation: organization7.2.1.1 From worst-case hardness to mild average-case hardnessThe transformation of worst-case hardness into average-case hardness (even in amild sense) is indeed remarkable. Note that worst-case hardness may be due toa relatively small number of instances, whereas even mild forms of average-casehardness refer to a very large number of possible instances.11 In other words, weshould transform hardness that may occur on a negligible fraction of the instances11Indeed, worst-case hardness with respect to polynomial-size circuits cannot be due to a poly-nomial number of instances, because a polynomial number of instances can be hard-wired into

284 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSinto hardness that occurs on a noticeable fraction of the instances. Intuitively, weshould \spread" the hardness of few instances (of the original problem) over all (ormost) instances (of the transformed problem). The counter-positive view is thatcomputing the value of typical instances of the transformed problem should enablesolving the original problem on every instance.The aforementioned transformation is based on the self-correction paradigm,to be reviewed �rst. The paradigm refers to functions g that can be evaluatedat any desired point by using the value of g at a few random points, where eachof these points is uniformly distributed in the function's domain (but indeed thepoints are not independently distributed). The key observation is that if g(x) canbe reconstructed based on the value of g at t such random points, then such areconstruction can tolerate a 1=3t fraction of errors (regarding the values of g).Thus, if we can correctly obtain the value of g on all but at most a 1=3t fractionof its domain, then we can probabilistically recover the correct value of g at anypoint with very high probability. It follows that if no probabilistic polynomial-timealgorithm can correctly compute g in the worst-case sense, then every probabilisticpolynomial-time algorithm must fail to correctly compute g on more than a 1=3tfraction of its domain.The archetypical example of a self-correctable function is any m-variate poly-nomial of individual degree d over a �nite �eld F such that jF j > dm + 1. Thevalue of such a polynomial at any desired point x can be recovered based on thevalues of dm + 1 points (other than x) that reside on a random line that passesthrough x. Note that each of these points is uniformly distributed in Fm, which isthe function's domain. (For details, see Exercise 7.11.)Recall that we are given an arbitrary function f 2 E that is hard to computein the worst-case. Needless to say, this function is not necessarily self-correctable(based on relatively few points), but it can be extended into such a function.Speci�cally, we extend f : [N]! f0; 1g (viewed as f : [N1=m]m ! f0; 1g) to an m-variate polynomial of individual degree d over a �nite �eld F such that jF j > dm+1and (d + 1)m = N . Intuitively, in terms of worst-case complexity, the extendedfunction is at least as hard as f , which means that it is hard (in the worst-case).The point is that the extended function is self-correctable and thus its worst-casehardness implies that it must be at least mildly hard in the average-case. Detailsfollow.Construction 7.11 (multi-variate extension)12: For any function fn : f0; 1gn !f0; 1g, a �nite �eld F , a set H � F and an integer m such that jH jm = 2n andjF j > (jH j � 1)m + 1, we consider the function f̂n : Fm ! F de�ned as the m-variate polynomial of individual degree jH j�1 that extends fn : Hm ! f0; 1g. Thatsuch circuits. Still, for all we know, worst-case hardness may be due to a small super-polynomialnumber of instances (e.g., nlog2 n instances). In contrast, even mild forms of average-case hardnessmust be due to an exponential number of instances (i.e., 2n=poly(n) instances).12The algebraic fact underlying this construction is that for any function f : Hm ! F thereexists a unique m-variate polynomial f̂ : Fm ! F of individual degree jHj�1 such that for everyx 2 Hm it holds that f̂(x) = f(x). This polynomial is called a multi-variate polynomial extensionof f , and it can be found in poly(jHjm log jF j)-time. For details, see Exercise 7.12.

7.2. HARD PROBLEMS IN E 285is, we identify f0; 1gn with Hm, and de�ne f̂n as the unique m-variate polynomialof individual degree jH j � 1 that satis�es f̂n(x) = fn(x) for every x 2 Hm, wherewe view f0; 1g as a subset of F .Note that f̂n can be evaluated at any desired point, by evaluating fn on its entiredomain, and determining the unique m-variate polynomial of individual degreejH j�1 that agrees with fn onHm (see Exercise 7.12). Thus, for f : f0; 1g� ! f0; 1gin E , the corresponding f̂ (de�ned by separately extending the restriction of f toeach input length) is also in E . For the sake of preserving various complexitymeasures, we wish to have jFmj = poly(2n), which leads to setting m = n= log2 n(yielding jH j = n and jF j = poly(n)). In particular, in this case f̂n is de�ned overstrings of length O(n). The mild average-case hardness of f̂ follows by the forgoingdiscussion. In fact, we state and prove a more general result.Theorem 7.12 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S. Then, there exists anexponential-time computable function f̂ : f0; 1g� ! f0; 1g� such that jf̂(x)j � jxjand for every family of circuit fC 0n0gn02N of size S0(n0) = S(n0=O(1))=poly(n0) itholds that Pr[C 0n0(Un0) 6= f̂(Un0)] > (1=n0)2. Furthermore, f̂ does not depend on S.Theorem 7.12 seems to complete the �rst step of the proof of Theorem 7.10, ex-cept that we desire a Boolean function rather than a function that merely doesnot stretch its input. The extra step of obtaining a Boolean function that is(poly(n); n�3)-inapproximable is taken in Exercise 7.13.13 Essentially, if f̂ is hardto compute on a noticeable fraction of its inputs then the Boolean predicate thaton input (x; i) returns the ith bit of f̂(x) must be mildly inapproximable.Proof Sketch: Given f as in the hypothesis and for every n 2 N , we consider therestriction of f to f0; 1gn, denoted fn, and apply Construction 7.11 to it, whileusing m = n= logn, jH j = n and n2 < jF j = poly(n). Recall that the resultingfunction f̂n maps strings of length n0 = log2 jFmj = O(n) to strings of lengthlog2 jF j = O(log n). Following the foregoing discussion, we shall show that circuitsthat approximate f̂n too well yield circuits that compute fn correctly on each input.Using the hypothesis regarding the size of the latter, we shall derive a lower-boundon the size of the former. The actual (reducibility) argument proceeds as follows.We �x an arbitrary circuit C 0n0 that satis�esPr[C 0n0(Un0) = f̂n(Un0)] � 1� (1=n0)2 > 1� (1=3t); (7.8)where t def= (jH j � 1)m + 1 = o(n2) exceeds the total degree of f̂n. Using theself-correction feature of f̂n, we observe that by making t oracle calls to C 0n0 we canprobabilistically recover the value of (f̂n and thus of) fn on each input, with proba-bility at least 2=3. Using error-reduction and (non-uniform) derandomization as in13A quantitatively stronger bound can be obtained by noting that the proof of Theorem 7.12actually establishes an error lower-bound of
((log n0)=(n0)2) and that jf̂(x)j = O(log jxj).

286 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSthe proof of Theorem 6.3,14 we obtain a circuit of size n3 � jC 0n0 j that computes fn.By the hypothesis n3 � jC 0n0 j > S(n), and so jC 0n0 j > S(n0=O(1))=poly(n0). Recallingthat C 0n0 is an arbitrary circuit that satis�es Eq. (7.8), the theorem follows.Digest. The proof of Theorem 7.12 is actually a worst-case to average-case re-duction. That is, the proof consists of a self-correction procedure that allows forthe evaluation of f at any desired n-bit long point, using oracle calls to any circuitthat computes f̂ correctly on a 1� (1=n0)2 fraction of the n0-bit long inputs. Werecall that if f 2 E then f̂ 2 E , but we do not know how to preserve the complexityof f in case it is in NP . (Various indications to the di�culty of a worst-case toaverage-case reduction for NP are known; see, e.g., [42].)We mention that the ideas underlying the proof of Theorem 7.12 have beenapplied in a large variety of settings. For example, we shall see applications ofthe self-correction paradigm in x9.3.2.1 and in x9.3.2.2. Furthermore, in x9.3.2.2we shall re-encounter the very same multi-variate extension used in the proof ofTheorem 7.12.7.2.1.2 Yao's XOR LemmaHaving obtained a mildly inapproximable predicate, we wish to obtain a stronglyinapproximable one. The information theoretic context provides an appealing sug-gestion: Suppose that X is a Boolean random variable (representing the mildinapproximability of the aforementioned predicate) that equals 1 with probability". Then XORing the outcome of n=" independent samples of X yields a bit thatequals 1 with probability 0:5� exp(�
(n)). It is tempting to think that the sameshould happen in the computational setting. That is, if f is hard to approximatecorrectly with probability exceeding 1 � " then XORing the output of f on n="non-overlapping parts of the input should yield a predicate that is hard to approx-imate correctly with probability that is non-negligibly higher than 1=2. The latterassertion turns out to be correct, but (even more than in Section 7.1.2) the proofof the computational phenomenon is considerably more complex than the analysisof the information theoretic analogue.Theorem 7.13 (Yao's XOR Lemma): There exist a universal constant c > 0 suchthat the following holds. If, for some polynomials p1 and p2, the Boolean function fis (p1; 1=p2)-inapproximable, then the function F (x1; :::; xt(n)) = �t(n)i=1 f(xi), wheret(n) = n � p2(n) and x1; :::; xt(n) 2 f0; 1gn, is p0-inapproximable for p0(t(n) � n) =p1(n)c=t(n)1=c. Furthermore, the claim holds also if the polynomials p1 and p2 arereplaced by any integer functions.14First, we apply the foregoing probabilistic procedure O(n) times and take a majority vote.This yields a probabilistic procedure that, on input x 2 f0; 1gn, invokes C0n0 for o(n3) times andcomputes fn(x) correctly with probability greater than 1 � 2�n. Finally, we just �x a sequenceof random choices that is good for all 2n possible inputs, and obtain a circuit of size n3 � jC0n0 jthat computes fn correctly on every n-bit input.

7.2. HARD PROBLEMS IN E 287Combining Theorem 7.12 (and Exercise 7.13), and Theorem 7.13, we obtain a proofof Theorem 7.10. (Recall that an alternative proof is presented in x7.2.1.3.)We note that proving Theorem 7.13 seems more di�cult than proving Theo-rem 7.5 (i.e., the ampli�cation of one-way functions), due to two issues. Firstly,unlike in Theorem 7.5, the computational problems are not in PC and thus wecannot e�ciently recognize correct solutions to them. Secondly, unlike in Theo-rem 7.5, solutions to instances of the transformed problem do not correspond ofthe concatenation of solutions for the original instances, but are rather a functionof the latter that losses almost all the information about the latter. The proof ofTheorem 7.13 presented next deals with each of these two di�culties separately.Several di�erent proofs of Theorem 7.13 are known. As just stated, the proofthat we present is conceptually appealing because it deal separately with two unre-lated di�culties. Furthermore, this proof bene�ts most from the material alreadypresented in Section 7.1. The proof proceeds in two steps:1. First we prove that the corresponding \direct product" function P (x1; :::; xt(n)) =(f(x1); :::; f(xt(n))) is di�cult to compute in a strong average-case sense.2. Next we establish the desired result by an application of Theorem 7.8.Thus, given Theorem 7.8, our main focus is on the �rst step, which is of independentinterest (and is thus generalized from Boolean functions to arbitrary ones).Theorem 7.14 (The Direct Product Lemma): Let p1 and p2 be two polynomials,and suppose that f : f0; 1g� ! f0; 1g� is such that for every family of p1-sizecircuits, fCngn2N, and all su�ciently large n 2 N , it holds that Pr[Cn(Un) 6=f(Un)] > 1=p2(n). Let P (x1; :::; xt(n)) = (f(x1); :::; f(xt(n))), where x1; :::; xt(n) 2f0; 1gn and t(n) = n � p2(n). Then, for any "0 : N ! [0; 1], setting p0 such thatp0(t(n) � n) = p1(n)=poly(t(n)="0(t(n) � n)), it holds that every family of p0-sizecircuits, fC 0mgm2N, satis�es Pr[C 0m(Um) = P (Um)] < "0(m). Furthermore, theclaim holds also if the polynomials p1 and p2 are replaced by any integer functions.In particular, for an adequate constant c > 0, selecting "0(t(n) � n) = p1(n)�c, weobtain p0(t(n) � n) = p1(n)c=t(n)1=c, and so "0(m) � 1=p0(m).Deriving Theorem 7.13 from Theorem 7.14. Theorem 7.13 follows fromTheorem 7.14 by considering the function P 0(x1; :::; xt(n); r) = b(f(x1) � � � f(xt(n)); r),where f is a Boolean function, r 2 f0; 1gt(n), and b(y; r) is the inner-productmodulo 2 of the t(n)-bit long strings y and r. Note that, for the correspondingP , we have P 0(x1; :::; xt(n); r) � b(P (x1; :::; xt(n)); r), whereas F (x1; :::; xt(n)) =P 0(x1; :::; xt(n); 1t(n)). Intuitively, the inapproximability of P 0 should follow fromthe strong average-case hardness of P (via Theorem 7.8), whereas it should be pos-sible to reduce the approximation of P 0 to the approximation of F (and thus derivethe desired inapproximability of F). Indeed, this intuition does not fail, but detail-ing the argument seems a bit cumbersome (and so we only provide the clues here).Assuming that f is (p1; 1=p2)-inapproximable, we �rst apply Theorem 7.14 (with"0(t(n) � n) = p1(n)�c) and then apply Theorem 7.8 (see Exercise 7.14), inferring

288 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSthat P 0 is p0-inapproximable for p0(t(n) � n) = p1(n)
(1)=poly(t(n)). The less obvi-ous part of the argument is reducing the approximation of P 0 to the approximationof F . The key observation is thatP 0(x1; :::; xt(n); r) = F (z1; :::; zt(n))� Mi:ri=0 f(zi) (7.9)where zi = xi if ri = 1 and is an arbitrary n-bit long string otherwise. Now, ifsomebody provides us with samples of the distribution (Un; f(Un)), then we canuse these samples in the role of the pairs (zi; f(zi)) for the indices i that satisfyri = 0. Considering a best choice of such samples (i.e., one for which we obtain thebest approximation of P 0), we obtain a circuit that approximates P 0 (by using acircuit that approximates F and the said choices of samples). (The details are leftfor Exercise 7.17.) Theorem 7.13 follows.Proving Theorem 7.14. Note that Theorem 7.14 is closely related to Theo-rem 7.5; see Exercise 7.20 for details. This suggests employing an analogous proofstrategy; that is, converting circuits that violate the theorem's conclusion into cir-cuits that violate the theorem's hypothesis. We note, however, that things weremuch simpler in the context of Theorem 7.5: there we could (e�ciently) checkwhether or not a value contained in the output of the circuit that solves the direct-product problem constitutes a correct answer for the corresponding instance of thebasic problem. Lacking such an ability in the current context, we shall have touse such values more carefully. Loosely speaking, we shall take a weighted ma-jority vote among various answers, where the weights reect our con�dence in thecorrectness of the various answers.We establish Theorem 7.14 by applying the following lemma that provides quan-titative bounds on the feasibility of computing the direct product of two functions.In this lemma, fYmgm2N and fZmgm2N are independent probability ensembles suchthat Ym; Zm 2 f0; 1gm, and Xn = (Y`(n); Zn�`(n)) for some function ` : N ! N .The lemma refers to the success probability of computing the direct product func-tion F : f0; 1g�! f0; 1g� de�ned by F (yz) = (F1(y); F2(z)), where jyj = `(jyzj),when given bounds on the success probability of computing F1 and F2 (separately).Needless to say, these probability bounds refer to circuits of certain sizes. We stressthat the lemma is not symmetric with respect to the two functions: it guarantees astronger (and in fact lossless) preservation of circuit sizes for one of the functions(which is arbitrarily chosen to be F1).Lemma 7.15 (Direct Product, a quantitative two argument version): For fYmg,fZmg, F1, F2, `, fXng and F as in the foregoing, let �1(�) be an upper-bound onthe success probability of s1(�)-size circuits in computing F1 over fYmg. That is,for every such circuit family fCmgPr[Cm(Ym)=F1(Ym)] � �1(m):Likewise, suppose that �2(�) is an upper-bound on the probability that s2(�)-sizecircuits compute F2 over fZmg. Then, for every function " :N!R , the function

7.2. HARD PROBLEMS IN E 289� de�ned as �(n) def= �1(`(n)) � �2(n� `(n)) + "(n)is an upper-bound on the probability that families of s(�)-size circuits correctly com-pute F over fXng, wheres(n) def= min�s1(`(n)) ; s2(n� `(n))poly(n="(n))�:Theorem 7.14 is derived from Lemma 7.15 by using a careful induction, whichcapitalizes on the highly quantitative form of Lemma 7.15 and in particular on thefact that no loss is incurred for one of the two functions that are used. We �rstdetail this argument, and next establish Lemma 7.15 itself.Deriving Theorem 7.14 from Lemma 7.15. We write P (x1; x2; :::; xt(n)) asP (t(n))(x1; x2; :::; xt(n)), where P (i)(x1; :::; xi) = (f(x1); :::; f(xi)) and P (i)(x1; :::; xi) �(P (i�1)(x1; :::; xi�1); f(xi)). For any function ", we shall prove by induction on ithat circuits of size s(n) = p1(n)=poly(t(n)="(n)) cannot compute P (i)(Ui�n) withsuccess probability greater than (1�(1=p2(n))i+(i�1) �"(n), where p1 and p2 are asin Theorem 7.14. Thus, no s(n)-size circuit can compute P (t(n))(Ut(n)�n) with suc-cess probability greater than (1�(1=p2(n))t(n)+(t(n)�1)�"(n) = exp(�n)+(t(n)�1) � "(n). Recalling that this is established for any function ", Theorem 7.14 follows(by using "(n) = "0(t(n) �n)=t(n), and observing that the setting s(n) = p0(t(n) �n)satis�es s(n) = p1(n)=poly(t(n)="(n))).Turning to the induction itself, we �rst note that its basis (i.e., i = 1) isguaranteed by the theorem's hypothesis (i.e., the hypothesis of Theorem 7.14regarding f). The induction step (i.e., from i to i + 1) will be proved by us-ing Lemma 7.15 with F1 = P (i) and F2 = f , along with the parameter setting�(i)1 (i �n) = (1� (1=p2(n))i+(i� 1) � "(n), s(i)1 (i �n) = s(n), �(i)2 (n) = 1� (1=p2(n))and s(i)2 (n) = poly(n="(n)) � s(n) = p1(n). Details follow.Note that the induction hypothesis (regarding P (i)) implies that F1 satis�es thehypothesis of Lemma 7.15 (w.r.t size s(i)1 and success rate �(i)1), whereas the theo-rem's hypothesis regarding f implies that F2 satis�es the hypothesis of Lemma 7.15(w.r.t size s(i)2 and success rate �(i)2). Thus, F = P (i+1) satis�es the lemma's conclu-sion with respect to circuits of size min(s(i)1 (i �n); s(i)2 (n)=poly(n="(n))) = s(n) andsuccess rate �(i)1 (i �n) ��(i)2 (n)+"(n) which is upper-bounded by (1� (1=p2(n))i+1+i � "(n). This completes the induction step.We stress the fact that we used induction for a non-constant number of steps,and that this was enabled by the highly quantitative form of the inductive claim andthe small loss incurred by the inductive step. Speci�cally, the size bound did notdecrease during the induction (although we could a�ord a small additive loss in eachstep, but not a constant factor loss). Likewise, the success rate su�ered an additiveincrease of "(n) in each step, which was accommodated by the inductive claim.Thus, assuming the correctness of Lemma 7.15, we have established Theorem 7.14.

290 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSProof of Lemma 7.15: Proceeding (as usual) by the contrapositive, we considera family of s(�)-size circuits fCngn2N that violates the lemma's conclusion; that is,Pr[Cn(Xn) = F (Xn)] > �(n). We will show how to use such circuits in order toobtain either circuits that violate the lemma's hypothesis regarding F1 or circuitsthat violate the lemma's hypothesis regarding F2. Towards this end, it is instructiveto write the success probability of Cn in a conditional form, while denoting the ithoutput of Cn(x) by Cn(x)i (i.e., Cn(x) = (Cn(x)1; Cn(x)2)):Pr[Cn(Y`(n); Zn�`(n))=F (Y`(n); Zn�`(n))]= Pr[Cn(Y`(n); Zn�`(n))1=F1(Y`(n))]� Pr[Cn(Y`(n); Zn�`(n))2=F2(Zn�`(n)) jCn(Y`(n); Zn�`(n))1=F1(Y`(n))]:The basic idea is that if the �rst factor is greater than �1(`(n)) then we imme-diately derive a circuit (i.e., C 0n(y) = Cn(y; Zn�`(n))1) contradicting the lemma'shypothesis regarding F1, whereas if the second factor is signi�cantly greater than�2(n � `(n)) then we can obtain a circuit contradicting the lemma's hypothesisregarding F2. The treatment of the latter case is indeed not obvious. The ideais that a su�ciently large sample of (Y`(n); F1(Y`(n))), which may be hard-wiredinto the circuit, allows using the conditional probability space (in such a circuit)towards an attempt to approximate F2. That is, on input z, we select uniformly astring y satisfying Cn(y; z)1 = F1(y) (from the aforementioned sample), and out-put Cn(y; z)2. For a �xed z, sampling of the conditional space (i.e., y's satisfyingCn(y; z)1 = F1(y)) is possible provided that Pr[Cn(Y`(n); z)1=F1(Y`(n))] holds withnoticeable probability. The last caveat motivates a separate treatment of z's havinga noticeable value of Pr[Cn(Y`(n); z)1=F1(Y`(n))] and of the rest of z's (which areessentially ignored). Details follow.Let us �rst simplify the notations by �xing a generic n and using the abbre-viations C = Cn, " = "(n), ` = `(n), Y = Y`, and Z = Yn�`. We call z goodif Pr[C(Y; z)1 = F1(Y)] � "=2 and let G be the set of good z's. Next, ratherthan considering the event C(Y; Z) = F (Y; Z), we consider the combined eventC(Y; Z)=F (Y; Z) ^ Z2G, which occurs with almost the same probability (up toan additive error term of "=2). This is the case because, for any z 62 G, it holdsthat Pr[C(Y; z)=F (Y; z)] � Pr[C(Y; z)1=F1(Y)] < "=2and thus z's that are not good do not contribute much to Pr[C(Y; Z) =F (Y; Z)];that is, Pr[C(Y; Z)=F (Y; Z) ^ Z2G] is lower-bounded by Pr[C(Y; Z)=F (Y; Z)] �"=2. Using Pr[C(Y; z)=F (Y; z)] > �(n) = �1(`) � �2(n� `) + ", we havePr[C(Y; Z)=F (Y; Z) ^ Z2G] > �1(`) � �2(n� `) + "2 : (7.10)We proceed according to the forgoing outline, �rst showing that if Pr[C(Y; Z)1 =F1(Y)] > �1(`) then we immediately derive circuits violating the hypothesis con-cerning F1. Actually, we prove something stronger (which we will actually need forthe other case).Claim 7.15.1: For every z, it holds that Pr[C(Y; z)1=F1(Y)] � �1(`).

7.2. HARD PROBLEMS IN E 291Proof: Otherwise, using any z 2 f0; 1gn�` that satis�es Pr[C(Y; z)1 = F1(Y)] >�1(`), we obtain a circuit C 0(y) def= C(y; z)1 that contradicts the lemma's hypothesisconcerning F1. 2Using Claim 7.15.1, we show how to obtain a circuit that violates the lemma'shypothesis concerning F2, and doing so we complete the proof of the lemma.Claim 7.15.2: There exists a circuit C 00 of size s2(n� `) such thatPr[C 00(Z)=F2(Z)] � Pr[C(Y; Z)=F (Y; Z) ^ Z2G]�1(`) � "2> �2(n� `)Proof: The second inequality is due to Eq. (7.10), and thus we focus on establish-ing the �rst inequality. We construct the circuit C 00 as suggested in the foregoingoutline. Speci�cally, we take a poly(n=")-large sample, denoted S, from the distri-bution (Y; F1(Y)) and let C 00(z) def= C(y; z)2, where (y; v) is a uniformly selectedamong the elements of S for which C(y; z)1 = v holds. Details follow.Let m be a su�ciently large number that is upper-bounded by a polynomialin n=", and consider a random sequence of m pairs, generated by taking m in-dependent samples from the distribution (Y; F1(Y)). We stress that we do notassume here that such a sample, denoted S, can be produced by an e�cient (uni-form) algorithm (but, jumping ahead, we remark that such a sequence can be�xed non-uniformly). For each z 2 G � f0; 1gn�`, we denote by Sz the set ofpairs (y; v) 2 S for which C(y; z)1 = v. Note that Sz is a random sample of theresidual probability space de�ned by (Y; F1(Y)) conditioned on C(Y; z)1 = F1(Y).Also, with overwhelmingly high probability, jSzj =
(n="2), because z 2 G im-plies Pr[C(Y; z)1=F1(Y)] � "=2 and m =
(n="3).15 Thus, for each z 2 G, withoverwhelming probability (taken over the choices of S), the sample Sz providesa good approximation to the conditional probability space.16 In particular, withprobability greater than 1� 2�n, it holds thatjf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSz j � Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y)]� "2 :(7.11)Thus, with positive probability, Eq. (7.11) holds for all z 2 G � f0; 1gn�`. Thecircuit C 00 computing F2 is now de�ned as follows. The circuit will contain a setS = f(yi; vi) : i = 1; :::;mg (i.e., S is \hard-wired" into the circuit C 00) such thatthe following two conditions hold:1. For every i 2 [m] it holds that vi = F1(yi).2. For each good z the set Sz = f(y; v)2S : C(y; z)1=vg satis�es Eq. (7.11).(In particular, Sz is not empty for any good z.)15Note that the expected size of Sz is m � "=2 =
(n="2). Using Cherno� Bound, we getPrS [jSzj < m"=4] = exp(�
(n="2)) < 2�n.16For Tz = fy : C(y; z)1 = F1(y)g, we are interested in a sample S0 of Tz such thatjfy 2 S0 : C(y; z)2=F2(z)gj=jS0j approximates Pr[C(Y; z)2 = F2(z) jY 2 Tz] up-to an additiveterm of "=2. Using Cherno� Bound again, we note that a random S0 � Tz of size
(n="2)provides such an approximation with probability greater than 1� 2�n.

292 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSOn input z, the circuit C 00 �rst determines the set Sz, by running C form times andchecking, for each i = 1; :::;m, whether or not C(yi; z) = vi. In case Sz is empty,the circuit returns an arbitrary value. Otherwise, the circuit selects uniformly apair (y; v) 2 Sz and outputs C(y; z)2. (The latter random choice can be eliminatedby an averaging argument; see Exercise 7.16.) Using the de�nition of C 00 andEq. (7.11), we have:Pr[C 00(Z)=F2(Z)] � Xz2GPr[Z=z] � Pr[C 00(z)=F2(z)]= Xz2GPr[Z=z] � jf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSzj� Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y)] � "2�= Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) ^ C(Y; z)1=F1(Y)]Pr[C(Y; z)1=F1(Y)] � "2�Next, using Claim 7.15.1, we have:Pr[C 00(Z)=F2(Z)] � Xz2GPr[Z=z] � Pr[C(Y; z)=F (Y; z)]�1(`) ! � "2= Pr[C(Y; Z)=F (Y; Z) ^ Z2G]�1(`) � "2Finally, using Eq. (7.10), the claim follows. 2This completes the proof of the lemma.Comments. Firstly, we wish to call attention to the care with which an inductiveargument needs to be carried out in the computational setting, especially when anon-constant number of inductive steps is concerned. Indeed, our inductive proofof Theorem 7.14 involves invoking a quantitative lemma (i.e., Lemma 7.15) thatallows to keep track of the relevant quantities (e.g., success probability and circuitsize) throughout the induction process. Secondly, we mention that Lemma 7.15(as well as Theorem 7.14) has a uniform complexity version that assumes that onecan e�ciently sample the distribution (Y`(n); F1(Y`(n))) (resp., (Un; f(Un))). Fordetails see [101]. Indeed, a good lesson from the proof of Lemma 7.15 is that non-uniform circuits can \e�ectively sample" any distribution. Lastly, we mention thatTheorem 7.5 (the ampli�cation of one-way functions) and Theorem 7.13 (Yao'sXOR Lemma) also have (tight) quantitative versions (see, e.g., [90, Sec. 2.3.2] and[101, Sec. 3], respectively).7.2.1.3 List decoding and hardness ampli�cationRecall that Theorem 7.10 was proved in x7.2.1.1-7.2.1.2, by �rst constructing amildly inapproximable predicate via Construction 7.11, and then amplifying its

7.2. HARD PROBLEMS IN E 293hardness via Yao's XOR Lemma. In this subsection we show that the construc-tion used in the �rst step (i.e., Construction 7.11) actually yields a strongly in-approximable predicate. Thus, we provide an alternative proof of Theorem 7.10.Speci�cally, we show that a strongly inapproximable predicate (as asserted in The-orem 7.10) can be obtained by combining Construction 7.11 (with a suitable choiceof parameters) and the inner-product construction (of Theorem 7.8). The mainingredient of this argument is captured by the following result.Proposition 7.16 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S, and let " : N ! [0; 1] sat-isfying "(n) > 2�n. Let fn be the restriction of f to f0; 1gn, and let f̂n be the func-tion obtained from fn when applying Construction 7.1117 with jH j = n="(n) andjF j = jH j3. Then, the function f̂ : f0; 1g� ! f0; 1g�, de�ned by f̂(x) = f̂jxj=3(x),is computable in exponential-time and for every family of circuit fC 0n0gn02N of sizeS0(n0) = poly("(n0=3)=n0) � S(n0=3) it holds that Pr[C 0n0(Un0) = f̂(Un0)] < "0(n0) def="(n0=3).Before turning to the proof of Proposition 7.16, let us describe how it yields analternative proof of Theorem 7.10. Firstly, for some > 0, Proposition 7.16 yieldsan exponential-time computable function f̂ such that jf̂(x)j � jxj and for ev-ery family of circuit fC 0n0gn02N of size S0(n0) = S(n0=3)=poly(n0) it holds thatPr[C 0n0(Un0) = f̂(Un0)] < 1=S0(n0). Combining this with Theorem 7.8 (cf. Ex-ercise 7.14), we infer that P (x; r) = b(f̂(x); r), where jrj = jf̂(x)j � jxj, is S00-inapproximable for S00(n00) = S0(n00=2)
(1)=poly(n00). In particular, for every poly-nomial p, we obtain a p-inapproximable predicate in E by applying the foregoingwith S(n) = poly(n; p(n)). Thus, Theorem 7.10 follows.Teaching note: The following material is very advanced and is best left for indepen-dent reading. Furthermore, its understanding requires being comfortable with basicnotions of error-correcting codes (as presented in Appendix E.1).Proposition 7.16 is proven by observing that the transformation of fn to f̂nconstitutes a \good" code (see xE.1.1.4) and that any such code provides a worst-case to (strongly) average-case reduction. We start by de�ning the class of codesthat su�ces for the latter reduction, while noting that the code underlying themapping fn 7! f̂n is actually stronger than needed.De�nition 7.17 (e�cient codes supporting implicit decoding): For �xed functionsq; ` : N ! N and � : N ! [0; 1], the mapping � : f0; 1g� ! f0; 1g� is said tobe e�cient and supports implicit decoding with parameters q; `; � if it satis�es thefollowing two conditions:17Recall that in Construction 7.11 we have jHjm = 2n, which may yield a non-integer m if weinsist on jHj = n="(n). This problem was avoided in the proof of Theorem 7.12 (where jHj = nwas used), but is more acute in the current context because of " (e.g., we may have "(n) = 2�2n=7).Thus, we should either relax the requirement jHjm = 2n (e.g., allow 2n � jHjm < 22n) or relaxthe requirement jHj = n="(n). However, for the sake of simplicity, we ignore this issue in thepresentation.

294 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS1. Encoding (or e�ciency): The mapping � is polynomial-time computable.It is instructive to view � as mapping N-bit long strings to sequences oflength `(N) over [q(N)], and to view each (codeword) �(x) 2 [q(jxj)]`(jxj) asa mapping from [`(jxj)] to [q(jxj)].2. Decoding (in implicit form): There exists a polynomial p such that the fol-lowing holds. For every w : [`(N)]! [q(N)] and every x2 f0; 1gN such that�(x) is (1��(N))-close to w, there exists an oracle-aided18 circuit C of sizep((logN)=�(N)) such that, for every i 2 [N], it holds that Cw(i) equals theith bit of x.The encoding condition implies that ` is polynomially bounded. The decodingcondition refers to any �-codeword that agrees with the oracle w : [`(N)]! [q(N)]on an �(N) fraction of the `(N) coordinates, where �(N) may be very small.We highlight the non-triviality of the decoding condition: There are N bits ofinformation in x, while the size of the circuit C is only p((logN)=�(N)) and yet Cshould be able to recover any desired entry of x by making queries to w, which maybe a highly corrupted version of �(x). Needless to say, the number of queries madeby C is upper-bounded by its size (i.e.,p((logN)=�(N))). On the other hand, thedecoding condition does not refer to the complexity of obtaining the aforementionedoracle-aided circuits.Let us relate the transformation of fn to f̂n, which underlies Proposition 7.16,to De�nition 7.17. We view fn as a binary string of length N = 2n (representingthe truth-table of fn : Hm ! f0; 1g) and analogously view f̂n : Fm ! F as anelement of F jF jm = FN3 (or as a mapping from [N3] to [jF j]).19 Recall that thetransformation of fn to f̂n is e�cient. We mention that this transformation alsosupports implicit decoding with parameters q; `; � such that `(N) = N3, �(N) ="(n), and q(N) = (n="(n))3, where N = 2n. The latter fact is highly non-trivial,but establishing it is beyond the scope of the current text (and the interested readeris referred to [217]).We mention that the transformation of fn to f̂n enjoys additional features,which are not required in De�nition 7.17 and will not be used in the current context.For example, there are at most O(1=�(2n)2) codewords (i.e., f̂n's) that are (1 ��(2n))-close to any �xed w : [`(2n)]! [q(2n)], and the corresponding oracle-aidedcircuits can be constructed in probabilistic p(n=�(2n))-time.20 These results are18Oracle-aided circuits are de�ned analogously to oracle Turing machines. Alternatively, wemay consider here oracle machines that take advice such that both the advice length and themachine's running time are upper-bounded by p((logN)=�(N)). The relevant oracles may beviewed either as blocks of binary strings that encode sequences over [q(N)] or as sequences over[q(N)]. Indeed, in the latter case we consider non-binary oracles, which return elements in [q(N)].19Recall that N = 2n = jHjm and jF j = jHj3. Hence, jF jm = N3.20The construction may yield also oracle-aided circuits that compute the decoding of codewordsthat are almost (1 � �(2n))-close to w. That is, there exists a probabilistic p(n=�(2n))-timealgorithm that outputs a list of circuits that, with high probability, contains an oracle-aidedcircuit for the decoding of each codeword that is (1� �(2n))-close to w. Furthermore, with highprobability, the list contains only circuits that decode codewords that are (1 � �(2n)=2)-close tow.

7.2. HARD PROBLEMS IN E 295termed \list decoding with implicit representations" (and we refer the interestedreader again to [217]).Our focus is on showing that e�cient codes that supports implicit decodingsu�ce for worst-case to (strongly) average-case reductions. We state and prove ageneral result, noting that in the special case of Proposition 7.16 gn = f̂n (and`(2n) = 23n).Theorem 7.18 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S, and let " : N ! [0; 1].Consider a polynomial ` : N ! N such that n 7! log2 `(2n) is a 1-1 map of theintegers, and let m(n) = log2 `(2n); e.g., if `(N) = N3 then m(n) = 3n. Supposethat the mapping � : f0; 1g� ! f0; 1g� is e�cient and supports implicit decodingwith parameters q; `; � such that �(N) = "(blog2Nc). De�ne gn : [`(2n)]! [q(2n)]such that gn(i) equals the ith element of �(hfni) 2 [q(2n)]`(2n), where hfni denotesthe 2n-bit long description of the truth-table of fn. Then, the function g : f0; 1g� !f0; 1g�, de�ned by g(z) = gm�1(jzj)(z), is computable in exponential-time and forevery family of circuit fC 0n0gn02N of size S0(n0) = poly("(m�1(n0))=n0) �S(m�1(n0))it holds that Pr[C 0n0(Un0) = g(Un0)] < "0(n0) def= "(m�1(n0)).Proof Sketch: First note that we can generate the truth-table of fn in exponential-time, and by the encoding condition of � it follows that gn can be evaluated inexponential-time. The average-case hardness of g is established via a reducibil-ity argument as follows. We consider a circuit C 0 = C 0n0 of size S0 such thatPr[C 0n0(Un0) = g(Un0)] < "0(n0), let n = m�1(n0), and recall that "0(n0) = "(n) =�(2n). Then, C 0 : f0; 1gn0 ! f0; 1g (viewed as a function) is (1 � �(2n))-close tothe function gn, which in turn equals �(hfni). The decoding condition of � assertsthat we can recover each bit of hfni (i.e., evaluate fn) by an oracle-aided circuitD of size p(n=�(2n)) that uses (the function) C 0 as an oracle. Combining (thecircuit C 0) with the oracle-aided circuit D, we obtain a (standard) circuit of sizep(n=�(2n)) � S0(n0) < S(n) that computes fn. The theorem follows (i.e., the viola-tion of the conclusion regarding g implies the violation of the hypothesis regardingf).Advanced comment. For simplicity, we formulated De�nition 7.17 in a crudemanner that su�ces for the proving Proposition 7.16, where q(N) = ((log2N)=�(N))3.The issue is the existence of codes that satisfy De�nition 7.17: In general, suchcodes may exist only when using a more careful formulation of the decoding condi-tion that refers to codewords that are (1� ((1=q(N)) + �(N)))-close to the oraclew : [`(N)]! [q(N)] rather than being (1� �(N))-close to it.21 Needless to say, thedi�erence is insigni�cant in the case that �(N)� 1=q(N) (as in Proposition 7.16),21Note that this is the \right" formulation, because in the case that �(N) < 1=q(N) it seemsimpossible to satisfy the decoding condition (as stated in De�nition 7.17). Speci�cally, a random`(N)-sequence over [q(N)] is expected to be (1 � (1=q(N)))-close to any �xed codeword, andwith overwhelmingly high probability it will be (1 � ((1 � o(1))=q(N)))-close to almost all thecodewords, provided `(N) � q(N)2. But in case N > poly(q(N)), we cannot hope to recoveralmost all N-bit long strings based on poly(q(N) logN) bits of advice (per each of them).

296 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSbut it is signi�cant in case we care about binary codes (i.e., q(N) = 2, or codesover other small alphabets). We mention that Theorem 7.18 can be adapted tothis context (of q(N) = 2), and directly yields strongly inapproximable predicates.For details, see Exercise 7.21.7.2.2 Ampli�cation wrt exponential-size circuitsFor the purpose of stronger derandomization of BPP, we start with a stronger as-sumption regarding the worst-case circuit complexity of E and turn it to a strongerinapproximability result.Theorem 7.19 Suppose that there exists a Boolean function f in E having almost-everywhere exponential circuit complexity; that is, there exists a constant b > 0 suchthat, for all but �nitely many n's, any circuit that correctly computes f on f0; 1gnhas size at least 2b�n. Then, for some constant c > 0 and T (n) def= 2c�n, there existsa T -inapproximable Boolean function in E.Theorem 7.19 can be used for deriving a full derandomization of BPP (i.e., BPP =P) under the aforementioned assumption (see Part 1 of Theorem 8.19).Theorem 7.19 follows as a special case of Proposition 7.16 (combined with The-orem 7.8; see Exercise 7.22). An alternative proof, which uses di�erent ideas thatare of independent interest, will be briey reviewed next. The starting point of thelatter proof is a mildly inapproximable predicate, as provided by Theorem 7.12.However, here we cannot a�ord to apply Yao's XOR Lemma (i.e., Theorem 7.13),because the latter relates the size of circuits that strongly fail to approximate apredicate de�ned over poly(n)-bit long strings to the size of circuits that fail tomildly approximate a predicate de�ned over n-bit long strings. That is, Yao'sXOR Lemma asserts that if f : f0; 1gn ! f0; 1g is mildly inapproximable bySf -size circuits then F : f0; 1gpoly(n) ! f0; 1g is strongly inapproximable by SF -size circuits, where SF (poly(n)) is polynomially related to Sf (n). In particular,SF (poly(n)) < Sf (n) seems inherent in this reasoning. For the case of polynomiallower-bounds, this is good enough (i.e., if Sf can be an arbitrarily large polynomialthen so can SF), but for Sf (n) = exp(
(n)) we cannot obtain SF (m) = exp(
(m))(but rather only obtain SF (m) = exp(m
(1))).The source of trouble is that ampli�cation of inapproximability was achievedby taking a polynomial number of independent instances. Indeed, we cannot hopeto amplify hardness without applying f on many instances, but these instancesneed not be independent. Thus, the idea is to de�ne F (r) = �poly(n)i=1 f(xi), wherex1; :::; xpoly(n) 2 f0; 1gn are generated from r and still jrj = O(n). That is, weseek a \derandomized" version of Yao's XOR Lemma. In other words, we seek a\pseudorandom generator" of a type appropriate for expanding r to dependent xi'ssuch that the XOR of the f(xi)'s is as inapproximable as it would have been forindependent xi's.2222Indeed, this falls within the general paradigm discussed in Section 8.1. Furthermore, this sug-gestion provides another perspective on the connection between randomness and computationaldi�culty, which is the focus of much discussion in Chapter 8 (see, e.g., x8.2.7.2).

7.2. HARD PROBLEMS IN E 297Teaching note: In continuation to Footnote 22, we note that there is a strong con-nection between the rest of this section and Chapter 8. On top of the aforementionedconceptual aspect, we will use technical tools from Chapter 8 towards establishing thederandomized version of the XOR Lemma. These tools include pairwise independencegenerators (see Section 8.5.1), random walks on expanders (see Section 8.5.3), and theNisan-Wigderson Construction (Construction 8.17). Indeed, recall that Section 7.2.2 isadvanced material, which is best left for independent reading.The pivot of the proof is the notion of a hard region of a Boolean function.Loosely speaking, S is a hard region of a Boolean function f if f is strongly inap-proximable on a random input in S; that is, for every (relatively) small circuit Cn,it holds that Pr[Cn(Un) = f(Un)jUn 2 S] � 1=2. By de�nition, f0; 1g� is a hardregion of any strongly inapproximable predicate. As we shall see, any mildly inap-proximable predicate has a hard region of density related to its inapproximabilityparameter. Loosely speaking, hardness ampli�cation will proceed via methods forgenerating related instances that hit the hard region with su�ciently high proba-bility. But, �rst let us study the notion of a hard region.7.2.2.1 Hard regionsWe actually generalize the notion of hard regions to arbitrary distributions. Theimportant special case of uniform distributions (on n-bit long strings) is obtainedfrom De�nition 7.20 by letting Xn equal Un (i.e., the uniform distribution overf0; 1gn). In general, we only assume that Xn 2 f0; 1gn.De�nition 7.20 (hard region relative to arbitrary distribution): Let f :f0; 1g�!f0; 1g be a Boolean predicate, fXngn2N be a probability ensemble, s :N !N and" :N! [0; 1].� We say that a set S is a hard region of f relative to fXngn2N with respectto s(�)-size circuits and advantage "(�) if for every n and every circuit Cn ofsize at most s(n), it holds thatPr[Cn(Xn)=f(Xn)jXn2S] � 12 + "(n):� We say that f has a hard region of density �(�) relative to fXngn2N (withrespect to s(�)-size circuits and advantage "(�)) if there exists a set S thatis a hard region of f relative to fXngn2N (with respect to the foregoingparameters) such that Pr[Xn2Sn] � �(n).Note that a Boolean function f is (s; 1� 2")-inapproximable if and only if f0; 1g�is a hard region of f relative to fUngn2N with respect to s(�)-size circuits andadvantage "(�). Thus, strongly inapproximable predicates (e.g., S-inapproximablepredicates for super-polynomial S) have a hard region of density 1 (with respect toa negligible advantage).23 But this trivial observation does not provide hard regions23Likewise, mildly inapproximable predicates have a hard region of density 1 with respect toan advantage that is noticeably smaller than 1=2.

298 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS(with respect to a small (i.e., close to zero) advantage) for mildly inapproximablepredicates. Providing such hard regions is the contents of the following theorem.Theorem 7.21 (hard regions for mildly inapproximable predicates): Let f :f0; 1g�!f0; 1g be a Boolean predicate, fXngn2N be a probability ensemble, s :N! N , and� : N ! [0; 1] such that �(n) > 1=poly(n). Suppose that, for every circuit Cn ofsize at most s(n), it holds that Pr[Cn(Xn) = f(Xn)] � 1 � �(n). Then, for every" :N! [0; 1], the function f has a hard region of density �0(�) relative to fXngn2Nwith respect to s0(�)-size circuits and advantage "(�), where �0(n) def= (1�o(1)) ��(n)and s0(n) def= s(n)=poly(n="(n)).In particular, if f is (s; 2�)-inapproximable then f has a hard region of density�0(�) � �(�) relative to the uniform distribution (with respect to s0(�)-size circuitsand advantage "(�)).Proof Sketch:24 The proof proceeds by �rst establishing that fXng is \related" to(or rather \dominates") an ensemble fYng such that f is strongly inapproximableon fYng, and next showing that this implies the claimed hard region. Indeed, thisnotion of \related ensembles" plays a central role in the proof.For � :N! [0; 1], we say that fXng �-dominates fYng if for every x it holds thatPr[Xn= x] � �(n) � Pr[Yn = x]. In this case we also say that fYng is �-dominatedby fXng. We say that fYng is critically �-dominated by fXng if for every x eitherPr[Yn=x] = (1=�(n)) � Pr[Xn=x] or Pr[Yn=x] = 0.25The notions of domination and critical domination play a central role in theproof, which consists of two parts. In the �rst part (Claim 7.21.1), we provethat, for fXng and � as in the theorem's hypothesis, there exists a ensemble fYngthat is �-dominated by fXng such that f is strongly inapproximable on fYng. Inthe second part (Claim 7.21.2), we prove that the existence of such a dominatedensemble implies the existence of an ensemble fZng that is critically �0-dominatedby fXng such that f is strongly inapproximable on fZng. Finally, we note thatsuch a critically dominated ensemble yields a hard region of f relative to fXng,and the theorem follows.Claim 7.21.1: Under the hypothesis of the theorem it holds that there exists aprobability ensemble fYng that is �-dominated by fXng such that, for every s0(n)-size circuit Cn, it holds thatPr[Cn(Yn)=f(Yn)] � 12 + "(n)2 : (7.12)Proof: We start by assuming, towards the contradiction, that for every distri-bution Yn that is �-dominated by Xn there exists a s0(n)-size circuits Cn suchthat Pr[Cn(Yn) = f(Yn)] > 0:5 + "0(n), where "0(n) = "(n)=2. One key observa-tion is that there is a correspondence between the set of all distributions that are24See details in [101, Apdx. A].25Actually, we should allow one point of exception; that is, relax the requirement by sayingthat for at most one string x 2 f0; 1gn it holds that 0 < Pr[Yn=x] < Pr[Xn=x]=�(n). This pointhas little e�ect on the proof, and is ignored in our presentation.

7.2. HARD PROBLEMS IN E 299each �-dominated by Xn and the set of all the convex combinations of critically �-dominated (by Xn) distributions; that is, each �-dominated distribution is a convexcombinations of critically �-dominated distributions and vice versa (cf., a specialcase in xD.4.1.1). Thus, considering an enumeration Y (1)n ; :::; Y (t)n of the critically�-dominated (by Xn) distributions, we conclude that for every distribution � on[t] there exists a s0(n)-size circuits Cn such thattXi=1 �(i) � Pr[Cn(Y (i)n) = f(Y (i)n)] > 0:5 + "0(n): (7.13)Now, consider a �nite game between two players, where the �rst player selects a crit-ically �-dominated (by Xn) distribution, and the second player selects a s0(n)-sizecircuit and obtains a payo� as determined by the corresponding success probability;that is, if the �rst player selects the ith critically dominated distribution and thesecond player selects the circuit C then the payo� equals Pr[C(Y (i)n) = f(Y (i)n)].Eq. (7.13) may be interpreted as saying that for any randomized strategy for the�rst player there exists a deterministic strategy for the second player yielding aver-age payo� greater than 0:5+"0(n). The Min-Max Principle (cf. von Neumann [233])asserts that in such a case there exists a randomized strategy for the second playerthat yields average payo� greater than 0:5 + "0(n) no matter what strategy is em-ployed by the �rst player. This means that there exists a distribution, denoted Dn,on s0(n)-size circuits such that for every i it holds thatPr[Dn(Y (i)n) = f(Y (i)n)] > 0:5 + "0(n); (7.14)where the probability refers both to the choice of the circuit Dn and to the randomvariable Yn. Let Bn = fx : Pr[Dn(x) = f(x)] � 0:5 + "0(n)g. Then, Pr[Xn 2Bn] < �(n), because otherwise we reach a contradiction to Eq. (7.14) by de�ningYn such that Pr[Yn= x] = Pr[Xn=x]=Pr[Xn 2 Bn] if x 2 Bn and Pr[Yn =x] = 0otherwise.26 By employing standard ampli�cation to Dn, we obtain a distributionD0n over poly(n="0(n)) � s0(n)-size circuits such that for every x 2 f0; 1gn n Bn itholds that Pr[D0n(x) = f(x)] > 1 � 2�n. It follows that there exists a s(n)-sizedcircuit Cn such that Cn(x) = f(x) for every x 2 f0; 1gn n Bn, which implies thatPr[Cn(Xn) = f(Xn)] � Pr[Xn 2 f0; 1gn n Bn] > 1 � �(n), in contradiction to thetheorem's hypothesis. The claim follows. 2We next show that the conclusion of Claim 7.21.1 (which was stated for ensemblesthat are �-dominated by fXng) essentially holds also when allowing only critically�-dominated (by fXng) ensembles. The following precise statement involves someloss in the domination parameter � (as well as in the advantage ").Claim 7.21.2: If there exists a probability ensemble fYng that is �-dominatedby fXng such that for every s0(n)-size circuit Cn it holds that Pr[Cn(Yn) =26Note that Yn is �-dominated by Xn, whereas by the hypothesis Pr[Dn(Yn) = f(Yn)] �0:5+"0(n). Using the fact that any �-dominated distribution is a convex combination of critically�-dominated distributions, it follows that Pr[Dn(Y (i)n) = f(Y (i)n)] � 0:5 + "0(n) holds for somecritically �-dominated Y (i)n .

300 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSf(Yn)] � 0:5 + ("(n)=2), then there exists a probability ensemble fZng that iscritically �0-dominated by fXng such that for every s0(n)-size circuit Cn it holdsthat Pr[Cn(Zn) = f(Zn)] � 0:5 + "(n).In other words, Claim 7.21.2 asserts that the function f has a hard region ofdensity �0(�) relative to fXng with respect to s0(�)-size circuits and advantage "(�),thus establishing the theorem. The proof of Claim 7.21.2 uses the ProbabilisticMethod (cf. [10]). Speci�cally, we select a set Sn at random by including eachn-bit long string x with probabilityp(x) def= �(n) � Pr[Yn=x]Pr[Xn=x] � 1 (7.15)independently of the choice of all other strings. It can be shown that, with highprobability over the choice of Sn, it holds that Pr[Xn 2 Sn] � �(n) and thatPr[Cn(Xn) = f(Xn)jXn 2Sn] < 0:5 + "(n) for every circuit Cn of size s0(n). Thelatter assertion is proved by a union bound on all relevant circuits, while showingthat for each such circuit Cn, with probability 1� exp(�s0(n)2) over the choice ofSn, it holds that jPr[Cn(Xn) = f(Xn)jXn 2 Sn] � Pr[Cn(Yn) = f(Yn)]j < "(n)=2.For details, see [101, Apdx. A]. (This completes the proof of the theorem.)7.2.2.2 Hardness ampli�cation via hard regionsBefore showing how to use the notion of a hard region in order to prove a deran-domized version of Yao's XOR Lemma, we show how to use it in order to provethe original version of Yao's XOR Lemma (i.e., Theorem 7.13).An alternative proof of Yao's XOR Lemma. Let f , p1, and p2 be asin Theorem 7.13. Then, by Theorem 7.21, for �0(n) = 1=3p2(n) and s0(n) =p1(n)
(1)=poly(n), the function f has a hard region S of density �0 (relative tofUng) with respect to s0(�)-size circuits and advantage 1=s0(�). Thus, for t(n) =n � p2(n) and F as in Theorem 7.13, with probability at least 1� (1� �0(n))t(n) =1 � exp(�
(n)), one of the t(n) random (n-bit long) blocks of F resides in S(i.e., the hard region of f). Intuitively, this su�ces for establishing the stronginapproximability of F . Indeed, suppose towards the contradiction that a small(i.e., p0(t(n) � n)-size) circuit Cn can approximate F (over Ut(n)�n) with advantage"(n) + exp(�
(n)), where "(n) > 1=s0(n). Then, the "(n) term must be due tot(n) �n-bit long inputs that contain a block in S. Using an averaging argument, wecan �rst �x the index of this block and then the contents of the other blocks, andinfer the following: for some i 2 [t(n)] and x1; :::; xt(n) 2 f0; 1gn it holds thatPr[Cn(x0; Un; x00) = F (x0; Un; x00) jUn 2 S] � 12 + "(n)where x0 = (x1; :::; xi�1) 2 f0; 1g(i�1)�n and x00 = (xi+1; :::; xt(n)) 2 f0; 1g(t(n)�i)�n.Hard-wiring i 2 [t(n)], x0 = (x1; :::; xi�1) and x00 = (xi+1; :::; xt(n)) as well as� def= �j 6=if(xj) in Cn, we obtain a contradiction to the (established) fact that

7.2. HARD PROBLEMS IN E 301S is a hard region of f (by using the circuit C 0n(z) = Cn(x0; z; x00) � �). Thus,Theorem 7.13 follows (for any p0(t(n) � n) � s0(n)� 1).Derandomized versions of Yao's XOR Lemma. We �rst show how to usethe notion of a hard region in order to amplify very mild inapproximability toa constant level of inapproximability. Recall that our goal is to obtain such anampli�cation while applying the given function on many (related) instances, whereeach instance has length that is linearly related to the length of the input of theresulting function. Indeed, these related instances are produced by applying anadequate \pseudorandom generator" (see Chapter 8). The following ampli�cationutilizes a pairwise independence generator (see Section 8.5.1), denoted G, thatstretches 2n-bit long seeds to sequences of n strings, each of length n.Lemma 7.22 (derandomized XOR Lemma up to constant inapproximability):Suppose that f : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for �(n) > 1=poly(n),and assume for simplicity that �(n) � 1=n. Let b denote the inner-product mod 2predicate, and G be the aforementioned pairwise independence generator. ThenF1(s; r) = b(f(x1) � � � f(xn); r), where jrj = n = jsj=2 and (x1; :::; xn) = G(s), is(T 0; �0)-inapproximable for T 0(n0) = T (n0=3)=poly(n0) and �0(n0) =
(n0 � �(n0=3)).Needless to say, if f 2 E then F1 2 E . By applying Lemma 7.22 for a constantnumber of times, we may transform an (T; 1=poly)-inapproximable predicate intoan (T 00;
(1))-inapproximable one, where T 00(n00) = T (n00=O(1))=poly(n00).Proof Sketch: As in the foregoing proof (of the original version of Yao's XORLemma), we �rst apply Theorem 7.21. This time we set the parameters so to inferthat, for �(n) = �(n)=3 and t0(n) = T (n)=poly(n), the function f has a hard regionS of density � (relative to fUng) with respect to t0(�)-size circuits and advantage0.01. Next, as in x7.2.1.2, we shall consider the corresponding (derandomized)direct product problem; that is, the function P1(s) = (f(x1); :::; f(xn)), wherejsj = 2n and (x1; :::; xn) = G(s). We will �rst show that P1 is hard to computeon an
(n � �(n)) fraction of the domain, and the quanti�ed inapproximality of F1will follow.One key observation is that, by Exercise 7.23, with probability at least �(n) def=n � �(n)=2, at least one of the n strings output by G(U2n) resides in S. Intuitively,we expect every t0(n)-sized circuit to fail in computing P1(U2n) with probabilityat least 0:49�(n), because with probability �(n) the sequence G(U2n) contains anelement in the hard region of f (and in this case the value can be guessed correctlywith probability at most 0:51). The actual proof relies on a reducibility argument,which is less straightforward than the argument used in the non-derandomized case.For technical reasons27, we use the condition �(n) < 1=2n (which is guaranteedby the hypothesis that �(n) � 1=n and our setting of �(n) = �(n)=3). In thiscase Exercise 7.23 implies that, with probability at least �(n) def= 0:75 � n � �(n),at least one of the n strings output by G(U2n) resides in S. We shall show that27The following argument will rely on the fact that �(n) � (n) > 0:51n � �(n), where (n) =
(�(n)).

302 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSevery (t0(n)� poly(n))-sized circuit fails in computing P1 with probability at least(n) = 0:3�(n). As usual, the claim is proved by a reducibility argument. Let G(s)idenote the ith string in the sequence G(s) (i.e., G(s) = (G(s)1; :::; G(s)n)), and notethat given i and x we can e�ciently sample G�1i (x) def= fs2f0; 1g2n : G(s)i=xg.Given a circuit Cn that computes P1(U2n) correctly with probability 1� (n), weconsider the circuit C 0n that, on input x, uniformly selects i 2 [n] and s 2 G�1i (x),and outputs the ith bit in Cn(s). Then, by the construction (of C 0n) and thehypothesis regarding Cn, it holds thatPr[C 0n(Un)=f(Un)jUn2S] � nXi=1 1n � Pr[Cn(U2n)=P1(U2n)jG(U2n)i2S]� Pr[Cn(U2n)=P1(U2n) ^ 9iGi(U2n)i2S]n �maxifPr[G(U2n)i2S]g� (1� (n))� (1� �(n))n � �(n)= 0:7�(n)n � �(n) > 0:52 :This contradicts the fact that S is a hard region of f with respect to t0(�)-size circuitsand advantage 0:01. Thus, we have established that every (t0(n) � poly(n))-sizedcircuit fails in computing P1 with probability at least (n) = 0:3�(n).Having established the hardness of P1, we now infer the mild inapproximabilityof F1, where F1(s; r) = b(P1(s); r). It su�ces to employ the simple (warm-up)case discussed at the beginning of the proof of Theorem 7.7 (where the predic-tor errs with probability less than 1=4, rather than the full-edged result thatrefers to prediction error that is only smaller than 1=2). Denoting by �C(s) =Prr2f0;1gn [C(s; r) 6=b(P1(s); r)] the prediction error of the circuit C, we recall thatif �C(s) � 0:24 then C can be used to recover P1(s). Thus, for circuits C of sizeT 0(3n) = t0(n)=poly(n) it must hold that Prs[�C(s)>0:24] � (n). It follows thatEs[�C(s)] > 0:24(n), which means that every T 0(3n)-sized circuits fails to com-pute (s; r) 7! b(P1(s); r) with probability at least �(jsj+ jrj) def= 0:24 � (jrj). Thismeans that F1 is (T 0; 2�)-inapproximable, and the lemma follows (when noting that�(n0) =
(n0 � �(n0=3))).The next lemma o�ers an ampli�cation of constant inapproximability to stronginapproximability. Indeed, combining Theorem 7.12 with Lemmas 7.22 and 7.23,yields Theorem 7.19 (as a special case).Lemma 7.23 (derandomized XOR Lemma starting with constant inapproxima-bility): Suppose that f : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for some con-stant �, and let b denote the inner-product mod 2 predicate. Then there exists anexponential-time computable function G such that F2(s; r) = b(f(x1) � � � f(xn); r),where (x1; :::; xn) = G(s) and n =
(jsj) = jrj = jx1j = � � � = jxnj, is T 0-inapproximable for T 0(n0) = T (n0=O(1))
(1)=poly(n0).

7.2. HARD PROBLEMS IN E 303Again, if f 2 E then F2 2 E .Proof Outline:28 As in the proof of Lemma 7.22, we start by establishinga hard region of density �=3 for f (this time with respect to circuits of sizeT (n)
(1)=poly(n) and advantage T (n)�
(1)), and focus on the analysis of the(derandomized) direct product problem corresponding to computing the functionP2(s) = (f(x1); :::; f(xn)), where jsj = O(n) and (x1; :::; xn) = G(s). The \gen-erator" G is de�ned such that G(s0s00) = G1(s0) � G2(s00), where js0j = js00j,jG1(s0)j = jG2(s00)j, and the following conditions hold:1. G1 is the Expander Random Walk Generator discussed in Section 8.5.3. Itcan be shown that G1(UO(n)) outputs a sequence of n strings such that forany set S of density �, with probability 1 � exp(�
(�n)), at least
(�n)of the strings hit S. Note that this property is inherited by G, providedjG1(s0)j = jG2(s00)j for any js0j = js00j. It follows that, with probability1 � exp(�
(�n)), a constant fraction of the xi's in the de�nition of P2 hitthe hard region of f .It is tempting to say that small circuits cannot compute P2 better than withprobability exp(�
(�n)), but this is clear only in the case that the xi's thathit the hard region are distributed independently (and uniformly) in it, whichis hardly the case here. Indeed, G2 is used to handle this problem.2. G2 is the \set projection" system underlying Construction 8.17; speci�cally,G2(s) = (sS1 ; :::; sSn), where each Si is an n-subset of [jsj] and the Si's havepairwise intersections of size at most n=O(1).29 An analysis as in the proofof Theorem 8.18 can be employed for showing that the dependency amongthe xi's does not help for computing a particular f(xi) when given xi as wellas all the other f(xj)'s. (Note that this property of G2 is inherited by G.)The actual analysis of the construction (via a guessing game presented in [127,Sec. 3]), links the success probability of computing P2 to the advantage of guessingf on its hard region. The interested reader is referred to [127].Digest. Both Lemmas 7.22 and 7.23 are proved by �rst establishing correspond-ing derandomized versions of the \direct product" lemma (Theorem 7.14); in fact,the core of these proofs is proving adequate derandomized \direct product" lemmas.We call the reader's attention to the seemingly crucial role of this step (especiallyin the proof of Lemma 7.23): We cannot treat the values f(x1); :::f(xn) as if theywere independent (at least not for the generator G as postulated in these lemmas),and so we seek to avoid analyzing the probability of correctly computing the XORof all these values. In contrast, we have established that it is very hard to correctlycompute all n values, and thus XORing a random subset of these values yields astrongly inapproximable predicate. (Note that the argument used in Exercise 7.1728For details, see [127].29Recall that sS denotes the projection of s on coordinates S � [jsj]; that is, for s = �1 � � ��kand S = fij : j = 1; :::; ng, we have sS = �i1 � � ��in .

304 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSfails here, because the xi's are not independent, which is the reason that we XORa random subset of these values rather than all of them.)Chapter NotesThe notion of a one-way function was suggested by Di�e and Hellman [65]. Thenotion of weak one-way functions as well as the ampli�cation of one-way functions(i.e., Theorem 7.5) were suggested by Yao [237]. A proof of Theorem 7.5 has �rstappeared in [86].The concept of hard-core predicates was suggested by Blum and Micali [39].They also proved that a particular predicate constitutes a hard-core for the \DLPfunction" (i.e., exponentiation in a �nite �eld), provided that the latter functionis one-way. The generic hard-core predicate (of Theorem 7.7) was suggested byLevin, and proven as such by Goldreich and Levin [98]. The proof presented herewas suggested by Racko�. We comment that the original proof has its own merits(cf., e.g., [104]).The construction of canonical derandomizers (see Section 8.3) and, speci�cally,the Nisan-Wigderson framework (i.e., Construction 8.17) has been the driving forcebehind the study of inapproximable predicates in E . Theorem 7.10 is due to [21],whereas Theorem 7.19 is due to [127]. Both results rely heavily of variants of Yao'sXOR Lemma, to be reviewed next.Like several other fundamental insights30 attributed to Yao's paper [237], Yao'sXOR Lemma (i.e., Theorem 7.13) is not even stated in [237] but is rather dueto Yao's oral presentations of his work. The �rst published proof of Yao's XORLemma was given by Levin (see [101, Sec. 3]). The proof presented in x7.2.1.2 is dueto Goldreich, Nisan and Wigderson [101, Sec. 5]. For a recent (but brief) reviewof other proofs of Yao's XOR Lemma (as well as of variants of it), the interestedreader is referred to [222].The notion of a hard region and its applications to proving the original versionof Yao's XOR Lemma are due to Impagliazzo [125] (see also [101, Sec. 4]). The �rstderandomization of Yao's XOR Lemma (i.e., Lemma 7.22) also originates in [125],while the second derandomization (i.e., Lemma 7.23) as well as Theorem 7.19 aredue to Impagliazzo and Wigderson [127].The worst-case to average-case reduction (i.e., x7.2.1.1, yielding Theorem 7.12)is due to [21]. This reduction follows the self-correction paradigm of Blum, Lubyand Rubinfeld [40], which was �rst employed in the context of a (strict)31 worst-caseto average-case reduction by Lipton [156].3230Most notably, the equivalence of pseudorandomness and unpredictability (see Section 8.2.5).31Earlier uses of the self-correction paradigm referred to \two argument problems" and consistedof �xing one argument and randomizing the other (see, e.g., [107]); consider, for example, thedecision problem in which given (N; r) the task is to determine whether x2 � r (mod N) has aninteger solution, and the randomized process mapping (N; r) to (N; r0), where r0 = r � !2 mod Nand ! is uniformly distibuted in [N]. Loosely speaking, such a process yields a reduction fromworst-case complexity to \mixed worst/average-case" complexity (or from \mixed average/worst-case" to pure average-case).32An earlier use of the self-correction paradigm for a strict worst-case to average-case reduction

7.2. HARD PROBLEMS IN E 305The connection between list decoding and hardness ampli�cation (i.e., x7.2.1.3),yielding alternative proofs of Theorems 7.10 and 7.19, is due to Sudan, Trevisan,and Vadhan [217].Hardness ampli�cation for NP has been the subject of recent attention: Anampli�cation of mild inapproximability to strong inapproximability is providedin [120], and an indication to the impossibility of a worst-case to average-casereductions (at least non-adaptive ones) is provided in [42].ExercisesExercise 7.1 Prove that if one way-functions exist then there exists one-way func-tions that are length preserving (i.e., jf(x)j = jxj for every x 2 f0; 1gn).Guideline: Clearly, for some polynomial p, it holds that jf(x)j < p(jxj) for all x. Assume,without loss of generality that n 7! p(n) is 1-1 and increasing, and let p�1(m) = n ifp(n) � m < p(n + 1). De�ne f 0(z) = f(x)01jzj�jf(x)j�1, where x is the p�1(jzj)-bit longpre�x of z.Exercise 7.2 Prove that if a function f is hard to invert in the sense of De�ni-tion 7.3 then it is hard to invert in the sense of De�nition 7.1.Guideline: Consider a sequence of internal coin tosses that maximizes the probabilityin Eq. (7.1).Exercise 7.3 Assuming the existence of one-way functions, prove that there existsa weak one-way function that is not strongly one-way.Exercise 7.4 (a universal one-way function (by L. Levin)) Using the notionof a universal machine, present a polynomial-time computable function that is hardto invert (in the sense of De�nition 7.1) if and only if there exist one-way functions.Guideline: Consider the function F that parses its input into a pair (M;x) and emulatesjxj3 steps of M on input x. Note that if there exists a one-way function that can beevaluated in cubic time then F is a weak one-way function. Using padding, prove thatthere exists a one-way function that can be evaluated in cubic time if and only if thereexist one-way functions.Exercise 7.5 For ` > 1, prove that the following 2` � 1 samples are pairwiseindependent and uniformly distributed in f0; 1gn. The samples are generated byuniformly and independently selecting ` strings in f0; 1gn. Denoting these stringsby s1; :::; s`, we generate 2` � 1 samples corresponding to the di�erent non-emptysubsets of f1; 2; :::; `g such that for subset J we let rJ def= �j2Jsj .appears in [18], but it refers to very low complexity classes. Speci�cally, this reduction refers tothe parity function and is computable in AC0 (implying that parity cannot be approximated inAC0, since it cannot be computed in that class (see [82, 238, 114])). The reduction (randomly)maps x 2 f0; 1gn, viewed as a sequence (x1; x2; x3; :::; xn), to the sequence x0 = (x1 � r1; r1 �x2�r2; r2�x3�r3; :::; rn�1�xn�rn), where r1; :::; rn 2 f0; 1g are uniformly and independentlydistributed. Note that x0 is uniformly distributed in f0; 1gn and that parity(x) = parity(x0)�rn.

306 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSGuideline: For J 6= J 0, it holds that rJ�rJ0 = �j2Ksj , where K denotes the symmetricdi�erence of J and J 0. See related material in Section 8.5.1.Exercise 7.6 (a variant on the proof of Theorem 7.7) Provide a detailed pre-sentation of the alternative procedure outlined in Footnote 5. That is, prove thatfor every x 2 f0; 1gn, given oracle access to any Bx : f0; 1gn ! f0; 1g that satis�esEq. (7.6), this procedure makes poly(n=") steps and outputs a list of strings that,with probability at least 1=2, contains x.Exercise 7.7 (proving Theorem 7.8) Recall that the proof of Theorem 7.7 es-tablishes the existence of a poly(n=")-time oracle machine M such that, for everyB : f0; 1gn ! f0; 1g and every x 2 f0; 1gn that satisfy Prr[B(r) = b(x; r)] � 12 + ",it holds that Pr[MB(n; ") = x] =
("2=n). Show that this implies Theorem 7.8.(Indeed, an alternative proof can be derived by adapting Exercise 7.6.)Guideline: Apply a \coupon collector" argument.Exercise 7.8 A polynomial-time computable predicate b :f0; 1g�!f0; 1g is calleda universal hard-core predicate if for every one-way function f , the predicate b isa hard-core of f . Note that the predicate presented in Theorem 7.7 is \almostuniversal" (i.e., for every one-way function f , that predicate is a hard-core off 0(x; r) = (f(x); r), where jxj = jrj). Prove that there exist no universal hard-core predicate.Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitraryone-way function. Then consider the function f 0(x) = (f(x); b(x)).Exercise 7.9 Prove that if NP is not contained in P=poly then neither is E .Furthermore, for every S : N ! N , if some problem in NP does not have circuitsof size S then for some constant " > 0 there exists a problem in E that does nothave circuits of size S0, where S0(n) = S(n"). Repeat the exercise for the \almosteverywhere" case.Guideline: Although NP is not known to be in E , it is the case that SAT is in E , whichimplies that NP is reducible to a problem in E . For the \almost everywhere" case, addressthe fact that the said reduction may not preserve the length of the input.Exercise 7.10 For every function f : f0; 1gn ! f0; 1g, present a linear-size circuitCn such that Pr[C(Un) = f(Un)] � 0:5 + 2�n. Furthermore, for every t � 2n�1,present a circuit Cn of size O(t � n) such that Pr[C(Un) = f(Un)] � 0:5 + t � 2�n.Warning: you may not assume that Pr[f(Un) = 1] = 0:5.Exercise 7.11 (self-correction of low-degree polynomials) Let d;m be in-tegers, and F be a �nite �eld of cardinality greater than t def= dm + 1. Letp : Fm ! F be a polynomial of individual degree d, and �1; :::; �t be t distinctnon-zero elements of F .1. Show that, for every x; y 2 Fm, the value of p(x) can be e�ciently computedfrom the values of p(x + �1y); :::; p(x + �ty), where x and y are viewed asm-ary vectors over F .

7.2. HARD PROBLEMS IN E 3072. Show that, for every x 2 Fm and � 2 F n f0g, if we uniformly select r 2 Fmthen the point x+ �r is uniformly distributed in Fm.Conclude that p(x) can be recovered based on t random points, where each pointis uniformly distributed in Fm.Exercise 7.12 (low degree extension) Prove that for any H � F and everyfunction f : Hm ! F there exists an m-variate polynomial f̂ : Fm ! F ofindividual degree jH j � 1 such that for every x 2 Hm it holds that f̂(x) = f(x).Guideline: De�ne f̂(x) = Pa2Hm �a(x) � f(a), where �a is an m-variate of individualdegree jHj�1 such that �a(a) = 1 whereas �a(x) = 0 for every x 2 Hm nfag. Speci�cally,�a1;:::;am(x1; :::; xm) =Qmi=1Qb2Hnfaig((xi � b)=(ai � b)).Exercise 7.13 Suppose that f̂ and S0 are as in the conclusion of Theorem 7.12.Prove that there exists a Boolean function g in E that is (S00; ")-inapproximablefor S00(n0 +O(log n0)) = S0(n0)=n0 and "(m) = 1=m3.Guideline: Consider the function g de�ned such that g(x; i) equals the ith bit of f̂(x).Exercise 7.14 (a generic application of Theorem 7.8) For any ` : N!N ,let h : f0; 1g� ! f0; 1g� be a function such that jh(x)j = `(jxj) for every x 2 f0; 1g�,and fXngn2N be a probability ensemble. Suppose that, for some s : N ! N and" : N ! [0; 1], for every family of s-size circuits fCngn2N and all su�ciently large nit holds that Pr[Cn(Xn) = h(Xn)] � "(n). Suppose that s0 : N ! N and "0 : N ![0; 1] satisfy s0(n + `(n)) � s(n)=poly(n="0(n + `(n))) and "0(n + `(n)) � 2"(n).Show that Theorem 7.8 implies that for every family of s0-size circuits fC 0n0gn02Nand all su�ciently large n0 = n+ `(n) it holds thatPr[C 0n+`(n)(Xn; U`(n)) = b(h(Xn); U`(n))] � 12 + "0(n+ `(n));where b(y; r) denotes the inner-product mod 2 of y and r. Note that if Xn isuniform over f0; 1gn then the predicate h0(x; r) = b(h(x); r), where jrj = jh(x)j,is (s0; 1 � 2"0)-inapproximable. Conclude that, in this case, if "(n) = 1=s(n) ands0(n+ `(n)) = s(n)
(1)=poly(n), then h0 is s0-inapproximable.Exercise 7.15 (reversing Exercise 7.14 (by Viola and Wigderson)) Let ` :N!N , h : f0; 1g� ! f0; 1g�, fXngn2N, and b be as in Exercise 7.14. Let H(x; r) =b(h(x); r) and recall that in Exercise 7.14 we reduced guessing h to approximat-ing H . Present a reduction in the opposite direction. That is, show that if H is(s; 1�")-inapproximable (over fXngn2N) then every s0-size circuit succeeds in com-puting h (over fXngn2N) with probability at most ", where s0(n) = s(n)�O(`(n)).Guideline: As usual, start by assuming the existence of a s0-size circuit that computes hwith success probability exceeding ". Consider two correlated random variables X and Y ,each distributed over f0; 1g`(n), where X represents the value of h(Un) and Y representsthe circuit's guess for this value. Prove that, for a uniformly distributed r 2 f0; 1g`(n), itholds that Pr[b(X; r) = b(Y; r)] = (1 + p)=2, where p def= Pr[X = Y].

308 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSExercise 7.16 (derandomization via averaging arguments) Let C : f0; 1gn�f0; 1gm ! f0; 1g` be a circuit, which may represent a \probabilistic circuit" thatprocesses the �rst input using a sequence of choices that are given as a secondinput. Let X and Z be two independent random variables distributed over f0; 1gnand f0; 1gm, respectively, and let � be a Boolean predicate (which may representa success event regarding the behavior of C). Prove that there exists a stringz 2 f0; 1gm such that for Cz(x) def= C(x; z) it holds that Pr[�(X;Cz(X)) = 1] �Pr[�(X;C(X;Z))=1].Exercise 7.17 (reducing \selective XOR" to \standard XOR") Let f bea Boolean function, and b(y; r) denote the inner-product modulo 2 of the equal-length strings y and r. Suppose that F 0(x1; :::; xt(n); r) def= b(f(x1) � � � f(xt(n)); r),where x1; :::; xt(n) 2 f0; 1gn and r 2 f0; 1gt(n), is T 0-inapproximable. Assumingthat n 7! t(n) � n is 1-1, prove that F (x) def= F 0(x; 1t0(jxj)), where t0(t(n) � n) = t(n),is T -inapproximable for T (m) = T 0(m+ t0(m))�O(m).Guideline: Reduce the approximation of F 0 to the approximation of F . An importantobservation is that for any x = (x1; :::; xt(n)), x0 = (x01; :::; x0t(n)), and r = r1 � � � rt(n) suchthat x0i = xi if ri = 1, it holds that F 0(x; r) = F (x0) � �i:ri=0f(x0i). This suggests anon-uniform reduction of F 0 to F , which uses \adequate" z1; :::; zt(n) 2 f0; 1gn as well asthe corresponding values f(zi)'s as advice. On input x1; :::; xt(n); r1 � � � rt(n), the reductionsets x0i = xi if ri = 1 and x0i = zi otherwise, makes the query x0 = (x01; :::; x0t(n)) to F ,and returns F (x0) �i:ri=0 f(zi). Analyze this reduction in the case that z1; :::; zt(n) 2f0; 1gn are uniformly distributed, and infer that they can be set to some �xed values (seeExercise 7.16).33Exercise 7.18 (reducing \standard XOR" to \selective XOR") In contin-uation to Exercise 7.17, show a reduction in the opposite direction. That is, forF and F 0 as in Exercise 7.17, show that if F is T -inapproximable then F 0 is T 0-inapproximable, where T 0(m+ t0(m)) = min(T (m)�O(m); exp(t0(m)=O(1)))1=3.Guideline: Reduce the approximation of F to the approximation of F 0, using the factthat for any x = (x1; :::; xt(n)) and r = r1 � � � rt(n) it holds that �i2Srf(xi) = F 0(x; r),where Sr = fi2 [t(n)] : ri=1g. Note that, with probability 1� exp(�
(t(n)), the set Srcontains at least t(n)=3 indices. Thus, the XOR of t(n)=3 values of f can be reduced tothe selective XOR of t(n) such values (by using some of the ideas used in Exercise 7.17for handling the case that jSrj > t(n)=3). The XOR of t(n) values can be obtained bythree XORs (of t(n)=3 values each), at the cost of decreasing the advantage by raising itto a power of three.Exercise 7.19 (reducing \selective XOR" to direct product) Recall that, inx7.2.1.2, the approximation of the \selective XOR" predicate P 0 was reduced to33That is, assume �rst that the reduction is given t(n) samples of the distribution(Un; f(Un)), and analyze its success probability on a uniformly distributed input (x; r) =(x1; :::; xt(n); r1 � � � rt(n)). Next, apply Exercise 7.16 when X represents the distribution of theactual input (x; r), and Z represents the the distribution of the auxiliary sequence of samples.

7.2. HARD PROBLEMS IN E 309the guessing of the value of the direct product function P . Present a reduction inthe opposite direction. That is, for P and P 0 as in x7.2.1.2, show that if P 0 is T 0-inapproximable then every T -size circuit succeeds in computing P with probabilityat most 1=T , where T =
(T 0).Guideline: Use Exercise 7.15.Exercise 7.20 (Theorem 7.14 versus Theorem 7.5) Consider a generalizationof Theorem 7.14 in which f and P are functions from strings to sets of strings suchthat P (x1; :::; xt) = f(x1)� � � � � f(xt).1. Prove that if for every family of p1-size circuits, fCngn2N, and all su�cientlylarge n 2 N , it holds that Pr[Cn(Un) 62 f(Un)] > 1=p2(n) then for everyfamily of p0-size circuits, fC 0mgm2N, it holds that Pr[C 0m(Um) 2 P (Um)] <"0(m), where "0 and p0 are as in Theorem 7.14. Further generalize the claimby replacing fUngn2N with an arbitrary distribution ensemble fXngn2N, andreplacing Um by a t(n)-fold Cartesian product of Xn (where m = t(n) � n).2. Show that the foregoing generalizes both Theorem 7.14 and a non-uniformcomplexity version of Theorem 7.5.Exercise 7.21 (re�nement of the main theme of x7.2.1.3) Consider the fol-lowing modi�cation of De�nition 7.17, in which the decoding condition refers toan agreement threshold of (1=q(N)) + �(N) rather than to a threshold of �(N).The modi�ed de�nition reads as follows (where p is a �xed polynomial): For everyw : [`(N)]! [q(N)] and x2f0; 1gN such that �(x) is (1� ((1=q(N)) +�(N)))-closeto w, there exists an oracle-aided circuit C of size p((logN)=�(N)) such that Cw(i)yields the ith bit of x for every i 2 [N].1. Formulate and prove a version of Theorem 7.18 that refers to the modi�edde�nition (rather than to the original one).Guideline: The modi�ed version should refer to computing g(Um(n)) with successprobability greater than (1=q(n)) + "(n) (rather than greater than "(n)).2. Prove that, when applied to binary codes (i.e., q � 2), the version in Item 1yields S00-inapproximable predicates, for S00(n0) = S(m�1(n0))
(1)=poly(n0).3. Prove that the Hadamard Code allows implicit decoding under the modi�edde�nition (but not according to the original one).34Guideline: This is the actual contents of Theorem 7.8.Show that if � : f0; 1gN ! [q(N)]`(N) is a (non-binary) code that allows implicitdecoding then encoding its symbols by the Hadamard code yields a binary code(f0; 1gN ! f0; 1g`(N)�2dlog2 q(N)e) that allows implicit decoding. Note that e�cientencoding is preserved only if q(N) � poly(N).34Needless to say, the Hadamard Code is not e�cient (for the trivial reason that its codewordshave exponential length).

310 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSExercise 7.22 (using Proposition 7.16 to prove Theorem 7.19) Prove The-orem 7.19 by combining Proposition 7.16 and Theorem 7.8.Guideline: Note that, for some > 0, Proposition 7.16 yields an exponential-time com-putable function f̂ such that jf̂(x)j � jxj and for every family of circuit fC0n0gn02N ofsize S0(n0) = S(n0=3)=poly(n0) it holds that Pr[C0n0(Un0) = f̂(Un0)] < 1=S0(n0). Com-bining this with Theorem 7.8, infer that P (x; r) = b(f̂(x); r), where jrj = jf̂(x)j � jxj, isS00-inapproximable for S00(n00) = S(n00=2)
(1)=poly(n00). Note that if S(n) = 2
(n) thenS00(n00) = 2
(n00).Exercise 7.23 LetG be a pairwise independent generator (i.e., as in Lemma 7.22),S � f0; 1gn and � def= jSj=2n. Prove that, with probability at least min(n��; 1)=2, atleast one of the n strings output by G(U2n) resides in S. Furthermore, if � � 1=2nthen this probability is at least 0:75 � n � �.Guideline: Using the pairwise independence property and employing the Inclusion-Exclusion formula, we lower-bound the aforementioned probability by n � � � �n2� � �2.If � � 1=n then the claim follows, otherwise we employ the same reasoning to the �rst1=� elements in the output of G(U2n).Exercise 7.24 (one-way functions versus inapproximable predicates) Provethat the existence of a non-uniformly hard one-way function (as in De�nition 7.3)implies the existence of an exponential-time computable predicate that is T -inapproximable(as per De�nition 7.9), for every polynomial T .Guideline: Suppose �rst that the one-way function f is length-preserving and 1-1. Con-sider the hard-core predicate b guaranteed by Theorem 7.7 for g(x; r) = (f(x); r), de�nethe Boolean function h such that h(z) = b(g�1(z)), and show that h is T -inapproximablefor every polynomial T . For the general case a di�erent approach seems needed. Specif-ically, given a (length preserving) one-way function f , consider the Boolean function hde�ned as h(z; i; �) = 1 if and only if the ith bit of the lexicographically �rst element inf�1(z) = fx : f(x) = zg equals �. (In particular, if f�1(z) = ; then h(z; i; �) = 0 forevery i and �.)35 Note that h is computable in exponential-time, but is not (worst-case)computable by polynomial-size circuits. Applying Theorem 7.10, we are done.
35Thus, h may be easy to computed in the average-case sense (e.g., if f(x) = 0jxjf 0(x) for someone-way function f 0).

Chapter 8Pseudorandom GeneratorsIndistinguishable things are identical.1G.W. Leibniz (1646{1714)A fresh view at the question of randomness has been taken by complexity theory:it has been postulated that a distribution is random (or rather pseudorandom) ifit cannot be told apart from the uniform distribution by any e�cient procedure.Thus, (pseudo)randomness is not an inherent property of an object, but is rathersubjective to the observer.At the extreme, this approach says that the question of whether the worldis deterministic or allows for some free choice (which may be viewed as sources ofrandomness) is irrelevant. What matters is how the world looks to us and to variouscomputationally bounded devices. That is, if some phenomenon looks random thenwe may just treat it as if it were random. Likewise, if we can generate sequencesthat cannot be told apart from the uniform distribution by any e�cient procedure,then we can use these sequences in any e�cient randomized application instead ofthe ideal coin tosses that are postulated in the design of this application.The pivot of the foregoing approach is the notion of computational indistin-guishability, which refers to pairs of distributions that cannot be told apart bye�cient procedures. The most fundamental incarnation of this notion associatese�cient procedures with polynomial-time algorithms, but other incarnations thatrestrict attention to other classes of distinguishing procedures also lead to impor-tant insights. Likewise, the e�ective generation of pseudorandom objects, whichis of major concern, is actually a general paradigm with numerous useful incar-nations (which di�er in the computational complexity limitations imposed on thegeneration process).1This is Leibniz's Principle of Identity of Indiscernibles. Leibniz admits that counterexamplesto this principle are conceivable but will not occur in real life because God is much too benevolent.We thus believe that he would have agreed to the theme of this chapter, which asserts thatindistinguishable things should be considered as if they were identical.311

312 CHAPTER 8. PSEUDORANDOM GENERATORSSummary: Pseudorandom generators are e�cient deterministic pro-cedures that stretch short random seeds into longer pseudorandom se-quences. Thus, a generic formulation of pseudorandom generators con-sists of specifying three fundamental aspects { the stretch measure of thegenerators; the class of distinguishers that the generators are supposedto fool (i.e., the algorithms with respect to which the computational in-distinguishability requirement should hold); and the resources that thegenerators are allowed to use (i.e., their own computational complexity).The archetypical case of pseudorandom generators refers to e�cientgenerators that fool any feasible procedure; that is, the potential dis-tinguisher is any probabilistic polynomial-time algorithm, which maybe more complex than the generator itself (which, in turn, has time-complexity bounded by a �xed polynomial). These generators are calledgeneral-purpose, because their output can be safely used in any e�cientapplication. Such (general-purpose) pseudorandom generators exist ifand only if one-way functions exist.For purposes of derandomization one may use pseudorandom genera-tors that are somewhat more complex than the potential distinguisher(which represents the algorithm to be derandomized). Following thisapproach, suitable pseudorandom generators, which can be constructedassuming the existence of problems in E that have no sub-exponentialsize circuits, yield a full derandomization of BPP (i.e., BPP = P).It is also bene�cial to consider pseudorandom generators that fool space-bounded distinguishers and generators that exhibit some limited ran-dom behavior (e.g., outputting a pair-wise independent or a small-biassequence). Such (special-purpose) pseudorandom generators can beconstructed without relying on any computational complexity assump-tion.IntroductionThe \question of randomness" has been puzzling thinkers for ages. Aspects of thisquestion range from philosophical doubts regarding the existence of randomness(in the world) and reections on the meaning of randomness (in our thinking) totechnical questions regarding the measuring of randomness. Among many otherthings, the second half of the 20th century has witnessed the development of threetheories of randomness, which address di�erent aspects of the foregoing question.The �rst theory (cf., [62]), initiated by Shannon [202], views randomness asrepresenting lack of information, which in turn is modeled by a probability distri-bution on the possible values of the missing data. Indeed, Shannon's InformationTheory is rooted in probability theory and is focused at distributions that are notperfectly random. It characterizes perfect randomness as the extreme case in whichthe information contents is maximized (i.e., in this case there is no redundancy at

313all). Thus, perfect randomness is associated with a unique distribution { the uni-form one. In particular, by de�nition, one cannot (deterministically) generate suchperfect random strings from shorter random seeds.The second theory (cf., [152, 155]), initiated by Solomonov [209], Kolmogorov [146],and Chaitin [50], views randomness as representing lack of structure, which in turnis reected in the length of the most succinct and e�ective description of the object.The notion of a succinct and e�ective description refers to a process that transformsthe succinct description to an explicit one. Indeed, this theory of randomness isrooted in computability theory and speci�cally in the notion of a universal language(equiv., universal machine or computing device; see x1.2.3.4). It measures the ran-domness (or complexity) of objects in terms of the shortest program (for a �xeduniversal machine) that generates the object.2 Like Shannon's theory, KolmogorovComplexity is quantitative and perfect random objects appear as an extreme case.However, following Kolmogorov's approach one may say that a single object, ratherthan a distribution over objects, is perfectly random. Still, by de�nition, one can-not (deterministically) generate strings of high Kolmogorov Complexity from shortrandom seeds.The third theory, which is the focus of the current chapter, views randomnessas an e�ect on an observer and thus as being relative to the observer's abilities(of analysis). The observer's abilities are modeled as its computational abilities(i.e., the complexity of the processes that the observer may apply), and hence thistheory of randomness is rooted in complexity theory. This theory of randomnessis explicitly aimed at providing a notion of randomness that, unlike the previoustwo notions, allows for an e�cient (and deterministic) generation of random stringsfrom shorter random seeds. The heart of this theory is the suggestion to view ob-jects as equal if they cannot be told apart by any e�cient procedure. Consequently,a distribution that cannot be e�ciently distinguished from the uniform distributionwill be considered random (or rather called pseudorandom). Thus, randomness isnot an \inherent" property of objects (or distributions) but is rather relative toan observer (and its computational abilities). To illustrate this approach, let usconsider the following mental experiment.Alice and Bob play \head or tail" in one of the following four ways. Ineach of them Alice ips an unbiased coin and Bob is asked to guess itsoutcome before the coin hits the oor. The alternative ways di�er bythe knowledge Bob has before making his guess.In the �rst alternative, Bob has to announce his guess before Alice ipsthe coin. Clearly, in this case Bob wins with probability 1=2.In the second alternative, Bob has to announce his guess while the coinis spinning in the air. Although the outcome is determined in principleby the motion of the coin, Bob does not have accurate information onthe motion. Thus we believe that, also in this case, Bob wins withprobability 1=2.2We mention that Kolmogorov's approach is inherently intractable (i.e., Kolmogorov Com-plexity is uncomputable).

314 CHAPTER 8. PSEUDORANDOM GENERATORSThe third alternative is similar to the second, except that Bob hasat his disposal sophisticated equipment capable of providing accurateinformation on the coin's motion as well as on the environment e�ectingthe outcome. However, Bob cannot process this information in time toimprove his guess.In the fourth alternative, Bob's recording equipment is directly con-nected to a powerful computer programmed to solve the motion equa-tions and output a prediction. It is conceivable that in such a case Bobcan improve substantially his guess of the outcome of the coin.We conclude that the randomness of an event is relative to the information andcomputing resources at our disposal. At the extreme, even events that are fullydetermined by public information may be perceived as random events by an ob-server that lacks the relevant information and/or the ability to process it. Ourfocus will be on the lack of su�cient processing power, and not on the lack of su�-cient information. The lack of su�cient processing power may be due either to theformidable amount of computation required (for analyzing the event in question)or to the fact that the observer happens to be very limited.A natural notion of pseudorandomness arises { a distribution is pseudorandomif no e�cient procedure can distinguish it from the uniform distribution, where ef-�cient procedures are associated with (probabilistic) polynomial-time algorithms.This speci�c notion of pseudorandomness is indeed the most fundamental one, andmuch of this chapter is focused on it. Weaker notions of pseudorandomness ariseas well { they refer to indistinguishability by weaker procedures such as space-bounded algorithms, constant-depth circuits, etc. Stretching this approach evenfurther one may consider algorithms that are designed on purpose so not to distin-guish even weaker forms of \pseudorandom" sequences from random ones (wheresuch algorithms arise naturally when trying to convert some natural randomizedalgorithm into deterministic ones; see Section 8.5).The foregoing discussion has focused at one aspect of the pseudorandomnessquestion { the resources or type of the observer (or potential distinguisher). An-other important aspect is whether such pseudorandom sequences can be generatedfrom much shorter ones, and at what cost (or complexity). A natural approachrequires the generation process to be e�cient, and furthermore to be �xed be-fore the speci�c observer is determined. Coupled with the aforementioned strongnotion of pseudorandomness, this yields the archetypical notion of pseudorandomgenerators { these operating in (�xed) polynomial-time and producing sequencesthat are indistinguishable from uniform ones by any polynomial-time observer. Inparticular, this means that the distinguisher is allowed more resources than the gen-erator. Such (general-purpose) pseudorandom generators (discussed in Section 8.2)allow to decrease the randomness complexity of any e�cient application, and arethus of great relevance to randomized algorithms and cryptography. The termgeneral-purpose is meant to emphasize the fact that the same generator is goodfor all e�cient applications, including those that consume more resources than thegenerator itself.

315
Gen

seed output sequence

a truly random sequence
?Figure 8.1: Pseudorandom generators { an illustration.Although general-purpose pseudorandom generators are very appealing, thereare important reasons for considering also the opposite relation between the com-plexities of the generation and distinguishing tasks; that is, allowing the pseudo-random generator to use more resources (e.g., time or space) than the observer ittries to fool. This alternative is natural in the context of derandomization (i.e.,converting randomized algorithms to deterministic ones), where the crucial step isreplacing the random input of an algorithm by a pseudorandom input, which in turncan be generated based on a much shorter random seed. In particular, when de-randomizing a probabilistic polynomial-time algorithm, the observer (to be fooledby the generator) is a �xed algorithm. In this case employing a more complexgenerator merely means that the complexity of the derived deterministic algorithmis dominated by the complexity of the generator (rather than by the complexity ofthe original randomized algorithm). Needless to say, allowing the generator to usemore resources than the observer that it tries to fool makes the task of designingpseudorandom generators potentially easier, and enables derandomization resultsthat are not known when using general-purpose pseudorandom generators. Theusefulness of this approach is demonstrated in Sections 8.3 through 8.5.We note that the goal of all types of pseudorandom generators is to allow thegeneration of \su�ciently random" sequences based on much shorter random seeds.Thus, pseudorandom generators o�er signi�cant saving in the randomness complex-ity of various applications (and in some cases eliminating randomness altogether).Saving on randomness is valuable because many applications are severely limited intheir ability to generate or obtain truly random bits. Furthermore, typically, gener-ating truly random bits is signi�cantly more expensive than standard computationsteps. Thus, randomness is a computational resource that should be considered ontop of time complexity (analogously to the consideration of space complexity).Organization. In Section 8.1 we present the general paradigm underlying thevarious notions of pseudorandom generators. The archetypical case of general-purpose pseudorandom generators is presented in Section 8.2. We then turn toalternative notions of pseudorandom generators: generators that su�ce for thederandomization of complexity classes such as BPP are discussed in Section 8.3;pseudorandom generators in the domain of space-bounded computations are dis-

316 CHAPTER 8. PSEUDORANDOM GENERATORScussed in Section 8.4; and special-purpose generators are discussed in Section 8.5.Teaching note: If you can a�ord teaching only one of the alternative notions of pseu-dorandom generators, then we suggest teaching the notion of general-purpose pseudo-random generators (presented in Section 8.2). This notion is more relevant to computerscience at large and the technical material is relatively simpler. The chapter is organizedto facilitate this option.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,standard conventions regarding random variables (presented in Appendix D.1.1)will be extensively used. We shall also apply a couple of results from Chapter 7,but these applications will be self-contained.8.1 The General ParadigmTeaching note: We advocate a uni�ed view of various notions of pseudorandom gener-ators. That is, we view these notions as incarnations of a general abstract paradigm, tobe presented in this section. A teacher that wishes to focus on one of these incarnationsmay still use this section as a general motivation towards the speci�c de�nitions usedlater. On the other hand, some students may prefer reading this section after studyingone of the speci�c incarnations.A generic formulation of pseudorandom generators consists of specifying three fun-damental aspects { the stretch measure of the generators; the class of distinguishersthat the generators are supposed to fool (i.e., the algorithms with respect to whichthe computational indistinguishability requirement should hold); and the resourcesthat the generators are allowed to use (i.e., their own computational complexity).Let us elaborate.Stretch function: A necessary requirement from any notion of a pseudorandomgenerator is that the generator is a deterministic algorithm that stretches shortstrings, called seeds, into longer output sequences.3 Speci�cally, this algorithmstretches k-bit long seeds into `(k)-bit long outputs, where `(k) > k. The function` : N ! N is called the stretch measure (or stretch function) of the generator. Insome settings the speci�c stretch measure is immaterial (e.g., see Section 8.2.4).Computational Indistinguishability: A necessary requirement from any no-tion of a pseudorandom generator is that the generator \fools" some non-trivialalgorithms. That is, it is required that any algorithm taken from a predeterminedclass of interest cannot distinguish the output produced by the generator (when thegenerator is fed with a uniformly chosen seed) from a uniformly chosen sequence.3Indeed, the seed represents the randomness that is used in the generation of the outputsequences; that is, the randomized generation process is decoupled into a deterministic algorithmand a random seed. This decoupling facilitates the study of such processes.

8.1. THE GENERAL PARADIGM 317Thus, we consider a class D of distinguishers (e.g., probabilistic polynomial-timealgorithms) and a class F of (threshold) functions (e.g., reciprocals of positive poly-nomials), and require that the generator G satis�es the following: For any D 2 D,any f 2 F , and for all su�ciently large k's it holds thatjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k) ; (8.1)where Un denotes the uniform distribution over f0; 1gn and the probability is takenover Uk (resp., U`(k)) as well as over the coin tosses of algorithm D in case it isprobabilistic. The reader may think of such a distinguisher, D, as trying to tellwhether the \tested string" is a random output of the generator (i.e., distributedas G(Uk)) or is a truly random string (i.e., distributed as U`(k)). The condition inEq. (8.1) requires that D cannot make a meaningful decision; that is, ignoring anegligible di�erence (represented by f(k)), D's verdict is the same in both cases.4The archetypical choice is that D is the set of all probabilistic polynomial-timealgorithms, and F is the set of all functions that are the reciprocal of some positivepolynomial.Complexity of Generation: The archetypical choice is that the generator hasto work in polynomial-time (in length of its input { the seed). Other choices willbe discussed as well. We note that placing no computational requirements on thegenerator (or, alternatively, putting very mild requirements such as upper-boundingthe running-time by a double-exponential function), yields \generators" that canfool any subexponential-size circuit family (see Exercise 8.1).Notational conventions. We will consistently use k for denoting the length ofthe seed of a pseudorandom generator, and `(k) for denoting the length of thecorresponding output. In some cases, this makes our presentation a little morecumbersome (since a more natural presentation may specify some other parametersand let the seed-length be a function of the latter). However, our choice has theadvantage of focusing attention on the fundamental parameter of pseudorandomgeneration process { the length of the random seed. We note that whenever apseudorandom generator is used to \derandomize" an algorithm, n will denote thelength of the input to this algorithm, and k will be selected as a function of n.Some instantiations of the general paradigm. Two important instantiationsof the notion of pseudorandom generators relate to polynomial-time distinguishers.1. General-purpose pseudorandom generators correspond to the case that thegenerator itself runs in polynomial-time and needs to withstand any prob-abilistic polynomial-time distinguisher, including distinguishers that run for4The class of threshold functions F should be viewed as determining the class of noticeableprobabilities (as a function of k). Thus, we require certain functions (i.e., those presented at thel.h.s of Eq. (8.1)) to be smaller than any noticeable function on all but �nitely many integers. Wecall the former functions negligible. Note that a function may be neither noticeable nor negligible(e.g., it may be smaller than any noticeable function on in�nitely many values and yet larger thansome noticeable function on in�nitely many other values).

318 CHAPTER 8. PSEUDORANDOM GENERATORSmore time than the generator. Thus, the same generator may be used safelyin any e�cient application. (This notion is treated in Section 8.2.)2. In contrast, pseudorandom generators intended for derandomization may runmore time than the distinguisher, which is viewed as a �xed circuit havingsize that is upper-bounded by a �xed polynomial. (This notion is treated inSection 8.3.)In addition, the general paradigm may be instantiated by focusing on the space-complexity of the potential distinguishers (and the generator), rather than on theirtime-complexity. Furthermore, one may also consider distinguishers that merelyreect probabilistic properties such as pair-wise independence, small-bias, and hit-ting frequency.8.2 General-Purpose Pseudorandom GeneratorsRandomness is playing an increasingly important role in computation: It is fre-quently used in the design of sequential, parallel and distributed algorithms, andit is of course central to cryptography. Whereas it is convenient to design such al-gorithms making free use of randomness, it is also desirable to minimize the usageof randomness in real implementations. Thus, general-purpose pseudorandom gen-erators (as de�ned next) are a key ingredient in an \algorithmic tool-box" { theyprovide an automatic compiler of programs written with free usage of randomnessinto programs that make an economical use of randomness.Organization of this section. Since this is a relatively long section, a shortroad-map seems in place. In Section 8.2.1 we provide the basic de�nition of general-purpose pseudorandom generators, and in Section 8.2.2 we describe their archetyp-ical application (which was eluded to in the former paragraph). In Section 8.2.3we provide a wider perspective on the notion of computational indistinguishabil-ity that underlies the basic de�nition, and in Section 8.2.4 we justify the littleconcern (shown in Section 8.2.1) regarding the speci�c stretch function. In Sec-tion 8.2.5 we address the existence of general-purpose pseudorandom generators.In Section 8.2.6 we motivate and discuss a non-uniform version of computationalindistinguishability. We conclude in Section 8.2.7 by reviewing other variants andreecting on various conceptual aspects of the notions discussed in this section.8.2.1 The basic de�nitionLoosely speaking, general-purpose pseudorandom generators are e�cient determin-istic programs that expand short randomly selected seeds into longer pseudorandombit sequences, where the latter are de�ned as computationally indistinguishablefrom truly random sequences by any e�cient algorithm. Identifying e�ciency withpolynomial-time operation, this means that the generator (being a �xed algorithm)works within some �xed polynomial-time, whereas the distinguisher may be anyalgorithm that runs in polynomial-time. Thus, the distinguisher is potentially more

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 319complex than the generator; for example, the distinguisher may run in time thatis cubic in the running-time of the generator. Furthermore, to facilitate the de-velopment of this theory, we allow the distinguisher to be probabilistic (whereasthe generator remains deterministic as stated previously). We require that suchdistinguishers cannot tell the output of the generator from a truly random string ofsimilar length, or rather that the di�erence that such distinguishers may detect (or\sense") is negligible. Here a negligible function is a function that vanishes fasterthan the reciprocal of any positive polynomial.5De�nition 8.1 (general-purpose pseudorandom generator): A deterministic polynomial-time algorithm G is called a pseudorandom generator if there exists a stretch func-tion, ` : N!N (satisfying `(k) > k for all k), such that for any probabilisticpolynomial-time algorithm D, for any positive polynomial p, and for all su�cientlylarge k's it holds thatjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < 1p(k) (8.2)where Un denotes the uniform distribution over f0; 1gn and the probability is takenover Uk (resp., U`(k)) as well as over the internal coin tosses of D.Thus, De�nition 8.1 is derived from the generic framework (presented in Sec-tion 8.1) by taking the class of distinguishers to be the set of all probabilisticpolynomial-time algorithms, and taking the class of (noticeable) threshold functionsto be the set of all functions that are the reciprocals of some positive polynomial.6Indeed, the principles underlying De�nition 8.1 were discussed in Section 8.1 (andwill be further discussed in Section 8.2.3).We note that De�nition 8.1 does not make any requirement regarding the stretchfunction ` : N!N , except for the generic requirement that `(k) > k for all k.Needless to say, the larger ` is the more useful is the pseudorandom generator. Ofcourse, ` is upper-bounded by the running-time of the generator (and hence by apolynomial). In Section 8.2.4 we show that any pseudorandom generator (even onehaving minimal stretch `(k) = k+1) can be used for constructing a pseudorandomgenerator having any desired (polynomial) stretch function. But before doing so, werigorously discuss the \saving in randomness" o�ered by pseudorandom generators,and provide a wider perspective on the notion of computational indistinguishabilitythat underlies De�nition 8.1.5De�nition 8.1 requires that the functions representing the distinguishing gap of certain al-gorithms should be smaller than the reciprocal of any positive polynomial for all but �nitelymany k's. The former functions are called negligible (cf. Footnote 4, when identifying noticeablefunctions with the reciprocals of any positive polynomial). The notion of negligible probability isrobust in the sense that any event that occurs with negligible probability will occur with negligibleprobability also when the experiment is repeated a \feasible" (i.e., polynomial) number of times.6The latter choice is naturally coupled with the association of e�cient computation withpolynomial-time algorithms: An event that occurs with noticeable probability occurs almostalways when the experiment is repeated a \feasible" (i.e., polynomial) number of times.

320 CHAPTER 8. PSEUDORANDOM GENERATORS8.2.2 The archetypical applicationWe note that \pseudo-random number generators" appeared with the �rst com-puters, and have been used ever since for generating random choices (or samples)for various applications. However, typical implementations use generators that arenot pseudorandom according to De�nition 8.1. Instead, at best, these generatorsare shown to pass some ad-hoc statistical test (cf., [145]). We warn that the factthat a \pseudo-random number generator" passes some statistical tests, does notmean that it will pass a new test and that it will be good for a future (untested)application. Needless to say, the approach of subjecting the generator to somead-hoc tests fails to provide general results of the form \for all practical purposesusing the output of the generator is as good as using truly unbiased coin tosses." Incontrast, the approach encompassed in De�nition 8.1 aims at such generality, andin fact is tailored to obtain it: The notion of computational indistinguishability,which underlines De�nition 8.1, covers all possible e�cient applications and guar-antees that for all of them pseudorandom sequences are as good as truly randomones. Indeed, any e�cient randomized algorithm maintains its performance whenits internal coin tosses are substituted by a sequence generated by a pseudorandomgenerator. This substitution is spell-out next.Construction 8.2 (typical application of pseudorandom generators): Let G be apseudorandom generator with stretch function ` :N!N . Let A be a probabilisticpolynomial-time algorithm, and � :N!N denote its randomness complexity. De-note by A(x; r) the output of A on input x and coin tosses sequence r 2 f0; 1g�(jxj).Consider the following randomized algorithm, denoted AG:On input x, set k = k(jxj) to be the smallest integer such that `(k) ��(jxj), uniformly select s 2 f0; 1gk, and output A(x; r), where r is the�(jxj)-bit long pre�x of G(s).That is, AG(x; s) = A(x;G0(s)), for jsj = k(jxj) = argminif`(i) � �(jxj)g, whereG0(s) is the �(jxj)-bit long pre�x of G(s).Thus, using AG instead of A, the randomness complexity is reduced from � to`�1 ��, while (as we show next) it is infeasible to �nd inputs (i.e., x's) on which thenoticeable behavior of AG is di�erent from the one of A. For example, if `(k) = k2,then the randomness complexity is reduced from � to p�. We stress that thepseudorandom generator G is universal; that is, it can be applied to reduce therandomness complexity of any probabilistic polynomial-time algorithm A.Proposition 8.3 Let A, � and G be as in Construction 8.2, and suppose that� : N ! N is 1-1. Then, for every pair of probabilistic polynomial-time algorithms,a �nder F and a tester T , every positive polynomial p and all su�ciently long n'sXx2f0;1gn Pr[F (1n) = x] � j�A;T (x) j < 1p(n) (8.3)

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 321where �A;T (x) def= Pr[T (x;A(x; U�(jxj))) = 1] � Pr[T (x;AG(x; Uk(jxj))) = 1], andthe probabilities are taken over the Um's as well as over the internal coin tosses ofthe algorithms F and T .Algorithm F represents a potential attempt to �nd an input x on which the outputof AG is distinguishable from the output of A. This \attempt" may be benignas in the case that a user employs algorithm AG on inputs that are generatedby some probabilistic polynomial-time application. However, the attempt mayalso be adversarial as in the case that a user employs algorithm AG on inputsthat are provided by a potentially malicious party. The potential tester, denotedT , represents the potential use of the output of algorithm AG, and captures therequirement that this output be as good as a corresponding output produced by A.Thus, T is given x as well as the corresponding output produced either by AG(x) def=A(x; Uk(jxj)) or by A(x) = A(x; U�(jxj)), and it is required that T cannot tell thedi�erence. In the case that A is a probabilistic polynomial-time decision procedure,this means that it is infeasible to �nd an x on which AG decides incorrectly (i.e.,di�erently than A). In the case that A is a search procedure for some NP-relation,it is infeasible to �nd an x on which AG outputs a wrong solution. For details, seeExercise 8.2.Proof: The proposition is proven by showing that any triple (A;F; T) violating theclaim can be converted into an algorithm D that distinguishes the output of G fromthe uniform distribution, in contradiction to the hypothesis. The key observationis that for every x 2 f0; 1gn it holds that�A;T (x) = Pr[T (x;A(x; U�(n)))=1]� Pr[T (x;A(x;G0(Uk(n))))=1]; (8.4)where G0(s) is the �(n)-bit long pre�x of G(s). Thus, a method for �nding a stringx such that j�A;T (x)j is large yields a way of distinguishing U`(k(n)) from G(Uk(n));that is, given a sample r 2 f0; 1g`(k(n)) and using such a string x 2 f0; 1gn, thedistinguisher outputs T (x;A(x; r0)), where r0 is the �(n)-bit long pre�x of r. Indeed,we shall show that the violation of Eq. (8.3), which refers to Ex F (1n)[j�A;T (x)j],yields a violation of the hypothesis that G is a pseudorandom generator (by �ndingan adequate string x and using it). This intuitive argument requires a slightlycareful implementation, which is provided next.As a warm-up, consider the following algorithm D. On input r (taken fromeither U`(k(n)) or G(Uk(n))), algorithm D �rst obtains x F (1n), where n can beobtained easily from jrj (because � is 1-1 and 1n 7! �(n) is computable via A).Next, D obtains y = A(x; r0), where r0 is the �(jxj)-bit long pre�x of r. Finally Doutputs T (x; y). Note that D is implementable in probabilistic polynomial-time,and that D(U`(k(n))) � T (Xn; A(Xn; U�(n))) ; where Xn def= F (1n)D(G(Uk(n))) � T (Xn; A(Xn; G0(Uk(n)))) ; where Xn def= F (1n).Using Eq. (8.4), it follows that Pr[D(U`(k(n))) = 1] � Pr[D(G(Uk(n))) = 1] equalsE[�A;T (F (1n))], which implies that E[�A;T (F (1n))] must be negligible (because

322 CHAPTER 8. PSEUDORANDOM GENERATORSotherwise we derive a contradiction to the hypothesis that G is a pseudoran-dom generator). This yields a weaker version of the proposition asserting thatE[�A;T (F (1n))] is negligible (rather than that E[j�A;T (F (1n))j] is negligible).In order to prove that E[j�A;T (F (1n))j] (rather than to E[�A;T (F (1n))]) isnegligible, we need to modify D a little. Note that the source of trouble is that�A;T (�) may be positive on some x's and negative on others, and thus it may be thecase that E[�A;T (F (1n))] is small (due to cancelations) even if E[j�A;T (F (1n))j]is large. This di�culty can be overcome by determining the sign of �A;T (�) onx = F (1n) and changing the outcome of D accordingly; that is, the modi�ed Dwill output T (x;A(x; r0)) if �A;T (x) > 0 and 1�T (x;A(x; r0)) otherwise. Thus, ineach case, the contribution of x to the distinguishing gap of the modi�ed D will bej�A;T (x)j. We further note that if j�A;T (x)j is small then it does not matter muchwhether we act as in the case of �A;T (x) > 0 or in the case of �A;T (x) � 0. Thus,it su�ces to correctly determine the sign of �A;T (x) in the case that j�A;T (x)j islarge, which is certainly a feasible (approximation) task. Details follow.We start by assuming, towards the contradiction, that E[j�A;T (F (1n))j] > "(n)for some non-negligible function ". On input r (taken from either U`(k(n)) orG(Uk(n))), the modi�ed algorithm D �rst obtains x F (1n), just as the basicversion. Next, using a sample of size poly(n="(n)), it approximates pU (x) def=Pr[T (x;A(x; U�(n)) = 1] and pG(x) def= Pr[T (x;A(x;G0(Uk(n))) = 1] such that eachprobability is approximated to within a deviation of "(n)=8 with negligible errorprobability (say, exp(�n)). (Note that, so far, the actions of D only depend on thelength of its input r, which determines n.)7 If these approximations indicate thatpU (x) � pG(x) (equiv., that �A;T (x) � 0) then D outputs T (x;A(x; r0)) else itoutputs 1�T (x;A(x; r0)), where r0 is the �(jxj)-bit long pre�x of r and we assumewithout loss of generality that the output of T is in f0; 1g.The analysis of the modi�ed distinguisher D is based on the fact that if theapproximations yield a correct decision regarding the relation between pU (x) andpG(x), then the contribution of x to the distinguishing gap of D is jpU (x)�pG(x)j.8We also note that if jpU (x) � pG(x)j > "(n)=4, then with overwhelmingly highprobability (i.e., 1 � exp(�n)) the approximation of pU (x) � pG(x) maintains thesign of pU (x)�pG(x) (because each of the two quantities is approximated to withinan additive error of "(n)=8). Finally, we note that if jpU (x)�pG(x)j � "(n)=4 thenwe may often err regarding the sign of pU (x) � pG(x) but the damage caused (tothe distinguishing gap of D) by this error is at most 2jpU (x) � pG(x)j � "(n)=2.Combining all these observations, we get:Pr[D(U`(k(n)))=1jF (1n)=x] � Pr[D(G(Uk(n)))=1jF (1n)=x]7Speci�cally, the approximation to pU (x) (resp., pG(x)) is obtained by generating a sample ofU�(n) (resp., G0(Uk(n))) and invoking the algorithms A and T ; that is, given a sample r1; :::; rtof U�(n) (resp., G0(Uk(n))), where t = O(n="(n)2), we approximate pU (x) (resp., pG(x)) byjfi2 [t] : T (x;A(x; ri)=1gj=t.8Indeed, if pU (x) � pG(x) then the contribution is pU (x)� pG(x) = jpU(x)� pG(x)j, whereasif pU(x) < pG(x) then the contribution is (1 � pU (x))� (1� pG(x)) = �(pU (x)� pG(x)), whichalso equals jpU(x)� pG(x)j.

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 323� jpU (x)� pG(x)j � �(x); (8.5)where �(x) = "(n)=2 if jpU (x) � pG(x)j � "(n)=4 and �(x) = exp(�n) otherwise.(Indeed, �(x) represents the expected damage due to an error in determining thesign of pU (x)�pG(x), where "(n)=2 upper-bounds the damage caused (by a wrongdecision) in the case that jpU (x)�pG(x)j � "(n)=4 and exp(�n) upper-bounds theprobability of a wrong decision in the case that jpU (x) � pG(x)j > "(n)=4.) Thus,Pr[D(U`(k(n)))= 1] � Pr[D(G(Uk(n))) =1] is lower-bounded by the expectation ofEq. (8.5), which equals E[j�A;T (F (1n))j]�E[�(F (1n))]. Combining the hypothesisthat E[j�A;T (F (1n))j] > "(n) and the fact that maxx2f0;1gnf�(x)g � "(n)=2, weinfer that Pr[D(U`(k(n))) = 1] � Pr[D(G(Uk(n))) = 1] > "(n)=2. Recalling thatD runs in time poly(n="(n)), this contradicts the pseudorandomness of G. Theproposition follows.Conclusion. Although the foregoing refers to standard probabilistic polynomial-time algorithms, a similar construction and analysis applied to any e�cient ran-domized process (i.e., any e�cient multi-party computation). Any such processpreserves its behavior when replacing its perfect source of randomness (postulatedin its analysis) by a pseudorandom sequence (which may be used in the implemen-tation). Thus, given a pseudorandom generator with a large stretch function, onecan considerably reduce the randomness complexity of any e�cient application.8.2.3 Computational IndistinguishabilityIn this section we spell-out (and study) the de�nition of computational indistin-guishability that underlies De�nition 8.1.8.2.3.1 The general formulationThe (general formulation of the) de�nition of computational indistinguishabilityrefers to arbitrary probability ensembles. Here a probability ensemble is an in�nitesequence of random variables fZngn2N such that each Zn ranges over strings oflength that is polynomially related to n (i.e., there exists a polynomial p such thatfor every n it holds that jZnj � p(n) and p(jZnj) � n). We say that fXngn2N andfYngn2N are computationally indistinguishable if for every feasible algorithm A thedi�erence dA(n) def= jPr[A(Xn) = 1] � Pr[A(Yn) = 1]j is a negligible function in n.That is:De�nition 8.4 (computational indistinguishability): The probability ensemblesfXngn2N and fYngn2N are computationally indistinguishable if for every probabilis-tic polynomial-time algorithm D, every positive polynomial p, and all su�cientlylarge n, jPr[D(Xn)=1]� Pr[D(Yn)=1]j < 1p(n) (8.6)where the probabilities are taken over the relevant distribution (i.e., either Xn orYn) and over the internal coin tosses of algorithm D. The l.h.s. of Eq. (8.6), when

324 CHAPTER 8. PSEUDORANDOM GENERATORSviewed as a function of n, is often called the distinguishing gap ofD, where fXngn2Nand fYngn2N are understood from the context.We can think of D as representing somebody who wishes to distinguish two distri-butions (based on a given sample drawn from one of the distributions), and thinkof the output \1" as representing D's verdict that the sample was drawn accordingto the �rst distribution. Saying that the two distributions are computationally in-distinguishable means that if D is a feasible procedure then its verdict is not reallymeaningful (because the verdict is almost as often 1 when the sample is drawn fromthe �rst distribution as when the sample is drawn from the second distribution).We comment that the absolute value in Eq. (8.6) can be omitted without a�ectingthe de�nition (see Exercise 8.3), and we will often do so without warning.In De�nition 8.1, we required that the probability ensembles fG(Uk)gk2N andfU`(k)gk2N be computationally indistinguishable. Indeed, an important specialcase of De�nition 8.4 is when one ensemble is uniform, and in such a case we callthe other ensemble pseudorandom.8.2.3.2 Relation to statistical closenessTwo probability ensembles, fXngn2N and fYngn2N, are said to be statistically close(or statistically indistinguishable) if for every positive polynomial p and all su�cientlarge n the variation distance between Xn and Yn (i.e., 12Pz jPr[Xn=z]�Pr[Yn=z]j) is bounded above by 1=p(n). Clearly, any two probability ensembles that arestatistically close are computationally indistinguishable. Needless to say, this isa trivial case of computational indistinguishability, which is due to informationtheoretic reasons. In contrast, we shall be interested in non-trivial cases (of com-putational indistinguishability), which correspond to probability ensembles thatare statistically far apart.Indeed, as noted in Section 8.1, there exist probability ensembles that are sta-tistically far apart and yet are computationally indistinguishable (see Exercise 8.1).However, at least one of the probability ensembles in Exercise 8.1 is not polynomial-time constructible.9 We shall be much more interested in non-trivial cases of com-putational indistinguishability in which both ensembles are polynomial-time con-structible. An important example is provided by the de�nition of pseudorandomgenerators (see Exercise 8.7). As we shall see (in Theorem 8.11), the existenceof one-way functions implies the existence of pseudorandom generators, which inturn implies the existence of polynomial-time constructible probability ensemblesthat are statistically far apart and yet are computationally indistinguishable. Wemention that this su�cient condition is also necessary (see Exercise 8.9).8.2.3.3 Indistinguishability by Multiple SamplesThe de�nition of computational indistinguishability (i.e., De�nition 8.4) refers todistinguishers that obtain a single sample from one of the two relevant probability9We say that fZngn2N is polynomial-time constructible if there exists a polynomial-timealgorithm S such that S(1n) and Zn are identically distributed.

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 325ensembles (i.e., fXngn2N and fYngn2N). A very natural generalization of De�ni-tion 8.4 refers to distinguishers that obtain several independent samples from suchan ensemble.De�nition 8.5 (indistinguishability by multiple samples): Let s :N!N be polynomially-bounded. Two probability ensembles, fXngn2N and fYngn2N, are computationallyindistinguishable by s(�) samples if for every probabilistic polynomial-time algorithm,D, every positive polynomial p(�), and all su�ciently large n's���Pr hD(X(1)n ; :::; X(s(n))n)=1i� Pr hD(Y (1)n ; :::; Y (s(n))n)=1i��� < 1p(n)where X(1)n through X(s(n))n and Y (1)n through Y (s(n))n are independent random vari-ables such that each X(i)n is identical to Xn and each Y (i)n is identical to Yn.It turns out that in the most interesting cases, computational indistinguishabilityby a single sample implies computational indistinguishability by any polynomialnumber of samples. One such case is the case of polynomial-time constructibleensembles. We say that the ensemble fZngn2N is polynomial-time constructible ifthere exists a polynomial-time algorithm S such that S(1n) and Zn are identicallydistributed.Proposition 8.6 Suppose that X def= fXngn2N and Y def= fYngn2N are both polynomial-time constructible, and s be a polynomial. Then, X and Y are computationallyindistinguishable by a single sample if and only if they are computationally indis-tinguishable by s(�) samples.Clearly, for every polynomial s, computational indistinguishability by s(�) samplesimplies computational indistinguishability by a single sample (see Exercise 8.5).We now prove that, for e�ciently constructible ensembles, indistinguishability by asingle sample implies indistinguishability by multiple samples.10 The proof providesa simple demonstration of a central proof technique, known as the hybrid technique.Proof Sketch:11 Again, the proof uses the counter-positive, which in such settingsis called a reducibility argument (see Section 7.1.2 onwards). Speci�cally, we showthat the existence of an e�cient algorithm that distinguishes the ensembles X andY using several samples, implies the existence of an e�cient algorithm that distin-guishes the ensembles X and Y using a single sample. The implication is provenusing the following argument, which will be latter called a \hybrid argument".To prove that a sequence of s(n) samples drawn independently from Xn isindistinguishable from a sequence of s(n) samples drawn independently from Yn,we consider hybrid sequences such that the ith hybrid consists of i samples of Xnfollowed by s(n)� i samples of Yn. The \homogeneous" sequences (which we wish10The requirement that both ensembles are polynomial-time constructible is essential; see,Exercise 8.10.11For more details see [90, Sec. 3.2.3].

326 CHAPTER 8. PSEUDORANDOM GENERATORSto prove to be computational indistinguishable) are the extreme hybrids (i.e., the�rst and last hybrids). The key observation is that distinguishing the extremehybrids (towards the contradiction hypothesis) implies distinguishing neighboringhybrids, which in turn yields a procedure for distinguishing single samples of thetwo original distributions (contradicting the hypothesis that these two distributionsare indistinguishable by a single sample). Details follow.Suppose, towards the contradiction, that D distinguishes s(n) samples of Xnfrom s(n) samples of Yn, with a distinguishing gap of �(n). Denoting the ithhybrid by H in (i.e., H in = (X(1)n ; :::; X(i)n ; Y (i+1)n ; :::; Y (s(n))n)), this means that Ddistinguishes the extreme hybrids (i.e., H0n and Hs(n)n) with gap �(n). It followsthat D distinguishes a random pair of neighboring hybrids (i.e., D distinguishesH in from H i+1n , for a randomly selected i) with gap at least �(n)=s(n): the reasonbeing that Ei2f0;:::;s(n)�1g �Pr[D(H in) = 1]� Pr[D(H i+1n) = 1]�= 1s(n) � s(n)�1Xi=0 �Pr[D(H in) = 1]� Pr[D(H i+1n) = 1]� (8.7)= 1s(n) � �Pr[D(H0n) = 1]� Pr[D(Hs(n)n) = 1]� = �(n)s(n) :The key step in the argument is transforming the distinguishability of neighbor-ing hybrids into distinguishability of single samples of the original ensembles (thusderiving a contradiction). Indeed, using D, we obtain a distinguisher D0 of singlesamples: Given a single sample, algorithm D0 selects i 2 f0; :::; s(n) � 1g at ran-dom, generates i samples from the �rst distribution and s(n)� i� 1 samples fromthe second distribution, invokes D with the s(n)-samples sequence obtained whenplacing the input sample in location i+1, and answers whatever D does. That is,on input z and when selecting the index i, algorithm D0 invokes D on a samplefrom the distribution (X(1)n ; :::; X(i)n ; z; Y (i+2)n ; :::; Y (s(n))n). Thus, the constructionof D0 relies on the hypothesis that both probability ensembles are polynomial-timeconstructible. The analysis of D0 is based on the following two facts:1. When invoked on an input that is distributed according to Xn and selectingthe index i 2 f0; :::; s(n) � 1g, algorithm D0 behaves like D(H i+1n), because(X(1)n ; :::; X(i)n ; Xn; Y (i+2)n ; :::; Y (s(n))n) � H i+1n .2. When invoked on an input that is distributed according to Yn and selectingthe index i 2 f0; :::; s(n) � 1g, algorithm D0 behaves like D(H in), because(X(1)n ; :::; X(i)n ; Yn; Y (i+2)n ; :::; Y (s(n))n) � H in.Thus, the distinguishing gap of D0 (between Yn and Xn) is captured by Eq. (8.7),and the claim follows (because assuming towards the contradiction that the propo-sition's conclusion does not hold leads to a contradiction of the proposition's hy-pothesis).

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 327The hybrid technique { a digest: The hybrid technique constitutes a specialtype of a \reducibility argument" in which the computational indistinguishabilityof complex ensembles is proved using the computational indistinguishability of basicensembles. The actual reduction is in the other direction: e�ciently distinguishingthe basic ensembles is reduced to e�ciently distinguishing the complex ensembles,and hybrid distributions are used in the reduction in an essential way. The followingthree properties of the construction of the hybrids play an important role in theargument:1. The complex ensembles collide with the extreme hybrids. This property isessential because our aim is proving something that relates to the complexensembles (i.e., their indistinguishability), while the argument itself refers tothe extreme hybrids.In the proof of Proposition 8.6 the extreme hybrids (i.e., Hs(n)n andH0n) collidewith the complex ensembles that represent s(n)-ary sequences of samples ofone of the basic ensembles.2. The basic ensemble are e�ciently mapped to neighboring hybrids. This prop-erty is essential because our starting hypothesis relates to the basic ensem-bles (i.e., their indistinguishability), while the argument itself refers directlyto the neighboring hybrids. Thus, we need to translate our knowledge (i.e.,computational indistinguishability) of the basic ensembles to knowledge (i.e.,computational indistinguishability) of any pair of neighboring hybrids. Typ-ically, this is done by e�ciently transforming strings in the range of a basicdistribution into strings in the range of a hybrid such that the transforma-tion maps the �rst basic distribution to one hybrid and the second basicdistribution to the neighboring hybrid.In the proof of Proposition 8.6 the basic ensembles (i.e., Xn and Yn) weree�ciently transformed into neighboring hybrids (i.e., H i+1n and H in, respec-tively). Recall that, in this case, the e�ciency of this transformation reliedon the hypothesis that both the basic ensembles are polynomial-time con-structible.3. The number of hybrids is small (i.e., polynomial). This property is essentialin order to deduce the computational indistinguishability of extreme hybridsfrom the computational indistinguishability of each pair of neighboring hy-brids. Typically, the \distinguishability gap" established in the argumentlosses a factor that is proportional to the number of hybrids. This is due tothe fact that the gap between the extreme hybrids is upper-bounded by thesum of the gaps between neighboring hybrids.In the proof of Proposition 8.6 the number of hybrids equals s(n) and theaforementioned loss is reected in Eq. (8.7).We remark that in the course of an hybrid argument, a distinguishing algorithmreferring to the complex ensembles is being analyzed and even invoked on arbi-trary hybrids. The reader may be annoyed of the fact that the algorithm \was

328 CHAPTER 8. PSEUDORANDOM GENERATORSnot designed to work on such hybrids" (but rather only on the extreme hybrids).However, an algorithm is an algorithm: once it exists we can invoke it on inputs ofour choice, and analyze its performance on arbitrary input distributions.8.2.4 Amplifying the stretch functionRecall that the de�nition of pseudorandom generators (i.e., De�nition 8.1) makesa minimal requirement regarding their stretch; that is, it is only required thatthe length of the output of such generators is longer than their input. Needlessto say, we seek pseudorandom generators with a much more signi�cant stretch,�rstly because the stretch determines the saving in randomness obtained via Con-struction 8.2. It turns out (see Construction 8.7) that pseudorandom generatorsof any stretch function (and in particular of minimal stretch `1(k) def= k + 1) canbe easily converted into pseudorandom generators of any desired (polynomiallybounded) stretch function, `. (On the other hand, since pseudorandom generatorsare required (in De�nition 8.1) to run in polynomial time, their stretch must bepolynomially bounded.)Construction 8.7 Let G1 be a pseudorandom generator with stretch function`1(k) = k+1, and ` be any polynomially bounded stretch function that is polynomial-time computable. Let G(s) def= �1�2 � � ��`(jsj) (8.8)where x0 = s and xi�i = G1(xi�1), for i = 1; :::; `(jsj). (That is, �i is the last bitof G1(xi�1) and xi is the jsj-bit long pre�x of G1(xi�1).)Needless to say, G is polynomial-time computable and has stretch `. An alternativeconstruction is considered in Exercise 8.11.
σ

i

Hk
i

σ

σ

x

σ

σ

x

i+1

l

l

l
. . .

. . .

σ σ
1 i-1
. . .

Gi

σ

x

i

G11 i+1

i+1

Figure 8.2: Analysis of stretch ampli�cation { the ith hybrid.Proposition 8.8 Let G1 and G be as in Construction 8.7. Then G constitutes apseudorandom generator.

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 329Proof Sketch:12 The proposition is proven using the hybrid technique, presentedand discussed in Section 8.2.3. Here (for i = 0; :::; `(k)) we consider the hybriddistributions H ik, depicted in Figure 8.2 and de�ned byH ik def= U (1)i � g`(k)�i(U (2)k);where � denotes the concatenation of strings, gj(x) denotes the j-bit long pre�x ofG(x), and U (1)i and U (2)k are independent uniform distributions (over f0; 1gi andf0; 1gk, respectively). The extreme hybrids (i.e., H0k and Hkk) correspond to G(Uk)and U`(k), whereas distinguishability of neighboring hybrids can be worked intodistinguishability of G1(Uk) and Uk+1. Details follow.We shall focus on proving the indistinguishability of neighboring hybrids.13Suppose, towards the contradiction, that algorithm D distinguishes H ik from H i+1k .We �rst take a closer look at these hybrids. Note that, for j � 1, it holds thatgj(s) � (�; gj�1(x)), where x� = G1(s). Denoting the �rst jxj�1 bits of x by F (x)and the last bit of x by L(x), we may write gj(s) � (L(G1(s)); gj�1(F (G1(s))))and (U (1)1 ; U (2)k) � (L(Uk+1); F (Uk+1)). It follows thatH ik = U (1)i � g`(k)�i(U (2)k)� (U (1)i ; L(G1(U (2)k)); g(`(k)�i)�1(F (G1(U (2)k))))H i+1k = U (10)i+1 � g`(k)�i�1(U (2)k)� (U (1)i ; L(U (20)k+1); g(`(k)�i)�1(F (U (20)k+1))):Now, combining the generation of U (1)i and the evaluation of g`(k)�i�1 with the dis-tinguisherD, we distinguish the distribution (F (G1(U (2)k)); L(G1(U (2)k))) � G1(Uk)from the distribution (F (U (20)k+1); L(U (20)k+1)) � Uk+1, in contradiction to the pseu-dorandomness of G1. Speci�cally, on input x 2 f0; 1gk+1, we uniformly selectr 2 f0; 1gi and output D(r � L(x) � g`(k)�i�1(F (x))). The analysis of the resultingdistinguisher is based on the following two facts:1. When given an input that is distributed according to G1(Uk), we invokealgorithm D on input (U 0i ; L(G1(Uk)); g`(k)�i�1(F (G1(Uk)))) � H ik.2. When given an input that is distributed according to Uk+1, we invoke algo-rithm D on input (U 0i ; L(Uk+1); g`(k)�i�1(F (Uk+1))) � H i+1k .Thus, the probability that we output 1 on input G1(Uk) (resp., Uk+1) equalsPr[D(H ik) = 1] (resp., Pr[D(H i+1k) = 1]). Hence the distinguishability of neigh-boring hybrids implies the distinguishability of G1(Uk) and Uk+1.12For more details see [90, Sec. 3.3.3].13As usual (when the hybrid technique is used), the distinguishability of the extreme hybrids(which collide with G(Uk) and U`(k), respectively) implies the distinguishability of a random pairof neighboring hybrids. Thus, the following analysis will be applied to a random i (in f0; :::; k�1g),and the full analysis will refer to an expression analogous to Eq. (8.7).

330 CHAPTER 8. PSEUDORANDOM GENERATORSConclusion. In view of the foregoing, when talking about the mere existence ofpseudorandom generators, in the sense of De�nition 8.1, we may ignore the speci�cstretch function.8.2.5 ConstructionsThe constructions surveyed in this section \transform" computational di�culty, inthe form of one-way functions, into generators of pseudorandomness. Recall thata polynomial-time computable function is called one-way if any e�cient algorithmcan invert it only with negligible success probability (see De�nition 7.1 and Sec-tion 7.1 for further discussion). We will actually use hard-core predicates of suchfunctions, and refer the reader to their treatment in Section 7.1.3. Loosely speak-ing, a polynomial-time computable predicate b is called a hard-core of a function fif any e�cient algorithm, given f(x), can guess b(x) with success probability thatis only negligibly higher than half. Recall that (by Theorem 7.7), for any one-wayfunction f , the inner-product mod 2 of x and r is a hard-core of f 0(x; r) = (f(x); r).8.2.5.1 A simple constructionIntuitively, the de�nition of a hard-core predicate implies a potentially interestingcase of computational indistinguishability. Speci�cally, as will be shown implicitlyin Proposition 8.9 and explicitly in Exercise 8.8, if b is a hard-core of the functionf , then the ensemble ff(Un) � b(Un)gn2N is computationally indistinguishable fromthe ensemble ff(Un)�U 01gn2N. Furthermore, if f is 1-1 then the foregoing ensemblesare statistically far apart, and thus constitute a non-trivial case of computationalindistinguishability. If f is also polynomial-time computable and length-preserving,then this yields a construction of a pseudorandom generator.Proposition 8.9 (A simple construction of pseudorandom generators): Let b bea hard-core predicate of a polynomial-time computable 1-1 and length-preservingfunction f . Then, G(s) def= f(s) � b(s) is a pseudorandom generator.Proof Sketch:14 Considering a uniformly distributed s 2 f0; 1gn, we �rst notethat the n-bit long pre�x of G(s) is uniformly distributed in f0; 1gn, because finduces a permutation on the set f0; 1gn. Hence, the proof boils down to showingthat distinguishing f(s) � b(s) from f(s) ��, where � is a random bit, yields contra-diction to the hypothesis that b is a hard-core of f (i.e., that b(s) is unpredictablefrom f(s)). Intuitively, the reason is that such a hypothetical distinguisher alsodistinguishes f(s) � b(s) from f(s) � b(s), where � = 1 � �, whereas distinguishingf(s) � b(s) from f(s) � b(s) yields an algorithm for predicting b(s) based on f(s).Details follow. We start with any potential distinguisher D, and let�(k) def= Pr[D(G(Uk)) = 1]� Pr[D(Uk+1) = 1]:We may assume, without loss of generality, that �(k) is non-negative (for in�nitelymany k's). Observing that G(Uk) = f(Uk) � b(Uk) and that Uk+1 is distributed14For more details see [90, Sec. 3.3.4].

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 331identically to a random variable that equals f(Uk)b(Uk) with probability 1=2 andf(Uk)b(Uk) otherwise, we havePr[D(f(Uk)b(Uk)) = 1]� Pr[D(f(Uk)b(Uk)) = 1] = 2�(k):The key observation is that D e�ectively distinguishes (with gap 2�(k)) the casethat the last bit is b(Uk) from the case that the last bit is b(Uk). This distinguishingability can be transformed to predicting the value of b(Uk), when given the valuef(Uk). Indeed, consider an algorithm A that, on input y, uniformly selects � 2f0; 1g, invokes D(y�), and outputs � if D(y�) = 1 and � otherwise. ThenPr[A(f(Uk)) = b(Uk)]= Pr[D(f(Uk) � �) = 1 ^ � = b(Uk)] + Pr[D(f(Uk) � �) = 0 ^ � = b(Uk)]= 12 � �Pr[D(f(Uk) � b(Uk)) = 1] + �1 � Pr[D(f(Uk) � b(Uk)) = 1]��which equals (1 + 2�(k))=2. This contradicts the hypothesis that b is a hard-coreof f , and the proposition follows.Combining Theorem 7.7, Proposition 8.9 and Construction 8.7, we obtain the fol-lowing corollary.Theorem 8.10 (A su�cient condition for the existence of pseudorandom gener-ators): If there exists 1-1 and length-preserving one-way function then, for everypolynomially bounded stretch function `, there exists a pseudorandom generator ofstretch `.Digest. The main part of the proof of Proposition 8.9 is showing that the (nextbit) unpredictability of G(Uk) implies the pseudorandomness of G(Uk). The factthat (next bit) unpredictability and pseudorandomness are equivalent, in general,is proven explicitly in the alternative proof of Theorem 8.10 provided next.8.2.5.2 An alternative presentationLet us take a closer look at the pseudorandom generators obtained by combiningConstruction 8.7 and Proposition 8.9. For a stretch function ` : N!N , a 1-1one-way function f with a hard-core b, we obtainG(s) def= �1�2 � � ��`(jsj) ; (8.9)where x0 = s and xi�i = f(xi�1)b(xi�1) for i = 1; :::; `(jsj). Denoting by f i(x)the value of f iterated i times on x (i.e., f i(x) = f i�1(f(x)) and f0(x) = x), werewrite Eq. (8.9) as followsG(s) def= b(s) � b(f(s)) � � � b(f `(jsj)�1(s)) : (8.10)

332 CHAPTER 8. PSEUDORANDOM GENERATORSThe pseudorandomness of G is established in two steps, using the notion of (nextbit) unpredictability. An ensemble fZkgk2N is called unpredictable if any probabilis-tic polynomial-time machine obtaining a (random)15 pre�x of Zk fails to predictthe next bit of Zk with probability non-negligibly higher than 1=2. Speci�cally, weestablish the following two results.1. A general result asserting that an ensemble is pseudorandom if and only ifit is unpredictable. Recall that an ensemble is pseudorandom if it is compu-tationally indistinguishable from a uniform distribution (over bit strings ofadequate length).Clearly, pseudorandomness implies polynomial-time unpredictability, but herewe actually need the other direction, which is less obvious. Still, using ahybrid argument, one can show that (next-bit) unpredictability implies in-distinguishability from the uniform ensemble. For details see Exercise 8.12.2. A speci�c result asserting that the ensemble fG(Uk)gk2N is unpredictablefrom right to left. Equivalently, G0(Un) is polynomial-time unpredictable(from left to right (as usual)), where G0(s) = b(f `(jsj)�1(s)) � � � b(f(s)) � b(s)is the reverse of G(s).Using the fact that f induces a permutation over f0; 1gn, observe that the (j+1)-bit long pre�x of G0(Uk) is distributed identically to b(f j(Uk)) � � � b(f(Uk))�b(Uk). Thus, an algorithm that predicts the j + 1st bit of G0(Un) based onthe j-bit long pre�x of G0(Un) yields an algorithm that guesses b(Un) basedon f(Un). For details see Exercise 8.14.Needless to say, G is a pseudorandom generator if and only if G0 is a pseudorandomgenerator (see Exercise 8.13). We mention that Eq. (8.10) is often referred to asthe Blum-Micali Construction.168.2.5.3 A general condition for the existence of pseudorandom gener-atorsRecall that given any one-way 1-1 length-preserving function, we can easily con-struct a pseudorandom generator. Actually, the 1-1 (and length-preserving) re-quirement may be dropped, but the currently known construction { for the generalcase { is quite complex.Theorem 8.11 (On the existence of pseudorandom generators): Pseudorandomgenerators exist if and only if one-way functions exist.To show that the existence of pseudorandom generators imply the existence ofone-way functions, consider a pseudorandom generator G with stretch function15For simplicity, we de�ne unpredictability as referring to pre�xes of a random length (dis-tributed uniformly in f0; :::; jZkj�1g). A more general de�nition allows the predictor to determinethe length of the pre�x that it reads on the y. This seemingly stronger notion of unpredictabilityis actually equivalent to the one we use, because both notions are equivalent to pseudorandomness.16Given the popularity of the term, we deviate from our convention of not specifying credits inthe main text. Indeed, this construction originates in [39].

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 333`(k) = 2k. For x; y 2 f0; 1gk, de�ne f(x; y) def= G(x), and so f is polynomial-timecomputable (and length-preserving). It must be that f is one-way, or else one candistinguish G(Uk) from U2k by trying to invert and checking the result: invertingf on the distribution f(U2k) corresponds to operating on the distribution G(Uk),whereas the probability that U2k has inverse under f is negligible.The interesting direction of the proof of Theorem 8.11 is the construction ofpseudorandom generators based on any one-way function. Since the known proof isquite complex, we only provide a very rough overview of some of the ideas involved.We mention that these ideas make extensive use of adequate hashing functions (e.g.,pairwise independent hashing functions, see Appendix D.2).We �rst note that, in general (when f may not be 1-1), the ensemble f(Uk)may not be pseudorandom, and so Construction 8.9 (i.e., G(s) = f(s)b(s), whereb is a hard-core of f) cannot be used directly. One idea underlying the knownconstruction is hashing f(Uk) to an almost uniform string of length related to itsentropy, using adequate hashing functions.17 But \hashing f(Uk) down to lengthcomparable to the entropy" means shrinking the length of the output to, say,k0 < k. This foils the entire point of stretching the k-bit seed. Thus, a second ideaunderlying the construction is compensating for the loss of k�k0 bits by extractingthese many bits from the seed Uk itself. This is done by hashing Uk, and the pointis that the (k�k0)-bit long hash value does not make the inverting task any easier.Implementing these ideas turns out to be more di�cult than it seems, and indeedan alternative construction would be most appreciated.8.2.6 Non-uniformly strong pseudorandom generatorsRecall that we said that truly random sequences can be replaced by pseudorandomsequences without a�ecting any e�cient computation that uses these sequences.The speci�c formulation of this assertion, presented in Proposition 8.3, refers torandomized algorithms that take a \primary input" and use a secondary \randominput" in their computation. Proposition 8.3 asserts that it is infeasible to �nda primary input for which the replacement of a truly random secondary inputby a pseudorandom one a�ects the �nal output of the algorithm in a noticeableway. This, however, does not mean that such primary inputs do not exist (butrather that they are hard to �nd). Consequently, Proposition 8.3 falls short ofyielding a (worst-case)18 \derandomization" of a complexity class such as BPP.17This is done after guaranteeing that the logarithm of the probability mass of a value of f(Uk)is typically close to the entropy of f(Uk). Speci�cally, given an arbitrary one-way function f 0,one �rst constructs f by taking a \direct product" of su�ciently many copies of f 0. For example,for x1; :::; xk2=3 2 f0; 1gk1=3 , we let f(x1; :::; xk2=3) def= f 0(x1); :::; f 0(xk2=3).18Indeed, Proposition 8.3 yields an average-case derandomization of BPP . In particular, forevery polynomial-time constructible ensemble fXngn2N, every Boolean function f 2 BPP , andevery " > 0, there exists a randomized algorithm A0 of randomness complexity r"(n) = n" suchthat the probability that A0(Xn) 6= f(Xn) is negligible. A corresponding deterministic (exp(r")-time) algorithm A00 can be obtained, as in the proof of Theorem 8.13, and again the probabilitythat A00(Xn) 6= f(Xn) is negligible, where here the probability is taken only over the distributionof the primary input (represented by Xn). In contrast, worst-case derandomization, as capturedby the assertion BPP � Dtime(2r"), requires that the probability that A00(Xn) 6= f(Xn) is zero.

334 CHAPTER 8. PSEUDORANDOM GENERATORSTo obtain such results, we need a stronger notion of pseudorandom generators,presented next. Speci�cally, we need pseudorandom generators that can fool allpolynomial-size circuits (cf. x1.2.4.1), and not merely all probabilistic polynomial-time algorithms.19De�nition 8.12 (strong pseudorandom generator { fooling circuits): A determin-istic polynomial-time algorithm G is called a non-uniformly strong pseudorandomgenerator if there exists a stretch function, ` : N!N , such that for any familyfCkgk2N of polynomial-size circuits, for any positive polynomial p, and for all suf-�ciently large k'sjPr[Ck(G(Uk)) = 1] � Pr[Ck(U`(k)) = 1] j < 1p(k)An alternative formulation is obtained by referring to polynomial-time machinesthat take advice (Section 3.1.2). Using such pseudorandom generators, we can\derandomize" BPP.Theorem 8.13 (derandomization of BPP): If there exists non-uniformly strongpseudorandom generators then BPP is contained in \">0Dtime(t"), where t"(n) def=2n" .Proof Sketch: For any S 2 BPP and any " > 0, we let A denote the decisionprocedure for S and G denote a non-uniformly strong pseudorandom generatorstretching n"-bit long seeds into poly(n)-long sequences (to be used by A as sec-ondary input when processing a primary input of length n). Combining A and G,we obtain an algorithm A0 = AG (as in Construction 8.2). We claim that A and A0may signi�cantly di�er in their (expected probabilistic) decision on at most �nitelymany inputs, because otherwise we can use these inputs (together with A) to derivea (non-uniform) family of polynomial-size circuits that distinguishes G(Un") andUpoly(n), contradicting the the hypothesis regarding G. Speci�cally, an input x onwhich A and A0 di�er signi�cantly yields a circuit Cx that distinguishes G(Ujxj")and Upoly(jxj), by letting Cx(r) = A(x; r).20 Incorporating the �nitely many \bad"inputs into A0, we derive a probabilistic polynomial-time algorithm that decides Swhile using randomness complexity n".Finally, emulating A0 on each of the 2n" possible random sequences (i.e., seedsto G) and ruling by majority, we obtain a deterministic algorithm A00 as required.That is, let A0(x; r) denote the output of algorithm A0 on input x when using coinsr 2 f0; 1gn". Then A00(x) invokes A0(x; r) on every r 2 f0; 1gn" , and outputs 1 ifand only if the majority of these 2n" invocations have returned 1.19Needless to say, strong pseudorandom generators in the sense of De�nition 8.12 satisfy thebasic de�nition of a pseudorandom generator (i.e., De�nition 8.1); see Exercise 8.15. We com-ment that the underlying notion of computational indistinguishability (by circuits) is strictlystronger than De�nition 8.4, and that it is invariant under multiple samples (regardless of theconstructibility of the underlying ensembles); for details, see Exercise 8.16.20Indeed, in terms of the proof of Proposition 8.3, the �nder F consists of a non-uniform familyof polynomial-size circuits that print the \problematic" primary inputs that are hard-wired inthem, and the corresponding distinguisher D is thus also non-uniform.

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 335We comment that stronger results regarding derandomization of BPP are pre-sented in Section 8.3.On constructing non-uniformly strong pseudorandom generators. Non-uniformly strong pseudorandom generators (as in De�nition 8.12) can be con-structed using any one-way function that is hard to invert by any non-uniformfamily of polynomial-size circuits (as in De�nition 7.3), rather than by probabilis-tic polynomial-time machines. In fact, the construction in this case is simpler thanthe one employed in the uniform case (i.e., the construction underlying the proofof Theorem 8.11).8.2.7 Stronger notions and conceptual reectionsWe �rst mention two stronger variants on the de�nition of pseudorandom genera-tors, and conclude this section by highlighting various conceptual issues.8.2.7.1 Stronger (uniform-complexity) notionsThe following two notions represent strengthening of the standard de�nition ofpseudorandom generators (as presented in De�nition 8.1). Non-uniform versionsof these notions (strengthening De�nition 8.12) are also of interest.Fooling stronger distinguishers. One strengthening of De�nition 8.1 amountsto explicitly quantifying the resources (and success gaps) of distinguishers. Wechoose to bound these quantities as a function of the length of the seed (i.e.,k), rather than as a function of the length of the string that is being examined(i.e., `(k)). For a class of time bounds T (e.g., T = ft(k) def= 2cpkgc2N) and aclass of noticeable functions (e.g., F = ff(k) def= 1=t(k) : t 2 T g), we say that apseudorandom generator, G, is (T ;F)-strong if for any probabilistic algorithm Dhaving running-time bounded by a function in T (applied to k)21, for any functionf in F , and for all su�ciently large k's, it holds thatjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k):An analogous strengthening may be applied to the de�nition of one-way functions.Doing so reveals the weakness of the known construction that underlies the proofof Theorem 8.11: It only implies that for some " > 0 (" = 1=8 will do), for anyT and F , the existence of \(T ;F)-strong one-way functions" implies the existenceof (T 0;F 0)-strong pseudorandom generators, where T 0 = ft0(k) def= t(k")=poly(k) :t 2 T g and F 0 = ff 0(k) def= poly(k) � f(k") : f 2 Fg. What we would like tohave is an analogous result with T 0 = ft0(k) def= t(
(k))=poly(k) : t 2 T g andF 0 = ff 0(k) def= poly(k) � f(
(k)) : f 2 Fg.21That is, when examining a sequence of length `(k) algorithm D makes at most t(k) steps,where t 2 T .

336 CHAPTER 8. PSEUDORANDOM GENERATORSPseudorandom Functions. Recall that pseudorandom generators allow to ef-�ciently generate long pseudorandom sequences from short random seeds. Pseu-dorandom functions (de�ned in Appendix C.3.3) are even more powerful: Theyallow e�cient direct access to a huge pseudorandom sequence, which is not evenfeasible to scan bit-by-bit. Speci�cally, based on a (random) k-bit long seed, theyallow direct access to a sequence of length 2k. Put in other words, pseudorandomfunctions are deterministic polynomial-time algorithms that map a k-bit long seeds and a k-bit long argument x to a value fs(x) such that, for a uniformly dis-tributed s 2 f0; 1gk, the function fs looks random to any poly(k)-time observerthat may query fs at arguments of its choice. Thus, pseudorandom functions canreplace truly random functions in any e�cient application (e.g., most notably incryptography). We mention that pseudorandom functions can be constructed fromany pseudorandom generator (see Theorem C.8), and that they found many appli-cations in cryptography (see Appendices C.3.3, C.5.2, and C.6.2). Pseudorandomfunctions were also used to derive negative results in computational learning the-ory [230] and in the study of circuit complexity (cf., Natural Proofs [188]).8.2.7.2 Conceptual reectionsWe highlight several conceptual aspects of the foregoing computational approachto randomness. Some of these aspects are common to other instantiation of thegeneral paradigm (esp., the one presented in Section 8.3).Behavioristic versus Ontological. The behavioristic nature of the computa-tional approach to randomness is best demonstrated by confronting this approachwith the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a stringis Kolmogorov-random if its length equals the length of the shortest program pro-ducing it. This shortest program may be considered the \true explanation" tothe phenomenon described by the string. A Kolmogorov-random string is thus astring that does not have a substantially simpler (i.e., shorter) explanation thanitself. Considering the simplest explanation of a phenomenon may be viewed as anontological approach. In contrast, considering the e�ect of phenomena on certaindevices (or observations), as underlying the de�nition of pseudorandomness, is abehavioristic approach. Furthermore, there exist probability distributions that arenot uniform (and are not even statistically close to a uniform distribution) and nev-ertheless are indistinguishable from a uniform distribution (by any e�cient device).Thus, distributions that are ontologically very di�erent, are considered equivalentby the behavioristic point of view taken in the de�nition of computational indistin-guishability.A relativistic view of randomness. We have de�ned pseudorandomness interms of its observer. Speci�cally, we have considered the class of e�cient (i.e.,polynomial-time) observers and de�ned as pseudorandom objects that look ran-dom to any observer in that class. In subsequent sections, we shall consider re-stricted classes of such observers (e.g., space-bounded polynomial-time observersand even very restricted observers that merely apply speci�c tests such as linear

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 337tests or hitting tests). Each such class of observers gives rise to a di�erent notionof pseudorandomness. Furthermore, the general paradigm (of pseudorandomness)explicitly aims at distributions that are not uniform and yet are considered as suchfrom the point of view of certain observers. Thus, our entire approach to pseu-dorandomness is relativistic and subjective (i.e., depending on the abilities of theobserver).Randomness and Computational Di�culty. Pseudorandomness and com-putational di�culty play dual roles: The general paradigm of pseudorandomnessrelies on the fact that placing computational restrictions on the observer gives riseto distributions that are not uniform and still cannot be distinguished from uni-form distributions. Thus, the pivot of the entire approach is the computationaldi�culty of distinguishing pseudorandom distributions from truly random ones.Furthermore, many of the constructions of pseudorandom generators rely either onconjectures or on facts regarding computational di�culty (i.e., that certain com-putations that are hard for certain classes). For example, one-way functions wereused to construct general-purpose pseudorandom generators (i.e., those workingin polynomial-time and fooling all polynomial-time observers). Analogously, aswe shall see in x8.3.3.1, the fact that parity function is hard for polynomial-sizeconstant-depth circuits can be used to generate (highly non-uniform) sequencesthat fool such circuits.Randomness and Predictability. The connection between pseudorandomnessand unpredictability (by e�cient procedures) plays an important role in the analysisof several constructions (cf. Sections 8.2.5 and 8.3.2). We wish to highlight theintuitive appeal of this connection.8.3 Derandomization of time-complexity classesLet us take a second look at the process of derandomization that underlies theproof of Theorem 8.13. First, a pseudorandom generator was used to shrinkthe randomness-complexity of a BPP-algorithm, and then derandomization wasachieved by scanning all possible seeds to this generator. A key observation re-garding this process is that there is no point in insisting that the pseudorandomgenerator runs in time that is polynomial in its seed length. Instead, it su�cesto require that the generator runs in time that is exponential in its seed length,because we are incurring such an overhead anyhow due to the scanning of all pos-sible seeds. Furthermore, in this context, the running-time of the generator maybe larger than the running time of the algorithm, which means that the genera-tor need only fool distinguishers that take less steps than the generator. Theseconsiderations motivate the following de�nition of canonical derandomizers.

338 CHAPTER 8. PSEUDORANDOM GENERATORS8.3.1 De�ning canonical derandomizersRecall that in order to \derandomize" a probabilistic polynomial-time algorithm A,we �rst obtain a functionally equivalent algorithm AG (as in Construction 8.2) thathas (signi�cantly) smaller randomness-complexity. Algorithm AG has to maintainA's input-output behavior on all (but �nitely many) inputs. Thus, the set of therelevant distinguishers (considered in the proof of Theorem 8.13) is the set of allpossible circuits obtained from A by hard-wiring any of the possible inputs. Such acircuit, denoted Cx, emulates the execution of algorithm A on input x, when usingthe circuit's input as the algorithm's internal coin tosses (i.e., Cx(r) = A(x; r)).Furthermore, the size of Cx is quadratic in the running-time of A on input x, andthe length of the input to Cx equals the running-time of A (on input x).22 Thus,the size of Cx is quadratic in the length of its own input, and the pseudorandomgenerator in use (i.e., G) needs to fool each such circuit. Recalling that we mayallow the generator to run in exponential-time (i.e., time that is exponential in thelength of its own input (i.e., the seed))23, we arrive at the following de�nition.De�nition 8.14 (pseudorandom generator for derandomizing BPtime(�))24: Let` :: N!N be a monotonically increasing function. A canonical derandomizer ofstretch ` is a deterministic algorithm G that satis�es the following two conditions.1. On input a k-bit long seed, G makes at most poly(2k � `(k)) steps and outputsa string of length `(k).2. For every circuit Dk of size `(k)2 it holds thatjPr[Dk(G(Uk)) = 1] � Pr[Dk(U`(k)) = 1] j < 16 : (8.11)The circuit Dk represents a potential distinguisher, which is given an `(k)-bit longstring (sampled either from G(Uk) or from U`(k)). When seeking to derandomize22Indeed, we assume that algorithm A is represented as a Turing machine and refer to thestandard emulation of Turing machines by circuits (as underlying the proof of Theorem 2.21).Thus, the aforementioned circuit Cx has size that is at most quadratic in the running-time of Aon input x, which in turn means that Cx has size that is at most quadratic in the length of itsown input. (In fact, the circuit size can be made almost-linear in the running-time of A, by usinga better emulation [179].) We note that many sources use the �ctitious convention by which thecircuit size equals the length of its input; this �ctitious convention can be justi�ed by consideringa (suitably) padded input.23Actually, in De�nition 8.14 we allow the generator to run in time poly(2k`(k)), rather thanin time poly(2k). This is done in order not to trivially rule out generators of super-exponentialstretch (i.e., `(k) = 2!(k)). However (see Exercise 8.18), the condition in Eq. (8.11) does not allowfor super-exponential stretch (or even for `(k) = !(2k)). Thus, in retrospect, the two formulationsare equivalent (because poly(2k`(k)) = poly(2k) for `(k) = 2O(k)).24Fixing a model of computation, we denote by BPtime(t) the class of decision problems that aresolvable by a randomized algorithm of time complexity t that has two-sided error 1=3. Using 1/6as the \threshold distinguishing gap" (in Eq. (8.11)) guarantees that if Pr[Dk(U`(k)) = 1] � 2=3(resp., Pr[Dk(U`(k)) = 1] � 1=3) then Pr[Dk(G(Uk)) = 1] > 1=2 (resp., Pr[Dk(G(Uk)) = 1] <1=2). As we shall see, this su�ces for a derandomization of BPtime(t) in time T , where T (n) =poly(2`�1(t(n)) � t(n)) (and we use a seek of length k = `�1(t(n))).

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 339an algorithm A of time-complexity t, the aforementioned `(k)-bit long string repre-sents a possible sequence of coin tosses of A, when invoked on a generic (primary)input of length n = t�1(`(k)). Thus, for any x 2 f0; 1gn, considering the circuitDk(r) = A(x; r), where jrj = t(n) = `(k), we note that Eq. (8.11) implies thatAG(x) = A(x;G(Uk)) maintains the majority vote of A(x) = A(x; U`(k)). On theother hand, the time-complexity of G implies that the straightforward deterministicemulation of AG(x) takes time 2k � (poly(2k � `(k))+ t(n)), which is upper-boundedby poly(2k � `(k)) = poly(2`�1(t(n)) � t(n)). This yields the following (conditional)derandomization result.Proposition 8.15 Let `; t : N!N be monotonically increasing functions and let`�1(t(n)) denote the smallest integer k such that `(k) � t(n). If there exists acanonical derandomizer of stretch ` then, for every time-constructible t ::N!N , itholds that BPtime(t) � Dtime(T), where T (n) = poly(2`�1(t(n)) � t(n)).Proof Sketch: Just mimic the proof of Theorem 8.13, which in turn uses Con-struction 8.2. (Recall that given any randomized algorithm A and generator G,Construction 8.2 yields an algorithm AG of randomness-complexity `�1 � t andtime-complexity poly(2`�1�t) + t.)25 Observe that the complexity of the result-ing deterministic procedure is dominated by the 2k = 2`�1(t(jxj)) invocations ofAG(x; s) = A(x;G(s)), where s 2 f0; 1gk, and each of these invocations takes timepoly(2`�1(t(jxj)) + t(jxj). Thus, on input an n-bit long string, the deterministicprocedure runs in time poly(2`�1(t(n)) � t(n)). The correctness of this procedure(which takes a majority vote among the 2k invocations of AG) follows by combin-ing Eq. (8.11) with the hypothesis that Pr[A(x) = 1] is bounded-away from 1=2.Speci�cally, using the hypothesis jPr[A(x) = 1] � (1=2)j � 1=6, it follows that themajority vote of (AG(x; s))s2f0;1gk equals 1 (equiv., Pr[A(x;G(Uk)) = 1] > 1=2) ifand only if Pr[A(x) = 1] > 1=2 (equiv., Pr[A(x; U`(k)) = 1] > 1=2) Indeed, the im-plication is due to Eq. (8.11), when applied to the circuit Cx(r) = A(x; r) (whichhas size at most jrj2).The goal. In light of Proposition 8.15, we seek canonical derandomizers withstretch that is as large as possible. The stretch cannot be super-exponential (i.e.,it must hold that `(k) = O(2k)), because there exists a circuit of size O(2k � `(k))that violates Eq. (8.11) (see Exercise 8.18) whereas for `(k) = !(2k) it holds thatO(2k � `(k)) < `(k)2. Thus, our goal is to construct a canonical derandomizerwith stretch `(k) = 2
(k). Such a canonical derandomizer will allow for a \fullderandomization of BPP":Theorem 8.16 If there exists a canonical derandomizer of stretch `(k) = 2
(k),then BPP = P.25Actually, given any randomized algorithm A and generator G, Construction 8.2 yields analgorithm AG that is de�ned such that AG(x; s) = A(x;G0(s)), where jsj = `�1(t(jxj)) and G0(s)denotes the t(jxj)-bit long pre�x of G(s). For simplicity, we shall assume here that `(jsj) = t(jxj),and thus use G rather than G0. Note that given n we can �nd k = `�1(t(n)) by invokingG(1i) for i = 1; :::; k (using the fact that ` :N!N is monotonically increasing). Also note that`(k) = O(2k) must hold (see Footnote 23), and thus we may replace poly(2k � `(k)) by poly(2k).

340 CHAPTER 8. PSEUDORANDOM GENERATORSProof: Using Proposition 8.15, we get BPtime(t) � Dtime(T), where T (n) =poly(2`�1(t(n)) � t(n)) = poly(t(n)).Reections: Recall that a canonical derandomizer G was de�ned in a way thatallows it to have time-complexity tG that is larger than the size of the circuits thatit fools (i.e., tG(k) > `(k)2 is allowed). Furthermore, tG(k) > 2k was also allowed.Thus, if indeed tG(k) = 2
(k) (as is the case in Section 8.3.2), then G(Uk) canbe distinguished from U`(k) in time 2k � tG(k) = poly(tG(k)) by trying all possibleseeds.26 We stress that the latter distinguisher is a uniform algorithm (and itworks by invoking G on all possible seeds). In contrast, for a general-purposepseudorandom generator G (as discussed in Section 8.2) it holds that tG(k) =poly(k), while for every polynomial p it holds that G(Uk) is indistinguishable fromU`(k) in time p(tG(k)).8.3.2 Constructing canonical derandomizersThe fact that canonical derandomizers are allowed to be more complex than thecorresponding distinguisher makes some of the techniques of Section 8.2 inapplica-ble in the current context. For example, the stretch function cannot be ampli�ed asin Section 8.2.4 (see Exercise 8.17). On the other hand, the techniques developedin the current section are inapplicable to Section 8.2. For example, the pseudoran-domness of some canonical derandomizers (i.e., the generators of Construction 8.17)holds even when the potential distinguisher is given the seed itself. This amazingphenomenon capitalizes on the fact that the distinguisher's time-complexity doesnot allow for running the generator on the given seed.8.3.2.1 The construction and its consequencesAs in Section 8.2.5, the construction presented next transforms computational dif-�culty into pseudorandomness, except that here both computational di�culty andpseudorandomness are of a somewhat di�erent form than in Section 8.2.5. Specif-ically, here we use Boolean predicates that are computable in exponential-timebut are T -inapproximable for some exponential function T (see De�nition 7.9 re-capitulated next). That is, we assume the existence of a Boolean predicate andconstants c; " > 0 such that for all but �nitely many m, the (residual) predicatef : f0; 1gm ! f0; 1g is computable in time 2cm but for any circuit C of size 2"mit holds that Pr[C(Um) = f(Um)] < 12 + 2�"m. (Needless to say, " < c.) Recallthat such predicates exist under the assumption that E has (almost-everywhere)exponential circuit complexity (see Theorem 7.19). With these preliminaries, weturn to the construction of canonical derandomizers with exponential stretch.26We note that this distinguisher does not contradict the hypothesis that G is a canonicalderandomizer, because tG(k) > `(k) de�nitely holds whereas `(k) � 2k typically holds (and so2k � tG(k) > `(k)2).

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 341Construction 8.17 (The Nisan-Wigderson Construction):27 Let f : f0; 1gm !f0; 1g and S1; :::; S` be a sequence of m-subsets of f1; :::; kg. Then, for s 2 f0; 1gk,we let G(s) def= f(sS1) � � � f(sS`) (8.12)where sS denotes the projection of s on the bit locations in S � f1; :::; jsjg; that is,for s = �1 � � ��k and S = fi1; :::; img, we have sS = �i1 � � ��im .Letting k vary and `;m : N ! N be functions of k, we wish G to be a canonicalderandomizer and `(k) = 2
(k). One (obvious) necessary condition for this tohappen is that the sets must be distinct, and hence m(k) =
(k); consequently,f must be computable in exponential-time. Furthermore, the sequence of setsS1; :::; S`(k) must be constructible in poly(2k) time. Intuitively, the function fshould be strongly inapproximable (i.e., T -inapproximable for some exponentialfunction T), and furthermore it seems desirable to use a set system with smallpairwise intersections (because this restricts the overlap among the various inputsto which f is applied). Interestingly, these conditions are essentially su�cient.Theorem 8.18 (analysis of Construction 8.17): Let �; �; ; " > 0 be constantssatisfying " > (2�=�) + , and consider the functions `;m; T :: N!N such that`(k) = 2�k, m(k) = �k, and T (n) = 2"n. Suppose that the following two conditionshold:1. There exists an exponential-time computable function f :f0; 1g�!f0; 1g thatis T -inapproximable. (See De�nition 7.9.)2. There exists an exponential-time computable function S : N�N ! 2N suchthat(a) For every k and i 2 [`(k)], it holds that S(k; i) � [k] and jS(k; i)j =m(k).(b) For every k and i 6= j, it holds that jS(k; i) \ S(k; j)j � �m(k).Then, using G as de�ned in Construction 8.17 with Si = S(k; i), yields a canonicalderandomizer with stretch `.Before proving Theorem 8.18 we note that, for any > 0, a function S as inCondition 2 does exist with some m(k) =
(k) and `(k) = 2
(k); see Exercise 8.19.Combining such a function S with Theorems 7.19 and 8.18, we obtain a canonicalderandomizer with exponential stretch based on the assumption that E has (almost-everywhere) exponential circuit complexity.28 Combining this with Theorem 8.16,we get the �rst part of the following theorem.27Given the popularity of the term, we deviate from our convention of not specifying credits inthe main text. This construction originates in [172, 175].28Speci�cally, starting with a function having circuit complexity at least exp("0m), we applyTheorem 7.19 and obtain a T -inapproximable predicate for T (m) = 2"m, where the constant" 2 (0; "0) depends on the constant "0. Next, we set = "=2 and invoke Exercise 8.19, whichdetermines �; � > 0 such that `(k) = 2�k and m(k) = �k. Note that (by possibly decreasing �)we get (2�=�) + < ".

342 CHAPTER 8. PSEUDORANDOM GENERATORSTheorem 8.19 (derandomization of BPP, revisited):1. Suppose that E contains a decision problem that has almost-everywhere expo-nential circuit complexity (i.e., there exists a constant "0 > 0 such that, forall but �nitely many m's, any circuit that correctly decides this problem onf0; 1gm has size at least 2"0m). Then, BPP = P.2. Suppose that, for every polynomial p, the class E contains a decision problemthat has circuit complexity that is almost-everywhere greater than p. ThenBPP is contained in \">0Dtime(t"), where t"(n) def= 2n" .Part 2 is proved (in Exercise 8.23) by using a generalization of Theorem 8.18, whichin turn is provided in Exercise 8.22. We note that Part 2 of Theorem 8.19 supersedesTheorem 8.13 (see Exercise 7.24). As in the case of general-purpose pseudorandomgenerators, the hardness hypothesis made in each part of Theorem 8.19 is necessaryfor the existence of a corresponding canonical derandomizer (see Exercise 8.24).The two parts of Theorem 8.19 exhibit two extreme cases: Part 1 (often referredto as the \high end") assumes an extremely strong circuit lower-bound and yields\full derandomization" (i.e., BPP = P), whereas Part 2 (often referred to as the\low end") assumes an extremely weak circuit lower-bound and yields weak butmeaningful derandomization. Intermediate results (relying on intermediate lower-bound assumptions) can be obtained analogous to Exercise 8.23, but tight trade-o�sare obtained di�erently (cf., [225]).8.3.2.2 Analyzing the construction (i.e., proof of Theorem 8.18)Using the time complexity upper-bounds on f and S, it follows that G can becomputed in exponential time. Thus, our focus is on showing that fG(Uk)g cannotbe distinguished from fU`(k)g by circuits of size `(k)2; speci�cally, that G satis�esEq. (8.11). In fact, we will prove that this holds for G0(s) = s � G(s); that is, Gfools such circuits even if they are given the seed as auxiliary input. (Indeed, thesecircuits are smaller than the running time of G, and so they cannot just evaluateG on the given seed.)We start by presenting the intuition underlying the proof. As a warm-up sup-pose that the sets (i.e., S(k; i)'s) used in the construction are disjoint. In such acase (which is indeed impossible because k < `(k) �m(k)), the pseudorandomness ofG(Uk) would follow easily from the inapproximability of f , because in this case Gconsists of applying f to non-overlapping parts of the seed (see Exercise 8.21). Inthe actual construction being analyzed here, the sets (i.e., S(k; i)'s) are not disjointbut have relatively small pairwise intersection, which means that G applies f onparts of the seed that have relatively small overlap. Intuitively, such small overlapsguarantee that the values of f on the corresponding inputs are \computationallyindependent" (i.e., having the value of f at some inputs x1; :::; xi does not help inapproximating the value of f at another input xi+1). This intuition will be backedby showing that, when �xing all bits that do not appear in the target input (i.e.,in xi+1), the former values (i.e., f(x1); :::; f(xi)) can be computed at a relativelysmall computational cost. Thus, the values f(x1); :::; f(xi) do not (signi�cantly)

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 343facilitate the task of approximating f(xi+1). With the foregoing intuition in mind,we now turn to the actual proof.As usual, the actual proof employs a reducibility argument; that is, assumingtowards the contradiction that G0 does not fool some circuit of size `(k)2, we de-rive a contradiction to the hypothesis that the predicate f is T -inapproximable.The argument utilizes the relation between pseudorandomness and unpredictability(cf. Section 8.2.5). Speci�cally, as detailed in Exercise 8.20, any circuit that distin-guishes G0(Uk) from U`(k)+k with gap 1=6, yields a next-bit predictor of similar sizethat succeeds in predicting the next bit with probability at least 12+ 16`0(k) > 12+ 17`(k) ,where the factor of `0(k) = `(k) + k < (1 + o(1)) � `(k) is introduced by the hybridtechnique (cf. Eq. (8.7)). Furthermore, given the non-uniform setting of the cur-rent proof, we may �x a bit location i+1 for prediction, rather than analyzing theprediction at a random bit location. Indeed, i � k must hold, because the �rst kbits of G0(Uk) are uniformly distributed. In the rest of the proof, we transform theforegoing predictor into a circuit that approximates f better than allowed by thehypothesis (regarding the inapproximability of f).Assuming that a small circuit C 0 can predict the i+1st bit of G0(Uk), when giventhe previous i bits, we construct a small circuit C for approximating f(Um(k)) oninput Um(k). The point is that the i+1st bit of G0(s) equals f(sS(k;j+1)), where j =i� k � 0, and so C 0 approximates f(sS(k;j+1)) based on s; f(sS(k;1)); :::; f(sS(k;j)),where s 2 f0; 1gk is uniformly distributed. Note that this is the type of thing thatwe are after, except that the circuit we seek may only get sS(k;j+1) as input.The �rst observation is that C 0 maintains its advantage when we �x the bestchoice for the bits of s that are not at bit locations Sj+1 = S(k; j + 1) (i.e., thebits s[k]nSj+1). That is, by an averaging argument, it holds thatmaxs02f0;1gk�m(k)fPrs2f0;1gk [C 0(s; f(sS1); :::; f(sSj)) = f(sSj+1) j s[k]nSj+1 = s0]g� p0 def= Prs2f0;1gk [C 0(s; f(sS1); :::; f(sSj)) = f(sSj+1)]:Recall that by the hypothesis p0 > 12+ 17`(k) . Hard-wiring the �xed string s0 into C 0,and letting �(x) denote the (unique) string s satisfying sSj+1 = x and s[k]nSj+1 = s0,we obtain a circuit C 00 that satis�esPrx2f0;1gm(k) [C 00(x; f(�(x)S1); :::; f(�(x)Sj)) = f(x)] � p0:The circuit C 00 is almost what we seek. The only problem is that C 00 gets as inputnot only x, but also f(�(x)S1); :::; f(�(x)Sj), whereas we seek an approximator off(x) that only gets x.The key observation is that each of the \missing" values f(�(x)S1); :::; f(�(x)Sj)depend only on a relatively small number of the bits of x. This fact is due to thehypothesis that jSt\Sj+1j � �m(k) for t = 1; :::; j, which means that �(x)St is anm(k)-bit long string in which mt def= jSt \ Sj+1j bits are projected from x and therest are projected from the �xed string s0. Thus, given x, the value f(�(x)St) canbe computed by a (trivial) circuit of size eO(2mt); that is, by a circuit implementing

344 CHAPTER 8. PSEUDORANDOM GENERATORSa look-up table on mt bits. Using all these circuits (together with C 00), we willobtain the desired approximator of f . Details follow.We obtain the desired circuit, denoted C, that T -approximates f as follows. Thecircuit C depends on the index j and the string s0 that are �xed as in the foregoinganalysis. Recall that C incorporates (eO(2�jxj)-size) circuits for computing x 7!f(�(x)St), for t = 1; :::; j. On input x 2 f0; 1gm(k), the circuit C computes thevalues f(�(x)S1); :::; f(�(x)Sj), invokesC 00 on input x and these values, and outputsthe answer as a guess for f(x). That is,C(x) = C 00(x; f(�(x)S1); :::; f(�(x)Sj)) = C 0(�(x); f(�(x)S1); :::; f(�(x)Sj)):By the foregoing analysis, Prx[C(x) = f(x)] � p0 > 12 + 17`(k) , which is lower-bounded by 12 + 1T (m(k)) , because T (m(k)) = 2"m(k) = 2"�k � 22�k � 7`(k),where the �rst inequality is due to " > 2�=� and second inequality is due to`(k) = 2�k. The size of C is upper-bounded by `(k)2+`(k) � eO(2�m(k))� eO(`(k)2 �2�m(k)) = eO(22��(m(k)=�)+�m(k)) � T (m(k)), where the last inequality is due toT (m(k)) = 2"m(k) � eO(2(2�=�)�m(k)+�m(k)) (which in turn uses " > (2�=�) +).Thus, we derived a contradiction to the hypothesis that f is T -inapproximable.This completes the proof of Theorem 8.18.8.3.3 Technical variations and conceptual reectionsWe start this section by discussing a general framework that emerges from Con-struction 8.17, and end this section with a conceptual discussion regarding deran-domization.8.3.3.1 Construction 8.17 as a general frameworkThe Nisan{Wigderson Construction (i.e., Construction 8.17) is actually a generalframework, which can be instantiated in various ways. Some of these instantiations,which are based on an abstraction of the construction as well as of its analysis, arebriey reviewed next,We �rst note that the generator described in Construction 8.17 consists of ageneric algorithmic scheme that can be instantiated with any predicate f . Fur-thermore, this algorithmic scheme, denoted G, is actually an oracle machine thatmakes (non-adaptive) queries to the function f , and thus the combination may bewritten as Gf . Likewise, the proof of pseudorandomness of Gf (i.e., the bulk ofthe proof of Theorem 8.18) is actually a general scheme that, for every f , yields a(non-uniform) oracle-aided circuit C that approximates f by using an oracle callto any distinguisher for Gf (i.e., C uses the distinguisher as a black-box). Thecircuit C does depends on f (but in a restricted way). Speci�cally, C containslook-up tables for computing functions obtained from f by �xing some of the inputbits (i.e., look-up tables for the functions f(�(�)St)'s). The foregoing abstractionsfacilitate the presentation of the following instantiations of the general frameworkunderlying Construction 8.17

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 345Derandomization of constant-depth circuits. In this case we instantiateConstruction 8.17 using the parity function in the role of the inapproximablepredicate f , noting that parity is indeed inapproximable by \small" constant-depth circuits. With an adequate setting of parameters we obtain pseudorandomgenerators with stretch `(k) = exp(k1=O(1)) that fool \small" constant-depth cir-cuits (see [172]). The analysis of this construction proceeds very much like the proofof Theorem 8.18. One important observation is that incorporating the (straightfor-ward) circuits that compute f(�(x)St) into the distinguishing circuit only increasesits depth by two levels. Speci�cally, the circuit C uses depth-two circuits that com-pute the values f(�(x)St)'s, and then obtains a prediction of f(x) by using thesevalues in its (single) invocation of the (given) distinguisher.The resulting pseudorandom generator, which use a seed of polylogarithmiclength (equiv., `(k) = exp(k1=O(1))), can be used for derandomizing RAC0 (i.e.,random AC0), analogously to Theorem 8.16. Thus, we can deterministically ap-proximate, in quasi-polynomial-time and up-to an additive error, the fraction ofinputs that satisfy a given (constant-depth) circuit. Speci�cally, for any constantd, given a depth-d circuit C, we can deterministically approximate the fraction ofthe inputs that satisfy C (i.e., cause C to evaluate to 1) to within any additiveconstant error29 in time exp((log jCj)O(d)). Providing a deterministic polynomial-time approximation, even in the case d = 2 (i.e., CNF/DNF formulae) is an openproblem.Derandomization of probabilistic proof systems. A di�erent (and moresurprising) instantiation of Construction 8.17 utilizes predicates that are inapprox-imable by small circuits having oracle access to NP . The result is a pseudorandomgenerator robust against two-move public-coin interactive proofs (which are as pow-erful as constant-round interactive proofs (see x9.1.3.1)). The key observation isthat the analysis of Construction 8.17 provides a black-box procedure for approx-imating the underlying predicate when given oracle access to a distinguisher (andthis procedure is valid also in case the distinguisher is a non-deterministic machine).Thus, under suitably strong (and yet plausible) assumptions, constant-round inter-active proofs collapse to NP . We note that a stronger result, which deviates fromthe foregoing framework, has been subsequently obtained (cf. [166]).Construction of randomness extractors. An even more radical instantiationof Construction 8.17 was used to obtain explicit constructions of randomness ex-tractors (see Appendix D.4). In this case, the predicate f is viewed as (an errorcorrecting encoding of) a somewhat random function, and the construction makessense because it refers to f in a black-box manner. In the analysis we rely on thefact that f can be approximated by combining relatively little information (regard-29We mention that in the special case of approximating the number of satisfying assignmentof a DNF formula, relative error approximations can be obtained by employing a deterministicreduction to the case of additive constant error (see x6.2.2.1). Thus, using a pseudorandom gen-erator that fools DNF formulae, we can deterministically obtain a relative (rather than additive)error approximation to the number of satisfying assignment in a given DNF formula.

346 CHAPTER 8. PSEUDORANDOM GENERATORSing f) with (black-box access to) a distinguisher for Gf . For further details seexD.4.2.2.8.3.3.2 Reections regarding derandomizationPart 1 of Theorem 8.19 is often summarized by saying that (under some reasonableassumptions) randomness is useless. We believe that this interpretation is wrongeven within the restricted context of traditional complexity classes, and is bluntlywrong if taken outside of the latter context. Let us elaborate.Taking a closer look at the proof of Theorem 8.16 (which underlies Theo-rem 8.19), we note that a randomized algorithm A of time-complexity t is emulatedby a deterministic algorithm A0 of time complexity t0 = poly(t). Further notingthat A0 = AG invokes A (as well as the canonical derandomizer G) for
(t) times(because `(k) = O(2k) implies 2k =
(t)), we infer that t0 =
(t2) must hold.Thus, derandomization via (Part 1 of) Theorem 8.19 is not really for free.More importantly, we note that derandomization is not possible in various dis-tributed settings, when both parties may protect their conicting interests by em-ploying randomization. Notable examples include most cryptographic primitives(e.g., encryption) as well as most types of probabilistic proof systems (e.g., PCP).For further discussion see Chapter 9 and Appendix C. Additional settings whererandomness makes a di�erence (either between impossibility and possibility or be-tween formidable and a�ordable cost) include distributed computing (see [16]),communication complexity (see [147]), parallel architectures (see [150]), sampling(see Appendix D.3), and property testing (see Section 10.1.2).8.4 Space-Bounded DistinguishersIn the previous two sections we have considered generators that output sequencesthat look random to any e�cient procedures, where the latter were modeled bytime-bounded computations. Speci�cally, in Section 8.2 we considered indistin-guishability by polynomial-time procedures. A �ner classi�cation of time-boundedprocedures is obtained by considering their space-complexity; that is, restrictingthe space-complexity of time-bounded computations. This restriction, which is thefocus of Chapter 5, leads to the notion of pseudorandom generators that fool space-bounded distinguishers. Interestingly, in contrast to the notions of pseudorandomgenerators that were considered in Sections 8.2 and 8.3, the existence of pseudoran-dom generators that fool space-bounded distinguishers can be established withoutrelying on computational assumptions.Prerequisites: Technically speaking, the current section is self-contained, butvarious de�nitional choices are justi�ed by reference to x6.1.5.1. Thus, we recom-mend Section 6.1.5 as general background for the current section.

8.4. SPACE-BOUNDED DISTINGUISHERS 3478.4.1 De�nitional issuesUnfortunately, natural notions of space-bounded computations are quite subtle,especially when non-determinism or randomization are concerned (see Sections 5.3and 6.1.5, respectively). Two major de�nitional issues regarding randomized space-bounded computations are the need for imposing explicit time bounds and the typeof access to the random tape.1. Time bounds: The question is whether or not the space-bounded machinesare restricted to time-complexity that is at most exponential in their space-complexity.30 Recall that such an upper-bound follows automatically in thedeterministic case (Theorem 5.3), and can be assumed without loss of gen-erality in the non-deterministic case (see Section 5.3.2), but it does not nec-essarily hold in the randomized case (see x6.1.5.1). Furthermore, failing torestrict the time-complexity of randomized space-bounded machines makesthem unnatural and unintentionally too strong (see x6.1.5.1 again).As in Section 6.1.5, seeking a natural model of randomized space-boundedalgorithms, we postulate that their time-complexity must be at most expo-nential in their space-complexity.2. Access to the random tape: Recall that randomized algorithms may be mod-eled as machines that are provided with the necessary randomness via a spe-cial random-tape. The question is whether the space-bounded machine hasuni-directional or bi-directional (i.e., unrestricted) access to its random-tape.(Allowing bi-directional access means that the randomness is recorded \forfree"; that is, without being accounted for in the space-bound (see discussionsin Sections 5.3 and 6.1.5).)Recall that uni-directional access to the random-tape corresponds to the nat-ural model of an on-line randomized machine, which determines its movesbased on its internal coin tosses (and thus cannot store its past coin tosses\for free"). Thus, as in Section 6.1.5, we consider uni-directional access.31Hence, we focus on randomized space-bounded computation that have time-complexitythat is at most exponential in their space-complexity and access their random-tape in a uni-directional manner. In accordance with this de�nition of randomizedspace-bounded computation, we consider space-bounded distinguishers that have auni-directional access to the input sequence that they examine. Let us consider thetype of algorithms that arise.We consider space-bounded algorithms that have a uni-directional access to theirinput. At each step, based on the contents of its temporary storage, such an30Alternatively, one can ask whether these machines must always halt or only halt with prob-ability approaching 1. It can be shown that the only way to ensure \absolute halting" is to havetime-complexity that is at most exponential in the space-complexity. (In the current discussionas well as throughout this section, we assume that the space-complexity is at least logarithmic.)31We note that the fact that we restrict our attention to uni-directional access is instrumen-tal in obtaining space-robust generators without making intractability assumptions. Analogousgenerators for bi-directional space-bounded computations would imply hardness results of a break-through nature in the area.

348 CHAPTER 8. PSEUDORANDOM GENERATORSalgorithm may either read the next input bit or stay at the current location on theinput, where in either case the algorithm may modify its temporary storage. Tosimplify our analysis of such algorithms, we consider a corresponding non-uniformmodel in which, at each step, the algorithm reads the next input bit and updateits temporary storage according to an arbitrary function applied to the previouscontents of that storage (and to the new bit). Note that we have strengthened themodel by allowing arbitrary (updating) functions, which can be implemented by(non-uniform) circuits having size that is exponential in the space-bound, ratherthan using (updating) functions that can be (uniformly) computed in time that isexponential in the space-bound. This strengthening is motivated by the fact thatthe known constructions of pseudorandom generators remain valid also when thespace-bounded distinguishers are non-uniform and by the fact that non-uniformdistinguishers arise anyhow in derandomization.The computation of the foregoing non-uniform space-bounded algorithms (orautomata)32 can be represented by directed layered graphs, where the vertices ineach layer correspond to possible contents of the temporary storage and transitionbetween neighboring layers corresponds to a step of the computation. Foreseeingthe application of this model for the description of potential distinguishers, weparameterize these layered graphs based on the index, denoted k, of the relevantensembles (e.g., fG(Uk)gk2N and fU`(k)gk2N). That is, we present both the inputlength, denoted ` = `(k), and the space-bound, denoted s(k), as functions of theparameter k. Thus, we de�ne a non-uniform automaton of space s : N!N asa family, fDkgk2N, of directed layered graphs with labeled edges such that thefollowing conditions hold:� The digraph Dk consists of `(k) + 1 layers, each containing at most 2s(k)vertices. The �rst layer contains a single vertex, which is the digraph's (single)source (i.e., a vertex with no incoming edges), and the last layer contains allthe digraph's sinks (i.e., vertices with no outgoing edges).� The only directed edges in Dk are between adjacent layers, going from layeri to layer i + 1, for i � `(k). These edges are labeled such that each (non-sink) vertex of Dk has two (possibly parallel) outgoing directed edges, onelabeled 0 and the other labeled 1.The result of the computation of such an automaton, on an input of adequate length(i.e., length ` where Dk has ` + 1 layers), is de�ned as the vertex (in last layer)reached when following the sequence of edges that are labeled by the correspondingbits of the input. That is, on input x = x1 � � �x`, in the ith step (for i = 1; :::; `) wemove from the current vertex (which resides in the ith layer) to one of its neighbors32We use the term automaton (rather than algorithm or machine) in order to remind the readerthat this computing device reads its input in a uni-directional manner. Alternative terms that maybe used are \real-time" or \on-line" machines. We prefer not using the term \on-line" machinein order to keep a clear distinction from randomized (on-line) algorithms that have free accessto their input (and on-line access to a source of randomness). Indeed, the automata considerhere arise from the latter algorithms by �xing their primary input and considering the randomsource as their (only) input. We also note that the automata considered here are a special caseof Ordered Binary Decision Diagrams (OBDDs; see [235]).

8.4. SPACE-BOUNDED DISTINGUISHERS 349(which resides in the i+1st layer) by following the outgoing edge labeled xi. Usinga �xed partition of the vertices of the last layer, this de�nes a natural notion ofa decision (by Dk); that is, we write Dk(x) = 1 if on input x the automaton Dkreached a vertex that belongs to the �rst part of the aforementioned partition.De�nition 8.20 (Indistinguishability by space-bounded automata):� For a non-uniform automaton, fDkgk2N, and two probability ensembles, fXkgk2Nand fYkgk2N, the function d :N! [0; 1] de�ned asd(k) def= jPr[Dk(Xk) = 1]� Pr[Dk(Yk) = 1]jis called the distinguishability-gap of fDkg between the two ensembles.� Let s : N!N and " : N ! [0; 1]. A probability ensemble, fXkgk2N, iscalled (s; ")-pseudorandom if for any non-uniform automaton of space s(�),the distinguishability-gap of the automaton between fXkgk2N and the corre-sponding uniform ensemble (i.e., fUjXkjgk2N) is at most "(�).� A deterministic algorithm G of stretch function ` is called an (s; ")-pseudorandomgenerator if the ensemble fG(Uk)gk2N is (s; ")-pseudorandom. That is, everynon-uniform automaton of space s(�) has a distinguishing-gap of at most "(�)between fG(Uk)gk2N and fU`(k)gk2N.Thus, when using a random seed of length k, an (s; ")-pseudorandom generatoroutputs a sequence of length `(k) that looks random to observers having spaces(k). Note that s(k) � k is a necessary condition for the existence of (s; 0:5)-pseudorandom generators, because a non-uniform automaton of space s(k) > kcan recognize the image of a generator (which contains at most 2k strings of length`(k) > k). More generally, there is a trade-o� between s(k) � k and the stretch of(s; ")-pseudorandom generators; for details see Exercises 8.25 and 8.26.Note: Recall that we stated the space-bound of the potential distinguisher (aswell as the stretch function) in terms of the seed-length, denoted k, of the generator.In contrast, other sources present a parameterization in terms of the space-boundof the potential distinguisher, denoted m. The translation is obtained by usingm = s(k), and we shall provide it following the main statements of Theorems 8.21and 8.22.8.4.2 Two ConstructionsIn contrast to the case of pseudorandom generators that fool time-bounded distin-guishers, pseudorandom generators that fool space-bounded distinguishers can beconstructed without relying on any computational assumption. The following twotheorems exhibit two rather extreme cases of a general trade-o� between the space-bound of the potential distinguisher and the stretch function of the generator.3333These two results have been \interpolated" in [11]: There exists a parameterized family of\space fooling" pseudorandom generators that includes both results as extreme special cases.

350 CHAPTER 8. PSEUDORANDOM GENERATORSWe stress that both theorems fall short of providing parameters as in Exercise 8.26,but they refer to relatively e�cient constructions. We start with an attempt tomaximize the stretch.Theorem 8.21 (stretch exponential in the space-bound for s(k) = pk): For everyspace constructible function s :N!N , there exists an (s; 2�s)-pseudorandom gen-erator of stretch function `(k) = min(2k=O(s(k)); 2s(k)). Furthermore, the generatorworks in space that is linear in the length of the seed, and in time that is linear inthe stretch function.In other words, for every t � m, we have a generator that takes a random seedof length k = O(t �m) and produce a sequence of length 2t that looks random toany (non-uniform) automaton of space m (up to a distinguishing-gap of 2�m). Inparticular, using a random seed of length k = O(m2), one can produce a sequence oflength 2m that looks random to any (non-uniform) automaton of space m. Thus,one may replace random sequences used by any space-bounded computation, bysequences that are e�ciently generated from random seeds of length quadratic inthe space bound. The common instantiation of the latter assertion is for log-spacealgorithms. In x8.4.2.2, we apply Theorem 8.21 (and its underlying ideas) forthe derandomization of space-complexity classes such as BPL (i.e., the log-spaceanalogue of BPP). Theorem 8.21 itself is proved in x8.4.2.1.We now turn to the case where one wishes to maximize the space-bound of po-tential distinguishers. We warn that Theorem 8.22 only guarantees a subexponen-tial distinguishing gap (rather than the exponential distinguishing gap guaranteedin Theorem 8.21). This warning is voiced because failing to recall this limitationhas led to errors in the past.Theorem 8.22 (polynomial stretch and linear space-bound): For any polynomialp and for some s(k) = k=O(1), there exists an (s; 2�ps)-pseudorandom genera-tor of stretch function p. Furthermore, the generator works in linear-space andpolynomial-time (both stated in terms of the length of the seed).In other words, we have a generator that takes a random seed of length k = O(m)and produce a sequence of length poly(m) that looks random to any (non-uniform)automaton of space m. Thus, one may convert any randomized computation uti-lizing polynomial-time and linear-space into a functionally equivalent randomizedcomputation of similar time and space complexities that uses only a linear numberof coin tosses.8.4.2.1 Sketches of the proofs of Theorems 8.21 and 8.22In both cases, we start the proof by considering a generic space-bounded distin-guisher and show that the input distribution that this distinguisher examines canbe modi�ed (from the uniform distribution into a pseudorandom one) without hav-ing the distinguisher notice the di�erence. This modi�cation (or rather a sequenceof modi�cations) yields a construction of a pseudorandom generator, which is onlyspelled-out at the end of the argument.

8.4. SPACE-BOUNDED DISTINGUISHERS 351Sketch of the proof of Theorem 8.21.34 The main technical tool used in thisproof is the \mixing property" of pairwise independent hash functions (see Ap-pendix D.2). A family of functions Hn, which map f0; 1gn to itself, is called mixingif for every pair of subsets A;B � f0; 1gn for all but very few (i.e., exp(�
(n))fraction) of the functions h 2 Hn, it holds thatPr[Un 2 A ^ h(Un) 2 B] � jAj2n � jBj2n (8.13)where the approximation is up to an additive term of exp(�
(n)). (See the gener-alization of Lemma D.4, which implies that exp(�
(n)) can be set to 2�n=3.)We may assume, without loss of generality, that s(k) =
(pk), and thus `(k) �2s(k) holds. For any s(k)-space distinguisher Dk as in De�nition 8.20, we consideran auxiliary \distinguisher" D0k that is obtained by \contracting" every block ofn def= �(s(k)) consecutive layers in Dk, yielding a directed layered graph with`0 def= `(k)=n < 2s(k) layers (and 2s(k) vertices in each layer). Speci�cally,� each vertex in D0k has 2n (possibly parallel) directed edges going to variousvertices of the next level; and� each such edge is labeled by an n-bit long string such that the directed edge(u; v) labeled �1�2 � � ��n in D0k replaces the n-edge directed path between uand v in Dk that consists of edges labeled �1; �2; ::::; �n.The graph D0k simulates Dk in the obvious manner; that is, the computation of D0kon an input of length `(k) = `0 �n is de�ned by breaking the input into consecutivesubstrings of length n and following the path of edges that are labeled by thecorresponding n-bit long substrings.The key observation is that D0k cannot distinguish between a random `0 � n-bitlong input (i.e., U`0�n � U (1)n U (2)n � � �U (`0)n) and a \pseudorandom" input of the formU (1)n h(U (1)n)U (2)n h(U (2)n) � � �U (`0=2)n h(U (`0=2)n), where h 2 Hn is a (suitably �xed)hash function. To prove this claim, we consider an arbitrary pair of neighboringvertices, u and v (in layers i and i+1, respectively), and denote by Lu;v � f0; 1gnthe set of the labels of the edges going from u to v. Similarly, for a vertex w atlayer i+2, we let L0v;w denote the set of the labels of the edges going from v to w.By Eq. (8.13), for all but very few of the functions h 2 Hn, it holds thatPr[Un 2 Lu;v ^ h(Un) 2 L0v;w] � Pr[Un 2 Lu;v] � Pr[Un 2 L0v;w] ; (8.14)where \very few" and � are as in Eq. (8.13). Thus, for all but exp(�
(n)) fractionof the choices of h 2 Hn, replacing the coins in the second transition (i.e., thetransition from layer i+1 to layer i+2) with the value of h applied to the outcomesof the coins used in the �rst transition (i.e., the transition from layer i to i + 1),approximately maintains the probability that D0k moves from u to w via v. Using aunion bound (on all triples (u; v; w) as in the foregoing), we note that, for all but34A detailed proof appears in [173].

352 CHAPTER 8. PSEUDORANDOM GENERATORS23s(k) � `0 � exp(�
(n)) fraction of the choices of h 2 Hn, the foregoing replacementapproximately maintains the probability that D0k moves through any speci�c two-edge path of D0k.Using `0 < 2s(k) and a suitable choice of n = �(s(k)), it holds that 23s(k) � `0 �exp(�
(n)) < exp(�
(n)), and thus all but \few" functions h 2 Hn are good forapproximating all these transition probabilities. (We stress that the same h can beused in all these approximations.) Thus, at the cost of extra jhj random bits, wecan reduce the number of true random coins used in transitions on D0k by a factorof two, without signi�cantly a�ecting the �nal decision of D0k (where again we usethe fact that `0 � exp(�
(n)) < exp(�
(n)), which implies that the approximationerrors do not accumulate to too much). In other words, at the cost of extra jhjrandom bits, we can e�ectively contract the distinguisher to half its length whileapproximately maintaining the probability that the distinguisher accepts a randominput. That is, �xing a good h (i.e., one that provides a good approximation tothe transition probability over all 23s(k) � `0 two-edge paths), we can replace thetwo-edge paths in D0k by edges in a new distinguisher D00k (which depends on h)such that an edge (u;w) labeled r 2 f0; 1gn appears in D00k if and only if, for somev, the path (u; v; w) appears in D0k with the �rst edge (i.e., (u; v)) labeled r andthe second edge (i.e., (v; w)) labeled h(r). Needless to say, the crucial point is thatPr[D00k(U(`0=2)�n)=1] approximates Pr[D0k(U`0�n)=1].
1

0 1

0 1 0 1

0 0 0 0 1111

α

α0 α1

α10α00 α
01

α11

000
α

001
α 010

α
011

α α100 α
101

α110 α111

application(possible)

h
(3)

(2)
hof

application
(possible)

(1)
hof

(possible) application of

The output of the generator (on seed �; h(1); :::; h(t)) consists of the concate-nation of the strings denoted �0t ; :::; �1t , appearing in the leaves of the tree.For every x 2 f0; 1g� it holds that �x0 = �x and �x1 = h(t�jxj)(�x). In par-ticular, for t = 3, we have �011 = h(1)(�01), which equals h(1)(h(2)(�0)) =h(1)(h(2)(�)), where � = ��.Figure 8.3: The �rst generator that \fools" space-bounded automata.The forgoing process can be applied to D00k resulting in a distinguisher D000k ofhalf the length, and so on. Each time we contract the current distinguisher by a

8.4. SPACE-BOUNDED DISTINGUISHERS 353factor of two, and do so by randomly selecting (and �xing) a new hash function.Thus, repeating the process for a logarithmic (in the depth of D0k) number of timeswe obtain a distinguisher that only examines n bits, at which point we stop. Intotal, we have used t def= log2(`0=n) < log2 `(k) random hash functions, denotedh(1); :::; h(t). This means that we can generate a (pseudorandom) sequence thatfools the original Dk by using a seed of length n+ t � log2 jHnj (see Figure 8.3 andExercise 8.28). Using n = �(s(k)) and an adequate family Hn (e.g., Construc-tion D.3), we obtain the desired (s; 2�s)-pseudorandom generator, which indeeduses a seed of length O(s(k) � log2 `(k)) = k.Rough sketch of the proof of Theorem 8.22.35 The main technical tool usedin this proof is a suitable randomness extractor (as de�ned in xD.4.1.1), which isindeed a much more powerful tool than hashing functions. The basic idea is thatwhen the distinguisher Dk is at some \distant" layer, say at layer t =
(s(k)), ittypically \knows" little about the random choices that led it there. That is, Dkhas only s(k) bits of memory, which leaves out t � s(k) bits of \uncertainty" (orrandomness) regarding the previous moves. Thus, much of the randomness thatled Dk to its current state may be \re-used" (or \recycled"). To re-use these bitswe need to extract almost uniform distribution on strings of su�cient length outof the aforementioned distribution over f0; 1gt that has entropy36 at least t� s(k).Furthermore, such an extraction requires some additional truly random bits, yetrelatively few such bits. In particular, using k0 =
(log t) bits towards this end,the extracted bits are exp(�
(k0)) away from uniform.The gain from the aforementioned recycling is signi�cant if recycling is repeatedsu�ciently many times. Towards this end, we break the k-bit long seed into twoparts, denoted r0 2 f0; 1gk=2 and (r1; :::; r3pk), where jrij = pk=6, and set n = k=3.Intuitively, r0 will be used for determining the �rst n steps, and it will be re-used(or recycled) together with ri for determining the steps i � n+1 through (i+1) �n.Looking at layer i � n, we consider the information regarding r0 that is \known"to Dk (when reaching a speci�c vertex at layer i � n). Typically, the conditionaldistribution of r0, given that we reached a speci�c vertex at layer i � n, has (min-)entropy greater than 0:99 � ((k=2) � s(k)). Using ri (as a seed of an extractorapplied to r0), we can extract 0:9 � ((k=2) � s(k) � o(k)) > k=3 = n bits that arealmost-random (i.e., 2�
(pk)-close to Un) with respect to Dk, and use these bitsfor determining the next n steps. Hence, using k random bits we are producea sequence of length (1 + 3pk) � n > k3=2 that fools automata of space bound,say, s(k) = k=10. Speci�cally, using an extractor of the form Ext : f0; 1gpk=6 �f0; 1gk=2 ! f0; 1gk=3, we map the seed (r0; r1; :::; r3pk) to the output sequence(r0;Ext(r1; r0); :::;Ext(r3pk; r0)). Thus, we obtained an (s; 2�
(ps))-pseudorandom35A detailed proof appears in [176].36Actually, a stronger technical condition needs and can be imposed on the latter distribution.Speci�cally, with overwhelmingly high probability, at layer t, automaton Dk is at a vertex that canbe reached in more than 20:99�(t�s(k)) di�erent ways. In this case, the distribution representinga random walk that reaches this vertex has min-entropy greater than 0:99 � (t� s(k)). The readeris referred to xD.4.1.1 for de�nitions of min-entropy and extractors.

354 CHAPTER 8. PSEUDORANDOM GENERATORSgenerator of stretch function `(k) = k3=2.In order to obtain an arbitrary polynomial stretch rather than a speci�c poly-nomial stretch (i.e., `(k) = k3=2), we repeatedly apply an adequate composition,to be outlined next. Suppose that G1 is an (s1; "1)-pseudorandom generator ofstretch function `1 that works in linear space, and similarly for G2 with respect to(s1; "1) and `2. Then, we consider the following construction of a generator G:1. On input s 2 f0; 1gk, compute G1(s), and parse it into consecutive blocks,each of length k0 = s1(k)=O(1), denoted r1; :::; rt, where t = `1(k)=k0.2. Compute and output the t � `2(k0)-bit long sequence G2(r1) � � �G2(rt).Note that jG(s)j = `1(k) � `2(k0)=k0, where k0 = s1(k)=O(1) and k = jsj. Fors1(k) = �(k), we have jG(s)j = `1(k) � `2(
(k))=O(k), which for polynomials`1 and `2 yields jG(s)j = `1(jsj) � `2(jsj)=O(jsj). We claim that G is an (s; ")-pseudorandom generator, for s(k) = min(s1(k)=2; s2(
(s1(k))) and "(k) = "1(k) +`1(k) � "2(
(s1(k)). The proof uses a hybrid argument, which refers to the naturaldistributions G(Uk) and Ut�`2(k0) � U (1)`2(k0) � � �U (t)`2(k0) as well as to the intermediatehybrid distribution Ik def= G2(U (1)k0) � � �G2(U (t)k0). The reader can verify that Ik is(s2(k0); t�"2(k0))-pseudorandom (see Exercise 8.27), and so we focus on proving thatIk is indistinguishable from G(Uk) by automata of space s1(k)=2 (with respect todistinguishing-gap "1(k)). This is proved by converting a potential distinguisher(of Ik and G(Uk)) into a distinguisher of U`1(k) � Ut�k0 and G1(Uk), where thenew distinguisher parses the `1(k)-bit long input into t blocks (each of length k0),invokesG2 on the corresponding k0-bit long blocks, and feeds the resulting sequenceof `1(k0)-bit long blocks to the original distinguisher. For this end, it is crucial thatG2 can be evaluate on k0-bit long strings using space at most s1(k)=2, which isguaranteed by our setting of k0 = s1(k)=O(1) and the hypothesis that G2 works inlinear space.8.4.2.2 Derandomization of space-complexity classesAs a direct application of Theorem 8.21, we obtain that BPL � Dspace(log2),where BPL denotes the log-space analogue of BPP (see De�nition 6.11). (Recallthat NL � Dspace(log2), but it is not known whether or not BPL � NL.)37 Astronger derandomization result can be obtained by a �ner analysis of the proof ofTheorem 8.21.Theorem 8.23 BPL � SC, where SC denotes the class of decision problemsthat can be solved by a deterministic algorithm that runs in polynomial-time andpolylogarithmic-space.Thus, BPL (and in particular RL � BPL) is placed in a class not known tocontain NL. Another such result was subsequently obtained in [195]: Randomized37Indeed, the log-space analogue of RP, denoted RL, is contained in NL � Dspace(log2), andthus the fact that Theorem 8.21 implies RL � Dspace(log2) is of no interest.

8.4. SPACE-BOUNDED DISTINGUISHERS 355log-space can be simulated in deterministic space o(log2); speci�cally, in spacelog3=2. We mention that the archetypical problem of RL has been recently provedto be in L (see Section 5.2).Sketch of the proof of Theorem 8.23.38 We are going to use the generatorconstruction provided in the proof of Theorem 8.21, but show that the main partof the seed (i.e., the sequence of hash functions) can be �xed (depending on thedistinguisher at hand). Furthermore, this �xing can be performed in polyloga-rithmic space and polynomial-time. Speci�cally, wishing to derandomize a speci�clog-space computation (which refers to a speci�c input), we �rst obtain the corre-sponding distinguisher, denotedD0k, that represents this computation (as a functionof the outcomes of the internal coin tosses of the log-space algorithm). The keyobservation is that the question of whether or not a speci�c hash function h 2 Hnis good for a speci�c D0k can be determined in space that is linear in n = jhj=2and logarithmic in the size of D0k. Indeed, the time-complexity of this decisionprocedure is exponential in its space-complexity. It follows that we can �nd a goodh 2 Hn, for a given D0k, within these complexities (by scanning through all pos-sible h 2 Hn). Once a good h is found, we can also construct the correspondinggraph D00k (in which edges represent two-edge paths in D0k), again within the samecomplexity. Actually, it will be more instructive to note that we can determine astep (i.e., an edge-traversal) in D00k by making two steps (edge-traversals) in D0k.This will allow to �x a hash function for D00k , and so on. Details follow.The main claim is that the entire process of �nding a sequence of t def= log2 `0(k)good hash functions can be performed in space t �O(n+log jDkj) = O(n+log jDkj)2and time poly(2n�jDkj); that is, the time-complexity is sub-exponential in the space-complexity (i.e., the time-complexity is signi�cantly smaller than than the genericbound of exp(O(n + log jDkj)2)). Starting with D(1)k = D0k, we �nd a good (forD(1)k) hashing function h(1) 2 Hn, which de�nes D(2)k = D00k . Having found (andstored) h(1); :::; h(i) 2 Hn, which determine D(i+1)k , we �nd a good hashing functionh(i+1) 2 Hn for D(i+1)k by emulating pairs of edge-traversals on D(i+1)k . Indeed,a key point is that we do not construct the sequence of graphs D(2)k ; :::; D(i+1)k ,but rather emulate an edge-traversal in D(i+1)k by making 2i edge-traversals in D0k,using h(1); :::; h(i): The (edge-traversal) move � 2 f0; 1gn starting at vertex v ofD(i+1)k translates to a sequence of 2i moves starting at vertex v of D0k, where themoves are determined by the 2i-long sequence (of n-bit strings)h(0i)(�); h(0i�201)(�); h(0i�210)(�); h(0i�211)(�); :::; h(1i)(�);where h(�i����1) is the function obtained by the composition of a subsequence of thefunctions h(i); :::; h(1) determined by �i � � ��1. Speci�cally, h(�i����1) equals h(it0) �� � � � h(i2) � h(i1), where i1 < i2 < � � � < it0 and fij : j=1; :::; t0g = fj : �j=1g.Recall that the ability to perform edge-traversals on D(i+1)k allows to determinewhether a speci�c function h 2 Hn is good for D(i+1)k . This is done by considering38A detailed proof appears in [174].

356 CHAPTER 8. PSEUDORANDOM GENERATORSall the relevant triples (u; v; w) inD(i+1)k , computing for each such (u; v; w) the threequantities (i.e., probabilities) appearing in Eq. (8.14), and deciding accordingly.Trying all possible h 2 Hn, we �nd a function (to be denoted h(i+1)) that is goodfor D(i+1)k . This is done while using an additional storage of s0 = O(n + log jD0kj)(on top of the storage used to record h(1); :::; h(i)), and in time that is exponentialin s0. Thus, given D0k, we �nd a good sequence of hash functions, h(1); :::; h(t), intime exponential in s0 and while using space s0 + t � log2 jHnj = O(t � s0). Sucha sequence of functions allows us to emulate edge-traversals on D(t+1)k , which inturn allows to (deterministically) approximate the probability that D0k accepts arandom input (i.e., the probability that, starting at the single source vertex of the�rst layer, automaton D0k reaches some accepting vertex at the last layer). Thisapproximation is obtained by computing the corresponding probability in D(t+1)kby traversing all 2n edges.To summarize, given D0k, we can (deterministically) approximate the probabil-ity that D0k accepts a random input in O(t � s0)-space and exp(O(s0 + n))-time,where s0 = O(n + log jD0kj) and t < log2 jD0kj. For n = �(log jD0kj), this meansO(log jD0kj)2-space and poly(jD0kj)-time. We comment that the approximation canbe made accurate up to an additive term of 1=poly(jD0kj), but an additive term of1=6 su�ces here.We conclude the proof by recalling the connection between such an approxima-tion and the derandomization of BPL (indeed, note the analogy to the proof ofTheorem 8.13). The computation of a log-space probabilistic machine M on inputx, can be represented by a directed layer graph GM;x of size poly(jxj). Speci�cally,the vertices of each layer represent possible con�gurations of the computation ofM(x), and the edges between the ith layer and the i + 1st layer represent the ithmove of such a computation, which depends on the ith bit of the random-tape ofM (or, equivalently, on the ith internal coin toss of M).39 Thus, the probabil-ity that M accepts x equals the probability that a random walk starting at thesingle vertex of the �rst layer of GM;x reaches some vertex in the last layer thatrepresents an accepting con�guration. Setting k = �(log jxj) and n = �(k), thegraph GM;x coincides with the graph Dk referred to at the beginning of the proofof Theorem 8.21, and D0k is obtained from Dk by an \n-layer contraction" (seeibid.). Furthermore, Dk and D0k can be constructed (from x) in logarithmic-space(and by using the emulative composition of Lemma 5.2 we may just proceed asif D0k is given as input). Combining this with the foregoing analysis, we concludethat the probability that M accepts x can be deterministically approximated inO(log jxj)2-space and poly(jxj)-time. The theorem follows.39Note that GM;x is a \layered version" of the graph that was considered (and denoted Gx)in the proof of Theorem 5.11. Furthermore, while in the proof of Theorem 5.11 we cared aboutthe existence of certain paths, here we care about their quantity (or rather the probability oftraversing one of them).

8.5. SPECIAL PURPOSE GENERATORS 3578.5 Special Purpose GeneratorsIn this section we consider even weaker types of pseudorandom generators, pro-ducing sequences that can fool only very restricted types of distinguishers. Still,such generators have many applications in complexity theory and in the design ofalgorithms. (These applications will only be mentioned briey.)We start with the simplest of these generators: the pairwise-independence gen-erator, and its generalization to t-wise independence for any t�2. Such generatorsperfectly fool any distinguisher that only observe t locations in the output sequence.This leads naturally to almost pairwise (or t-wise) independence generators, whichalso fool such distinguishers (albeit non-perfectly). The latter generators are im-plied by a stronger class of generators, which is of independent interest: the small-bias generators. Small-bias generators fool any linear test (i.e., any distinguisherthat merely considers the xor of some �xed locations in the input sequence). Wethen turn to the Expander Random Walk Generator: this generator produces asequence of strings that hit any dense subset of strings with probability that isclose to the hitting probability of a truly random sequence. Related notions suchas samplers, dispersers, and extractors are treated in Appendix D.Teaching note: Unlike the constructions presented in previous sections, the construc-tions presented in this section do not utilize any insight into the nature of (time- orspace-bounded) computation. Instead, they are based on various purely mathematicalfacts, and their analysis is deferred to exercises.Comment regarding our parameterization: To maintain consistency withprior sections, we continue to present the generators in terms of the seed length,denoted k. Since this is not the common presentation for most results presented inthe sequel, we provide (in footnotes) the common presentation in which the seedlength is determined as a function of other parameters.8.5.1 Pairwise-Independence GeneratorsPairwise (resp., t-wise) independence generators fool tests that inspect only two(resp., t) elements in the output sequence of the generator. Such local tests areindeed very restricted, yet they arise naturally in many settings. For example,such a test corresponds to a probabilistic analysis (of a procedure) that only relieson the pairwise independence of certain choices made by the procedure. We alsomention that, in some natural range of parameters, pairwise independent samplingis as good as sampling by totally independent sample points; see Appendices D.1.2and D.3.A t-wise independence generator of block-length b :N!N (and stretch function`) is a relatively e�cient deterministic algorithm (e.g., one that works in time poly-nomial in the output length) that expands a k-bit long random seed into a sequenceof `(k)=b(k) blocks, each of length b(k), such that any t blocks are uniformly andindependently distributed in f0; 1gt�b(k). That is, denoting the ith block of the gen-erator's output (on seed s) by G(s)i, we requite that for every i1 < i2 < � � � < it

358 CHAPTER 8. PSEUDORANDOM GENERATORS(in [`(k)=b(k)]) it holds thatG(Uk)i1 ; G(Uk)i2 ; :::; G(Uk)it � Ut�b(k): (8.15)We note that this condition holds even if the inspected t blocks are selected adap-tively (see Exercise 8.29). In case t = 2, we call the generator pairwise independent.8.5.1.1 ConstructionsIn the �rst construction, we refer to GF(2b(k)), the �nite �eld of 2b(k) elements,and associate its elements with f0; 1gb(k).Proposition 8.24 (t-wise independence generator):40 Let t be a �xed integer andb; `; `0 :N!N such that b(k) = k=t, `0(k) = `(k)=b(k) > t and `0(k) � 2b(k). Let�1; :::; �`0(k) be �xed distinct elements of the �eld GF(2b(k)). For s0; s1; :::; st�1 2f0; 1gb(k), letG(s0; s1; :::; st�1) def= 0@t�1Xj=0 sj�j1 ; t�1Xj=0 sj�j2 ; :::; t�1Xj=0 sj�j̀0(k)1A (8.16)where the arithmetic is that of GF(2b(k)). Then, G is a t-wise independence gen-erator of block-length b and stretch `.That is, given a seed that consists of t elements of GF(2b(k)), the generator outputsa sequence of `0(k) such elements. To make the foregoing generator totally explicit,we need an explicit representation of GF(2b(k)), which requires an irreducible poly-nomial of degree b(k) over GF(2). For speci�c values of b(k), a good representationdoes exist: For example, for d def= b(k) = 2 � 3e (with e being an integer), thepolynomial xd + xd=2 + 1 is irreducible over GF(2). The proof of Proposition 8.24is left as an exercise (see Exercise 8.30). It is based on the observation that, forany �xed v0; v1; :::; vt�1, the condition fG(s0; s1; :::; st�1)ij = vjgtj=1 constitutes asystem of t linear equations over GF(2b(k)) (in the variables s0; s1; :::; st�1) suchthat the equations are linearly-independent. (Thus, linear independence of certainexpressions yields statistical independence of the corresponding random variables.)We note that a construction analogous to Eq. (8.16) works for every �nite �eld(e.g., a �nite �eld of any prime cardinality), but the problem of providing an explicitrepresentation of such a �eld remains non-trivial also in other cases (e.g., considerthe problem of �nding a prime of size approximately 2b(k)). The latter fact is themain motivation for considering the following alternative construction for the caseof t = 2.The following construction uses (random) a�ne transformations (as possibleseeds). In fact, better performance (i.e., shorter seed length) is obtained by us-ing a�ne transformations a�ected by Toeplitz matrices. A Toeplitz matrix is a40In the common presentation of this t-wise independence generator, the length of the seed isdetermined as a function of the desired block-length and stretch. That is, given the parametersb and `0 � 2b, the seed length is set to t � b.

8.5. SPECIAL PURPOSE GENERATORS 359matrix with all diagonals being homogeneous (see Figure 8.4); that is, T = (ti;j)is a Toeplitz matrix if ti;j = ti+1;j+1 for all i; j. Note that a Toeplitz matrix isdetermined by its �rst row and �rst column (i.e., the values of t1;j 's and ti;1's).
+ =

m(k)

b(k)

Figure 8.4: An a�ne transformation a�ected by a Toeplitz matrix.Proposition 8.25 (alternative pairwise independence generator, see Figure 8.4):41Let b; `; `0;m : N!N such that `0(k) = `(k)=b(k) and m(k) = dlog2 `0(k)e =k � 2b(k) + 1. Associate f0; 1gn with the n-dimensional vector space over GF(2),and let v1; :::; v`0(k) be �xed distinct vectors in the m(k)-dimensional vector spaceover GF(2). For s 2 f0; 1gb(k)+m(k)�1 and r 2 f0; 1gb(k), letG(s; r) def= (Tsv1 + r ; Tsv2 + r ; :::; Tsv`0(k) + r) (8.17)where Ts is an b(k)-by-m(k) Toeplitz matrix speci�ed by the string s. Then G is apairwise independence generator of block-length b and stretch `.That is, given a seed that represents an a�ne transformation de�ned by an b(k)-by-m(k) Toeplitz matrix and a b(k)-dimensional vector, the generator outputs asequence of `0(k) � 2m(k) strings, each of length b(k). Note that k = 2b(k) +m(k) � 1, and that the stretching property requires `0(k) > k=b(k). The proof ofProposition 8.25 is left as an exercise (see Exercise 8.31). This proof is also basedon the observation that linear independence of certain expressions yields statisticalindependence of the corresponding random variables: here fG(s; r)ij = vjg2j=1 isa system of 2b(k) linear equations over GF(2) (in Boolean variables representingthe bits of s and r) such that the equations are linearly-independent. We mentionthat a construction analogous to Eq. (8.17) works for every �nite �eld.A stronger notion of e�cient generation. Ignoring the issue of �nding arepresentation for a large �nite �eld, both the foregoing constructions are e�cientin the sense that the generator's output can be produced in time that is polynomial41In the common presentation of this pairwise independence generator, the length of the seedis determined as a function of the desired block-length and stretch. That is, given the parametersb and `0, the seed length is set to 2b+ dlog2 `0e � 1.

360 CHAPTER 8. PSEUDORANDOM GENERATORSin its length. Actually, the aforementioned constructions satisfy a stronger notionof e�cient generation, which is useful in several applications. Speci�cally, thereexists a polynomial-time algorithm that given a seed, s 2 f0; 1gk, and a blocklocation i 2 [`0(k)] (in binary), outputs the ith block of the corresponding output(i.e., the ith block of G(s)). Note that, in the case of the �rst construction (capturedby Eq. (8.16)), this stronger notion depends on the ability to �nd a representationof GF(2b(k)) in poly(k)-time.42 Recall that this is possible in the case that b(k) isof the form 2 � 3e.8.5.1.2 Applications (a brief review)Pairwise independence generators do su�ce for a variety of applications (cf., [236,160]). In particular, we mention the application to sampling discussed in Ap-pendix D.3, and the derandomization of the fast parallel algorithm for the MaximalIndependent Set problem. This derandomization relies on the fact that the analysisof the randomized algorithm only relies on the hypothesis that some objects aredistributed in pairwise independent manner. Thus, this analysis holds also whenthese objects are selected using a pairwise independence generator. In general,pairwise independence generators do su�ce to fool distinguishers that are derivedfrom some natural and interesting randomized algorithms.Referring to Eq. (8.16), we remark that, for any constant t � 2, the cost ofderandomization (i.e., going over all 2k possible seeds) is exponential in the block-length (because b(k) = k=t). On the other hand, the number of blocks is at mostexponential in the block-length (because `0(k) � 2b(k)), and so if a larger numberof blocks is needed, then we can arti�cially increase the block-length in order toaccommodate this (i.e., set (�k) = log2 `0(k)). Thus, the cost of derandomization ispolynomial in max(`0(k); 2b0(k)), where `0(k) denotes the desired number of blocksand b0(k) the desired block-length. It follows that whenever the analysis of arandomized algorithm can be based on a constant amount of independence betweenfeasibly-many random choices, each taken within a domain of feasible size, then afeasible derandomization is possible.8.5.2 Small-Bias GeneratorsAs stated in x8.5.1.2, O(1)-wise independence generators allow for the e�cient de-randomization of any e�cient randomized algorithm the analysis of which is onlybased on a constant amount of independence between the bits of its random-tape.This restriction is due to the fact that t-wise independence generators of stretch` require a seed of length
(t � log `). Trying to go beyond constant-independencein such derandomizations (while using seeds of length that is logarithmic in thelength of the pseudorandom sequence) was the original motivation of the notionof small-bias generators. Speci�cally, as we shall see in x8.5.2.2, small-bias genera-tors yield meaningful approximations of t-wise independence sequences (based onlogarithmic-length seeds).42For the basic notion of e�ciency, it su�ces to �nd a representation of GF(2b(k)) in poly(`(k))-time, which can be done by an exhaustive search in the case that b(k) = O(log `(k)).

8.5. SPECIAL PURPOSE GENERATORS 361While the aforementioned type of derandomizations remains an important ap-plication of small-bias generators, the latter are of independent interest and havefound numerous other applications. In particular, small-bias generators fool \globaltests" that examine the entire output sequence and not merely a �xed number ofpositions in it (as in the case of limited independence generators). Speci�cally, asmall-bias generator produces a sequence of bits that fools any linear test (i.e., atest that computes a �xed linear combination of the bits).For " : N ! [0; 1], an "-bias generator with stretch function ` is a relativelye�cient deterministic algorithm (e.g., working in poly(`(k)) time) that expands ak-bit long random seed into a sequence of `(k) bits such that for any �xed non-empty set S � f1; :::; `(k)g the bias of the output sequence over S is at most"(k). The bias of a sequence of n (possibly dependent) Boolean random variables�1; :::; �n 2 f0; 1g over a set S � f1; ::; ng is de�ned as2 � ����Pr[�i2S�i = 1]� 12 ���� = jPr[�i2S�i = 1]� Pr[�i2S�i = 0]j: (8.18)The factor of 2 was introduced so to make these biases correspond to the Fourier co-e�cients of the distribution (viewed as a function from f0; 1gn to the reals). To seethe correspondence replace f0; 1g by f�1g, and substitute xor by multiplication.The bias with respect to a set S is thus written as�����Pr "Yi2S �i = +1#� Pr "Yi2S �i = �1#����� = �����E"Yi2S �i#�����; (8.19)which is merely the (absolute value of the) Fourier coe�cient corresponding to S.8.5.2.1 ConstructionsRelatively e�cient small-bias generators with exponential stretch and exponentiallyvanishing bias are known.Theorem 8.26 (small-bias generators):43 For some universal constant c > 0, let` :N!N and " :N! [0; 1] such that `(k) � "(k) � exp(k=c). Then, there exists an"-bias generator with stretch function ` operating in time that is polynomial in thelength of its output.In particular, we may have `(k) = exp(k=2c) and "(k) = exp(�k=2c). Three simpleconstructions of small-bias generators that satisfy Theorem 8.26 are known (see [9]).One of these constructions is based on Linear Feedback Shift Registers (LFSRs),where the seed of the generator is used to determine both the \feedback rule" andthe \start sequence" of the LFSR. Speci�cally, a feedback rule of a t-long LFSR isan irreducible polynomial of degree t over GF(2), denoted f(x) = xt +Pt�1j=0 fjxj43In the common presentation of this generator, the length of the seed is determined as afunction of the desired bias and stretch. That is, given the parameters " and `, the seed lengthis set to c � log(`="). We comment that using [9] the constant c is merely 2 (i.e., k � 2 log2(`=")),whereas using [169] k � log2 `+ 4 log2(1=").

362 CHAPTER 8. PSEUDORANDOM GENERATORSwhere f0 = 1, and the (`-bit long) sequence produced by the corresponding LFSRbased on the start sequence s0s1 � � � st�1 2 f0; 1gt is de�ned as r0r1 � � � r`�1, whereri = � si if i 2 f0; 1; :::; t� 1gPt�1j=0 fj � ri�t+j if i 2 ft; t+ 1; :::; `� 1g (8.20)(see Figure 8.5). As stated previously, in the corresponding small-bias generatorthe k-bit long seed is used for selecting an almost uniformly distributed feedbackrule f (i.e., a random irreducible polynomial of degree t = k=2) and a uniformlydistributed start sequence s (i.e., a random t-bit string).44 The corresponding`(k)-bit long output r = r0r1 � � � r`(k)�1 is computed as in Eq. (8.20).
r rr ri-ti-t-1 r ri-1 iri-t+1

f
0

f f
1 t-1

Σ

0 1

Figure 8.5: The LFSR small-bias generator (for t = k=2).A stronger notion of e�cient generation. As in Section 8.5.1.1, we note thatthe aforementioned constructions satisfy a stronger notion of e�cient generation,which is useful in several applications. That is, there exists a polynomial-timealgorithm that given a k-bit long seed and a bit location i 2 [`(k)] (in binary),outputs the ith bit of the corresponding output. Speci�cally, in case of the LFSRconstruction, given a seed f0; :::; f(k=2)�1; s0; :::; s(k=2)�1 and a bit location i 2 [`(k)](in binary), the algorithm outputs the ith bit of the corresponding output (i.e., ri).4544Note that an implementation of this generator requires an algorithm for selecting an almostrandom irreducible polynomial of degree t =
(k). A simple algorithm proceeds by enumeratingall irreducible polynomials of degree t, and selecting one of them at random. This algorithm canbe implemented (using t random bits) in exp(t)-time, which is poly(`(k)) if `(k) = exp(
(k)). Apoly(t)-time algorithm that uses O(t) random bits is described in [9, Sec. 8].45The assertion is based on the fact that0BBB@ ri�t+1ri�t+2...ri�1ri 1CCCA =0BBB@ 0 1 0 � � � 00 0 1 � � � 0... � � � ...0 0 0 � � � 1f0 f1 f2 � � � ft�1 1CCCA0BBB@ ri�tri�t+1...ri�2ri�1 1CCCA =0BBB@ 0 1 0 � � � 00 0 1 � � � 0... � � � ...0 0 0 � � � 1f0 f1 f2 � � � ft�1 1CCCAi�t+10BBB@ s0s1...st�2st�1 1CCCA

8.5. SPECIAL PURPOSE GENERATORS 3638.5.2.2 Applications (a brief review)An archetypical application of small-bias generators is for producing short and ran-dom \�ngerprints" (or \digests") of strings such that equality/inequality amongstrings is (probabilistically) reected in equality/inequality between their corre-sponding �ngerprints. The key observation is that checking whether or not x = yis probabilistically reducible to checking whether the inner product modulo 2 of xand r equals the inner product modulo 2 of y and r, where r is produced by a small-bias generator G. Thus, the pair (s; v), where s is a random seed to G and v equalsthe inner product modulo 2 of z and G(s), serves as the randomized �ngerprint ofthe string z. One advantage of this reduction is that only few bits (i.e., the seedof the generator and the result of the inner product) needs to be \communicatedbetween x and y" in order to enable the checking (see Exercise 8.33). A relatedadvantage is the low randomness complexity of this reduction, which uses jsj ratherthan jG(s)j random bits, where jsj may be O(log jG(s)j). This low (i.e., logarith-mic) randomness-complexity underlies the application of small-bias generators tothe construction of PCP systems (see, e.g., x9.3.2.2) and amplifying reductions ofgap problems regarding the satis�ability of systems of equations (see Section 9.3.3and Exercise 10.6).Small-bias generators have been used in a variety of areas (e.g., inapproxima-tion, structural complexity, and applied cryptography; see references in [89, Sec3.6.2]). In addition, as shown next, small-bias generators seem an important toolin the design of various types of \pseudorandom" objects.Approximate independence generators. As hinted at the beginning of thissection, small-bias is related to approximate versions of limited independence.46Actually, even a restricted type of "-bias (in which only subsets of size t(k) arerequired to have bias upper-bounded by ") implies that any t(k) bits in the saidsequence are 2t(k)=2 � "(k)-close to Ut(k), where here we refer to the variation dis-tance (i.e., Norm-1 distance) between the two distributions. (The max-norm ofthe di�erence is bounded by "(k).)47 Combining Theorem 8.26 and the forego-ing upper-bound, and relying on the linearity of the construction presented inProposition 8.24, we obtain generators with double-exponential stretch (i.e., `(k) =exp(2
(k)) rather than `(k) = exp(
(k))) that are approximately t(k)-independent,for some non-constant t(k); see Exercise 8.40. Speci�cally, we may obtain genera-tors with stretch `(k) = 22
(k) producing bit sequences in which any t(k) =
(k)positions have variation distance at most "(k) = 2�
(k) from uniform; that is,such generators may have seed-length k = O(t(k) + log(1="(k)) + log log `(k)).In the corresponding result for the max-norm distance, it su�ces to have k =O(log(t(k)="(k)) + log log `(k)). Thus, whenever the analysis of a randomized al-gorithm can be based on a logarithmic amount of (almost) independence between46We warn that, unlike in the case of perfect independence, here we refer only to the distributionon �xed bit locations. See Exercise 8.32 for further discussion.47Both bounds are derived from the Norm2 bound on the di�erence vector (i.e., the di�erencebetween the two probability vectors). For details, see Exercise 8.34.

364 CHAPTER 8. PSEUDORANDOM GENERATORSfeasibly-many binary random choices, a feasible derandomization is possible (byusing an adequate generator of logarithmic seed length).Extensions to non-binary choices were considered in various works (see refer-ences in [89, Sec 3.6.2]). Some of these works also consider the related problem ofconstructing small \discrepancy sets" for geometric and combinatorial rectangles.t-universal set generators. Using the aforementioned upper-bound on the max-norm (of the deviation from uniform of any t locations), any "-bias generator yieldsa t-universal set generator, provided that " < 2�t. The latter generator outputssequences such that in every subsequence of length t all possible 2t patterns occur(i.e., each for at least one possible seed). Such generators have many applications.8.5.2.3 GeneralizationIn this subsection, we outline a generalization of the treatment of small-bias gen-erators to the generation of sequences over an arbitrary �nite �eld. Focusing onthe case of a �eld of prime characteristic, denoted GF(p), we �rst de�ne an ade-quate notion of bias. Generalizing Eq. (8.19), we de�ne the bias of a sequence ofn (possibly dependent) random variables �1; :::; �n 2 GF(p) with respect to the lin-ear combination (c1; :::; cn) 2 GF(p)n as E h!Pni=1 ci�ii, where ! denotes the pth(complex) root of unity (i.e., ! = �1 if p = 2). Referring to Exercise 8.42, we notethat upper-bounds on the biases of �1; :::; �n (with respect to any non-zero linearcombinations) yield upper-bounds on the distance of Pni=1 ci�i from the uniformdistribution over GF(p).We say that S � GF(p)n is an "-bias probability space if a uniformly selectedsequence in S has bias at most " with respect to any non-zero linear combinationover GF(p). (Whenever such a space is e�ciently constructible, it yields a corre-sponding "-biased generator.) We mention that the LFSR construction, outlinedin x8.5.2.1 and analyzed in Exercise 8.36, generalizes to GF(p) and yields an "-biasprobability space of size (at most) p2e, where e = dlogp(n=")e. Such constructionscan be used in applications that generalize those in x8.5.2.2.8.5.3 Random Walks on ExpandersIn this section we review generators that produce a sequence of values by taking arandom walk on a large graph that has a small degree but an adequate \mixing"property. Such a graph is called an expander, and by taking a random walk on itwe may generate a sequence of `0 values over its vertex set, while using a randomseed of length b+ (`0 � 1) � log2 d, where 2b denotes the number of vertices in thegraph and d denotes its degree. This seed length should be compared against the`0 � b random bits required for generating a sequence of `0 independent samplesfrom f0; 1gb (or taking a random walk on a clique of size 2b). Interestingly, as weshall see, the pseudorandom sequence (generated by the said random walk on anexpander) behaves similarly to a truly random sequence with respect to hitting any

8.5. SPECIAL PURPOSE GENERATORS 365�xed subset of f0; 1gb. Let us start by de�ning this property (or rather by de�ningthe corresponding hitting problem).De�nition 8.27 (the hitting problem): A sequence of (possibly dependent) ran-dom variables, denoted (X1; :::; X`0), over f0; 1gb is ("; �)-hitting if for any (target)set T � f0; 1gb of cardinality at least " � 2b, with probability at least 1� �, at leastone of these variables hits T ; that is, Pr[9i s.t. Xi2T] � 1� �.Clearly, a truly random sequence of length `0 over f0; 1gb is ("; �)-hitting for � =(1� ")`0 . The aforementioned \expander random walk generator" (to be describednext) achieves similar behavior. Speci�cally, for arbitrary small c > 0 (whichdepends on the degree and the mixing property of the expander), the generator'soutput is ("; �)-hitting for � = (1 � (1 � c) � ")`0 . To describe this generator, weneed to discuss expanders.Expanders. By expander graphs (or expanders) of degree d and eigenvalue bound� < d, we actually mean an in�nite family of d-regular graphs, fGNgN2S (S� N),such that GN is a d-regular graph over N vertices and the absolute value of alleigenvalues, save the biggest one, of the adjacency matrix of GN is upper-boundedby �. For simplicity, we shall assume that the vertex set of GN is [N] (althoughin some cases a somewhat more redundant representation is more convenient). Wewill refer to such a family as to a (d; �)-expander (for S). This technical de�nitionis related to the aforementioned notion of \mixing" (which refers to the rate atwhich a random walk starting at a �xed vertex reaches uniform distribution overthe graph's vertices). For further detail, see Appendix E.2.We are interested in explicit constructions of such graphs, by which we mean thatthere exists a polynomial-time algorithm that on input N (in binary), a vertex vin GN and an index i 2 f1; :::; dg, returns the ith neighbor of v. (We also requirethat the set S for which GN 's exist is su�ciently \tractable" { say that given anyn 2 N one may e�ciently �nd an s 2S such that n � s < 2n.) Several explicitconstructions of expanders are known (see Appendix E.2.2). Below, we rely on thefact that for every � > 0, there exist d and an explicit construction of a (d; � � d)-expander over f2b : b 2 Ng.48 The relevant (to us) fact about expanders is statednext.Theorem 8.28 (Expander Random Walk Theorem): Let G = (V;E) be an ex-pander graph of degree d and eigenvalue bound �. Let W be a subset of V and� def= jW j=jV j, and consider walks on G that start from a uniformly chosen vertexand take `0 � 1 additional random steps, where in each such step one uniformlyselects one out of the d edges incident at the current vertex and traverses it. Thenthe probability that such a random walk stays in W is at most� ���+ (1� �) � �d�`0�1 (8.21)48This can be obtained with d = poly(1=�). In fact d = O(1=�2), which is optimal, can beobtained too, albeit with graphs of sizes that are only approximately close to powers of two.

366 CHAPTER 8. PSEUDORANDOM GENERATORSThus, a random walk on an expander is \pseudorandom" with respect to the hittingproperty (i.e., when we consider hitting the set V nW and use " = 1��); that is, aset of density " is hit with probability 1��, where � = (1�")�(1�"+(�=d)�")`0�1 <(1� (1� (�=d)) � ")`0 . A proof of Theorem 8.28 is given in [134], while a proof ofan upper-bound that is weaker than Eq. (8.21) is outlined in Exercise 8.43. UsingTheorem 8.28 and an explicit (2t; � � 2t)-expander, we obtain a generator thatproduces sequences that are ("; �)-hitting for � that is almost optimal.Proposition 8.29 (The Expander Random Walk Generator):49� For every constant � > 0, consider an explicit construction of (2t; � � 2t)-expanders for f2n : n2Ng, where t2N is a su�ciently large constant. Forv 2 [2n] � f0; 1gn and i 2 [2t] � f0; 1gt, denote by �i(v) the vertex of thecorresponding 2n-vertex graph that is reached from vertex v when followingits ith edge.� For b; `0 : N!N such that k = b(k) + (`0(k) � 1) � t < `0(k) � b(k), and forv0 2 f0; 1gb(k) and i1; :::; i`0(k)�1 2 [2t], letG(v0; i1; ::::; i`0(k)�1) def= (v0; v1; ::::; v`0(k)�1); (8.22)where vj = �ij (vj�1).Then G has stretch `(k) = `0(k) � b(k), and G(Uk) is ("; �)-hitting for any " > 0and � = (1� (1� �) � ")`0(k).The stretch of G is maximized at b(k) � k=2 (and `0(k) = k=2t), but maximizingthe stretch is not necessarily the goal in all applications. In many applications,the parameters n, " and � are given, and the goal is to derive a generator thatproduces ("; �)-hitting sequences over f0; 1gn while minimizing both the lengthof the sequence and the amount of randomness used by the generator (i.e., theseed length). Indeed, Proposition 8.29 suggests using sequences of length `0 �"�1 log2(1=�) that are generated based on a random seed of length n+O(`0).Expander random-walk generators have been used in a variety of areas (e.g.,PCP and inapproximability (see [28, Sec. 11.1]), cryptography (see [90, Sec. 2.6]),and the design of various types of \pseudorandom" objects (see, in particular,Appendix D.3)).Chapter NotesFigure 8.6 depicts some of the notions of pseudorandom generators discussed inthis chapter. We highlight a key distinction between the case of general-purposepseudorandom generators (treated in Section 8.2) and the other cases (cf. Sec-tions 8.3 and 8.4): in the former case the distinguisher is more complex than the49In the common presentation of this generator, the length of the seed is determined as afunction of the desired block-length and stretch. That is, given the parameters b and `0, the seedlength is set to b+O(`0 � 1).

8.5. SPECIAL PURPOSE GENERATORS 367distinguisher's generator's stretch commentstype resources resources (i.e., `(k))gen.-purpose p(k)-time, 8 poly. p poly(k)-time poly(k) Assumes OW50canon. derandom. 2k=O(1)-time 2O(k)-time 2k=O(1) Assumes EvEC50space-bounded s(k)-space, s(k) < k O(k)-space 2k=O(s(k)) runs in timerobustness k=O(1)-space O(k)-space poly(k) poly(k) � `(k)t-wise independ. inspect t positions poly(k) � `(k)-time 2k=O(t) (e.g., pairwise)small bias linear tests poly(k) � `(k)-time 2k=O(1) � "(k)expander \hitting" poly(k) � `(k)-time `0(k) � b(k)random walk (0:5; 2�`0(k)=O(1))-hitting for f0; 1gb(k), with `0(k) = ((k � b(k))=O(1)) + 1.Figure 8.6: Pseudorandom generators at a glancegenerator, whereas in the latter cases the generator is more complex than the dis-tinguisher. Speci�cally, in the general-purpose case the generator runs in (some�xed) polynomial-time and needs to withstand any probabilistic polynomial-timedistinguisher. In fact, some of the proofs presented in Section 8.2 utilize the factthat the distinguisher can invoke the generator on seeds of its choice. In contrast,the Nisan-Wigderson Generator, analyzed in Theorem 8.18 (of Section 8.3), runsmore time than the distinguishers that it tries to fool, and the proof relies on thisfact in an essential manner. Similarly, the space-complexity of the space-resilientgenerators presented in Section 8.4 is higher than the space-bound of the distin-guishers that they fool.The general paradigm of pseudorandom generators. Our presentation,which views vastly di�erent notions of pseudorandom generators as incarnationsof a general paradigm, has emerged mostly in retrospect. We note that, while thehistorical study of the various notions was mostly unrelated at a technical level,the case of general-purpose pseudorandom generators served as a source of inspi-ration to most of the other cases. In particular, the concept of computationalindistinguishability, the connection between hardness and pseudorandomness, andthe equivalence between pseudorandomness and unpredictability, appeared �rst inthe context of general-purpose pseudorandom generators (and inspired the devel-opment of \generators for derandomization" and \generators for space boundedmachines"). Indeed, the study of the special-purpose generators (see Section 8.5)was unrelated to all of these.General-purpose pseudorandom generators. The concept of computationalindistinguishability, which underlies the entire computational approach to random-ness, was suggested by Goldwasser and Micali [107] in the context of de�ning secureencryption schemes. Indeed, computational indistinguishability plays a key role incryptography (see Appendix C). The general formulation of computational indis-tinguishability is due to Yao [237]. Using the hybrid technique of [107], Yao also50By the OW we denote the assumption that one-way functions exists. By EvEC we denote theassumption that the class E has (almost-everywhere) exponential circuit complexity.

368 CHAPTER 8. PSEUDORANDOM GENERATORSobserved that de�ning pseudorandom generators as producing sequences that arecomputationally indistinguishable from the corresponding uniform distribution isequivalent to de�ning such generators as producing unpredictable sequences. Thelatter de�nition originates in the earlier work of Blum and Micali [39].Blum and Micali [39] pioneered the rigorous study of pseudorandom generatorsand, in particular, the construction of pseudorandom generators based on somesimple intractability assumption. In particular, they constructed pseudorandomgenerators assuming the intractability of Discrete Logarithm problem over prime�elds. Their work also introduces basic paradigms that were used in all subsequentimprovements (cf., e.g., [237, 117]). We refer to the transformation of compu-tational di�culty into pseudorandomness, the use of hard-core predicates (alsode�ned in [39]), and the iteration paradigm (cf. Eq. (8.10)).Theorem 8.11 (by which pseudorandom generators exist if and only if one-wayfunctions exist) is due to H�astad, Impagliazzo, Levin and Luby [117], building onthe hard-core predicate of [98] (see Theorem 7.7). Unfortunately, the current proofof Theorem 8.11 is very complicated and un�t for presentation in a book of thecurrent nature. Presenting a simpler and tighter (cf. x8.2.7.1) proof is indeed animportant research project.Pseudorandom functions (further discussed in Appendix C.3.3) were de�nedand �rst constructed by Goldreich, Goldwasser and Micali [94]. We also mention(and advocate) the study of a general theory of pseudorandom objects initiatedin [95]. Finally, we mention that a more detailed treatment of general-purposepseudorandom generators is provided in [90, Chap. 3].Derandomization of time-complexity classes. As observed by Yao [237], anon-uniformly strong notion of pseudorandom generators yields improved deran-domization of time-complexity classes. A key observation of Nisan [172, 175] is thatwhenever a pseudorandom generator is used in this way, it su�ces to require thatthe generator runs in time that is exponential in its seed length, and so the generatormay have running-time greater than the distinguisher (representing the algorithmto be derandomized). This observation motivates the de�nition of canonical de-randomizers as well as the construction of Nisan and Wigderson [172, 175], whichis the basis for further improvements culminating in [127]. Part 1 of Theorem 8.19(i.e., the so-called \high end" derandomization of BPP) is due to Impagliazzo andWigderson [127], whereas Part 2 (the \low end") is from [175].The Nisan{Wigderson Generator [175] was subsequently used in several waystranscending its original presentation. We mention its application towards foolingnon-deterministic machines (and thus derandomizing constant-round interactiveproof systems) and to the construction of randomness extractors [221] (see overviewin xD.4.2.2).In contrast to the aforementioned derandomization results, which place BPP insome worst-case deterministic complexity class based on some non-uniform (worst-case) assumption, we now mention a result that places BPP in an average-casedeterministic complexity class (cf. Section 10.2) based on a uniform-complexity(worst-case) assumption. We refer speci�cally to a theorem, which is due to Im-

8.5. SPECIAL PURPOSE GENERATORS 369pagliazzo and Wigderson [128] (but is not presented in the main text), that assertsthe following: if BPP is not contained in EXP (almost everywhere) then BPP hasdeterministic sub-exponential time algorithms that are correct on all typical cases(i.e., with respect to any polynomial-time sampleable distribution).Pseudorandom with respect to space-bounded distinguishers. As statedin the �rst paper on the subject of \space-resilient pseudorandom generators" [4]51,this research direction was inspired by the derandomization result obtained via theuse of general-purpose pseudorandom generators. The latter result (necessarily)depends on intractability assumptions, and so the objective was identifying natu-ral classes of algorithms for which derandomization is possible without relying onintractability assumptions (but rather by relying on intractability results that areknown for the corresponding classes of distinguishers). This objective was achievedbefore for the case of constant-depth (randomized) circuits, but space-bounded(randomized) algorithms o�er a more appealing class that refers to natural al-gorithms. Fundamentally di�erent constructions of space-resilient pseudorandomgenerators were given in several works, but are superseded by the two incomparableresults mentioned in Section 8.4.2: Theorem 8.21 (a.k.a Nisan's Generator [173])and Theorem 8.22 (a.k.a the Nisan{Zuckerman Generator [176]). These two re-sults have been \interpolated" in [11]. Theorem 8.23 (BPL � SC) was proved byNisan [174].Special Purpose Generators. The various generators presented in Section 8.5were not inspired by any of the other types of pseudorandom generator (nor even bythe generic notion of pseudorandomness). Pairwise-independence generator wereexplicitly suggested in [53] (and are implicit in [49]). The generalization to t-wiseindependence (for t � 2) is due to [6]. Small-bias generators were �rst de�ned andconstructed by Naor and Naor [169], and three simple constructions were subse-quently given in [9]. The Expander Random Walk Generator was suggested byAjtai, Komlos, and Szemer�edi [4], who discovered that random walks on expandergraphs provide a good approximation to repeated independent attempts with re-spect to hitting any �xed subset of su�cient density (within the vertex set). Theanalysis of the hitting property of such walks was subsequently improved, culmi-nating in the bound cited in Theorem 8.28, which is taken from [134, Cor. 6.1].(The foregoing historical notes do not mention several technical contributions thatplayed an important role in the development of the area. For further details, thereader is referred to [89, Chap. 3]. In fact, the current chapter is a revision of [89,Chap. 3], providing signi�cantly more details for the main topics, and omitting rela-tively secondary material (a revision of which appears in Appendices D.3 and D.4.)We mention that an alternative treatment of pseudorandomness, which putsmore emphasis on the relation between various techniques, is provided in [228]. Inparticular, the latter text highlights the connections between information theoretic51This paper is more frequently cited for the Expander Random Walk technique, which it hasintroduced.

370 CHAPTER 8. PSEUDORANDOM GENERATORSand computational phenomena (e.g., randomness extractors and canonical deran-domizers), while the current text tends to decouple the two (see, e.g., Section 8.3and Appendix D.4).ExercisesExercise 8.1 Show that placing no computational requirements on the genera-tor enables unconditional results regarding \generators" that fool any family ofsubexponential-size circuits. That is, making no computational assumptions, provethat there exist functions G : f0; 1g� ! f0; 1g� such that fG(Uk)gk2N is (strongly)pseudorandom, while jG(s)j = 2jsj for every s 2 f0; 1g�. Furthermore, show thatG can be computed in double-exponential time.Guideline: Use the Probabilistic Method (cf. [10]). First, for any �xed circuit C :f0; 1gn ! f0; 1g, upper-bound the probability that for a random set S � f0; 1gn of size2n=2 the absolute value of Pr[C(Un) = 1] � (jfx 2 S : C(x) = 1gj=jSj) is larger than2�n=8. Next, using a union bound, prove the existence of a set S � f0; 1gn of size 2n=2such that no circuit of size 2n=5 can distinguish a uniformly distributed element of S froma uniformly distributed element of f0; 1gn, where distinguishing means with a probabilitygap of at least 2�n=8.Exercise 8.2 Prove the following corollaries to Proposition 8.3.1. Let A be a probabilistic polynomial-time algorithm solving a decision problem� : f0; 1g� ! f0; 1g (in BPP), and let AG be as in Construction 8.2. Provethat it is infeasible to �nd an x on which AG errs with probability that issigni�cantly higher than the error probability of A; that is, prove that oninput 1n it is infeasible to �nd an x 2 f0; 1gn such that Pr[AG(x) 6=�(x)] <Pr[A(x)=�(x)] + 0:01.2. Let A be a probabilistic polynomial-time algorithm solving the search as-sociated with the NP-relation R, and let AG be as in Construction 8.2.Prove that it is infeasible to �nd an x on which AG outputs a wrong so-lution; that is, assuming for simplicity that A has error probability 1=3,prove that on input 1n it is infeasible to �nd an x 2 f0; 1gn \ SR such thatPr[(x;AG(x)) 62 R] > 0:4, where SR def= fx : 9y (x; y) 2 Rg. Likewise, it isinfeasible to �nd an x 2 f0; 1gn n SR such that Pr[AG(x) 6= ?] > 0:4.Exercise 8.3 Prove that omitting the absolute value in Eq. (8.6) keeps De�ni-tion 8.4 intact.(Hint: consider D0(z) def= 1�D(z).)Exercise 8.4 Prove that computational indistinguishability is an equivalence re-lation (de�ned over pair of probability ensembles). Speci�cally, prove that thisrelation is transitive (i.e., X � Y and Y � Z implies X � Z).

8.5. SPECIAL PURPOSE GENERATORS 371Exercise 8.5 Prove that if fXngn2N and fYngn2N are computationally indistin-guishable and A is a probabilistic polynomial-time algorithm then fA(Xn)gn2N andfA(Yn)gn2N are computationally indistinguishable.Guideline: If D distinguishes the latter ensembles, then D0 such that D0(z) def= D(A(z))distinguishes the former.Exercise 8.6 In contrast to Exercise 8.5, show that the conclusion may not holdin case A is not computationally bounded. That is, show that there exists computa-tionally indistinguishable ensembles, fXngn2N and fYngn2N, and an exponential-time algorithm A such that fA(Xn)gn2N and fA(Yn)gn2N are not computationallyindistinguishable.Guideline: For any pair of ensembles fXngn2N and fYngn2N, consider the Booleanfunction f such that f(z) = 1 if and only if Pr[Xn = z] > Pr[Yn = z]. Show thatjPr[f(Xn) = 1] � Pr[f(Yn) = 1]j equals the statistical di�erence between Xn and Yn.Consider an adequate (approximate) implementation of f (e.g., approximate Pr[Xn = z]and Pr[Yn = z] up to �2�2jzj).Exercise 8.7 Show that the existence of pseudorandom generators implies the ex-istence of polynomial-time constructible probability ensembles that are statisticallyfar apart and yet are computationally indistinguishable.Guideline: Lower-bound the statistical distance between G(Uk) and U`(k), where G is apseudorandom generator with stretch `.Exercise 8.8 Relying on Theorem 7.7, provide a self-contained proof of the factthat the existence of one-way 1-1 functions implies the existence of polynomial-time constructible probability ensembles that are statistically far apart and yet arecomputationally indistinguishable.Guideline: Assuming that b is a hard-core of the function f , consider the ensemblesff(Un) �b(Un)gn2N and ff(Un) �U 01gn2N. Prove that these ensembles are computationallyindistinguishable by using the main ideas of the proof of Proposition 8.9. Show that if fis 1-1 then these ensembles are statistically far apart.Exercise 8.9 (following [87]) Prove that the su�cient condition in Exercise 8.7is in fact necessary. Recall that fXngn2N and fYngn2N are said to be statisticallyfar apart if, for some positive polynomial p and all su�ciently large n, the variationdistance betweenXn and Yn is greater than 1=p(n). Using the following three steps,prove that the existence of polynomial-time constructible probability ensembles thatare statistically far apart and yet are computationally indistinguishable implies theexistence of pseudorandom generators.1. Show that, without loss of generality, we may assume that the variationdistance between Xn and Yn is greater than 1� exp(�n).Guideline: For Xn and Yn as in the forgoing, consider Xn = (X(1)n ; :::; X(t(n))n)and Y n = (Y (1)n ; :::; Y (t(n))n), where the X(i)n 's (resp., Y (i)n 's) are independent copies

372 CHAPTER 8. PSEUDORANDOM GENERATORSof Xn (resp., Yn), and t(n) = O(n �p(n)2). To lower-bound the statistical di�erencebetween Xn and Y n, consider the set Sn def= fz : Pr[Xn= z] > Pr[Yn= z]g and therandom variable representing the number of copies in Xn (resp., Y n) that reside inSn.2. Using fXngn2N and fYngn2N as in Step 1, prove the existence of a false en-tropy generator, where a false entropy generator is a deterministic polynomial-time algorithm G such that G(Uk) has entropy e(k) but fG(Uk)gk2N is com-putationally indistinguishable from a polynomial-time constructible ensemblethat has entropy greater than e(�) + (1=2).Guideline: Let S0 and S1 be sampling algorithms such that Xn � S0(Upoly(n))and Yn � S1(Upoly(n)). Consider the generator G(�; r) = (�; S�(r)), and the distri-bution Zn that equals (U1; Xn) with probability 1=2 and (U1; Yn) otherwise. Notethat in G(U1; Upoly(n)) the �rst bit is almost determined by the rest, whereas in Znthe �rst bit is statistically independent of the rest.3. Using a false entropy generator, obtain one in which the excess entropy ispk, and using the latter construct a pseudorandom generator.Guideline: Use the ideas presented in x8.2.5.3 (i.e., the discussion of the inter-esting direction of the proof of Theorem 8.11).Exercise 8.10 (multiple samples vs single sample, a separation) In contrastto Proposition 8.6, prove that there exist two probability ensembles that are com-putational indistinguishable by a single sample, but are e�ciently distinguishableby two samples. Furthermore, one of these ensembles is the uniform ensemble andthe other has a sparse support (i.e., only poly(n) many strings are assigned a non-zero probability weight by the second distribution). Indeed, the second ensembleis not polynomial-time constructible.Guideline: Prove that, for every function d : f0; 1gn ! [0; 1], there exists two strings, xnand yn (in f0; 1gn), and a number p 2 [0; 1] such that Pr[d(Un)=1] = p�Pr[d(xn)=1]+(1�p) � Pr[d(yn)=1]. Generalize this claim to m functions, using m+ 1 strings and a convexcombination of the corresponding probabilities.52 Conclude that there exists a distributionZn with a support of size at most m+ 1 such that for each of the �rst (in lexicographicorder) m (randomized) algorithms A it holds that Pr[A(Un) = 1] = Pr[A(Zn)= 1]. Notethat with probability at least 1=(m+1), two independent samples of Zn are assigned thesame value, yielding a simple two-sample distinguisher of Un from Zn.Exercise 8.11 (amplifying the stretch function, an alternative construction)For G1 and ` as in Construction 8.7, consider G(s) def= G`(jsj)�jsj1 (s), where Gi1(x)denotes G1 iterated i times on x (i.e., Gi1(x) = Gi�11 (G1(x)) and G01(x) = x).Prove that G is a pseudorandom generator of stretch `. Reect on the advantagesof Construction 8.7 over the current construction (e.g., consider generation time).52That is, prove that for every m functions d1; :::; dm : f0; 1gn ! [0; 1] there exist m+1 stringsz(1)n ; :::; z(m+1)n and m+1 non-negative numbers p1; :::; pm+1 that sum-up to 1 such that for everyi 2 [m] it holds that Pr[di(Un)=1] =Pj pj � Pr[di(z(j)n)=1].

8.5. SPECIAL PURPOSE GENERATORS 373Guideline: Use a hybrid argument, with the ith hybrid being Gi1(U`(k)�i), for i =0; :::; `(k) � k. Note that Gi+11 (U`(k)�(i+1)) = Gi1(G1(U`(k)�i�1)) and Gi1(U`(k)�i) =Gi1(UjG1(U`(k)�i�1)j), and use Exercise 8.5.Exercise 8.12 (pseudorandom versus unpredictability) Prove that a prob-ability ensemble fZkgk2N is pseudorandom if and only if it is unpredictable. Forsimplicity, we say that fZkgk2N is (next-bit) unpredictable if for every probabilis-tic polynomial-time algorithm A it holds that Pri[A(Fi(Zk)) =Bi+1(Zk)] � (1=2)is negligible, where i 2 f0; :::; jZkj � 1g is uniformly distributed, and Fi(z) (resp.,Bi+1(z)) denotes the i-bit pre�x (resp., i+ 1st bit) of z.Guideline: Show that pseudorandomness implies polynomial-time unpredictability; thatis, polynomial-time predictability violates pseudorandomness (because the uniform ensem-ble is unpredictable regardless of computing power). Use a hybrid argument to prove thatunpredictability implies pseudorandomness. Speci�cally, the ith hybrid consists of the i-bit long pre�x of Zk followed by jZkj � i uniformly distributed bits. Thus, distinguishingthe extreme hybrids (which correspond to Zk and UjZkj) implies distinguishing a randompair of neighboring hybrids, which in turn implies next-bit predictability. For the laststep, use an argument as in the proof of Proposition 8.9.Exercise 8.13 Prove that a probability ensemble is unpredictable (from left toright) if and only if it is unpredictable from right to left (or in any other canonicalorder).Guideline: Use Exercise 8.12, and note that an ensemble is pseudorandom if and onlyif its reverse is pseudorandom.Exercise 8.14 Let f be 1-1 and length preserving, and b be a hard-core predicateof f . For any polynomial `, letting G0(s) def= b(f `(jsj)�1(s)) � � � b(f(s)) � b(s), provethat fG0(Uk)g is unpredictable (in the sense of Exercise 8.12).Guideline: Suppose towards the contradiction that, for a uniformly distributed j 2f0; :::; `(k) � 1g, given the j-bit long pre�x of G0(Uk) an algorithm A0 can predict thej + 1st bit of G0(Uk). That is, given b(f `(k)�1(s)) � � � b(f `(k)�j(s)), algorithm A0 predictsb(f `(k)�(j+1)(s)), where s is uniformly distributed in f0; 1gk. Consider an algorithm Athat given y = f(x) approximates b(x) by invoking A0 on input b(f j�1(y)) � � � b(y), wherej is uniformly selected in f0; :::; `(k)� 1g. Analyze the success probability of A using thefact that f induces a permutation over f0; 1gn, and thus b(f j(Uk)) � � � b(f(Uk)) � b(Uk) isdistributed identically to b(f `(k)�1(Uk)) � � � b(f `(k)�j(Uk)) � b(f `(k)�(j+1)(Uk)).Exercise 8.15 Prove that if G is a strong pseudorandom generator in the senseof De�nition 8.12 then it a pseudorandom generator in the sense of De�nition 8.1.Guideline: Consider a sequence of internal coin tosses that maximizes the probabilityin Eq. (8.2).Exercise 8.16 (strong computational indistinguishability) Provide a de�-nition of the notion of computational indistinguishability that underlies De�ni-tion 8.12 (i.e., indistinguishability with respect to (non-uniform) polynomial-sizecircuits). Prove the following two claims:

374 CHAPTER 8. PSEUDORANDOM GENERATORS1. Computational indistinguishability with respect to (non-uniform) polynomial-size circuits is strictly stronger than De�nition 8.4.2. Computational indistinguishability with respect to (non-uniform) polynomial-size circuits is invariant under (polynomially-many) multiple samples, even ifthe underlying ensembles are not polynomial-time constructible.Guideline: For Part 1, see the solution to Exercise 8.10. For Part 2 note that samplesas generated in the proof of Proposition 8.6 can be hard-wired into the distinguishingcircuit.Exercise 8.17 Show that Construction 8.7 may fail in the context of canonicalderandomizers. Speci�cally, prove that it fails for the canonical derandomizer G0that is presented in the proof of Theorem 8.18.Exercise 8.18 In relation to De�nition 8.14 (and assuming `(k) > k), show thatthere exists a circuit of size O(2k � `(k)) that violates Eq. (8.11).Guideline: The circuit may incorporate all values in the range of G and decide bycomparing its input to these values.Exercise 8.19 (constructing a set system for Theorem 8.18) For every >0, show a construction of a set system S as in Condition 2 of Theorem 8.18, withm(k) =
(k) and `(k) = 2
(k).Guideline: We assume, without loss of generality, that < 1, and set m(k) = (=2) � kand `(k) = 2m(k)=6. We construct the set system S1; :::; S`(k) in iterations, selectingSi as the �rst m(k)-subset of [k] that has su�ciently small intersections with each ofthe previous sets S1; :::; Si�1. The existence of such a set Si can be proved using theProbabilistic Method (cf. [10]). Speci�cally, for a �xed m(k)-subset S0, the probabilitythat a random m(k)-subset has intersection greater than m(k) with S0 is smaller than2�m(k)=6, because the expected intersection size is (=2) � m(k). Thus, with positiveprobability a randomm(k)-subset has intersection at most m(k) with each of the previousi�1 < `(k) = 2m(k)=6 subsets. Note that we construct Si in time � km(k)� � (i�1) �m(k) <2k � `(k) � k, and thus S is computable in time k2k � `(k)2 < 22k.Exercise 8.20 (pseudorandom versus unpredictability, by circuits) In con-tinuation to Exercise 8.12, show that if there exists a circuit of size s that distin-guishes Zn from U` with gap �, then there exists an i < ` = jZnj and a circuitof size s + O(1) that given an i-bit long pre�x of Zn guesses the i + 1st bit withsuccess probability at least 12 + �̀ .Guideline: De�ning hybrids as in Exercise 8.12, note that, for some i, the given circuitdistinguishes the ith hybrid from the i+ 1st hybrid with gap at least �=`.Exercise 8.21 Suppose that the sets Si's in Construction 8.17 are disjoint andthat f : f0; 1gm ! f0; 1g is T -inapproximable. Prove that for every circuit C ofsize T �O(1) it holds that jPr[C(G(Uk)) = 1]� Pr[C(U`) = 1]j < `=T .

8.5. SPECIAL PURPOSE GENERATORS 375Guideline: Prove the contrapositive using Exercise 8.20. Note that the value of thei + 1st bit of G(Uk) is statistically independent of the values of the �rst i bits of G(Uk),and thus predicting it yields an approximator for f . Indeed, such an approximator canbe obtained by �xing the the �rst i bits of G(Uk) via an averaging argument.Exercise 8.22 (Theorem 8.18, generalized) Let `;m;m0; T : N ! N satisfy`(k)2 + eO(`(k)2m0(k)) < T (m(k)). Suppose that the following two conditions hold:1. There exists an exponential-time computable function f :f0; 1g�!f0; 1g thatis T -inapproximable.2. There exists an exponential-time computable function S :N�N!2N such thatfor every k and i = 1; :::; `(k) it holds that S(k; i) � [k] and jS(k; i)j = m(k),and jS(k; i) \ S(k; j)j � m0(k) for every k and i 6= j.Prove that using G as de�ned in Construction 8.17, with Si = S(k; i), yields acanonical derandomizer with stretch `.Guideline: Following the proof of Theorem 8.18, just note that the circuit constructedfor approximating f(Um(k)) has size `(k)2 + `(k) � eO(2m0(k)) and success probability atleast (1=2) + (1=7`(k)).Exercise 8.23 (Part 2 of Theorem 8.19) Prove that if for every polynomial Tthere exists a T -inapproximable predicate in E then BPP � \">0Dtime(t"), wheret"(n) def= 2n" .Guideline: Using Proposition 8.15, it su�ces to present, for every polynomial p and everyconstant " > 0, a canonical derandomizer of stretch `(k) = p(k1="). Such a derandomizercan be presented by applying Exercise 8.22 using m(k) = pk, m0(k) = O(log k), andT (m(k)) = `(k)2 + eO(`(k)2m0(k)). Note that T is a polynomial, revisit Exercise 8.19 inorder to obtain a set system as required in Exercise 8.22 (for these parameters), and useTheorem 7.10.Exercise 8.24 (canonical derandomizers imply hard problems) Prove thatthe hardness hypothesis made in each part of Theorem 8.19 is essential for the ex-istence of a corresponding canonical derandomizer. More generally, prove that theexistence of a canonical derandomizer with stretch ` implies the existence of apredicate in E that is T -inapproximable for T (n) = `(n)1=O(1).Guideline: We focus on obtaining a predicate in E that cannot be computed by circuitsof size `, and note that the claim follows by applying the techniques in x7.2.1.3. Given acanonical derandomizer G : f0; 1gk ! f0; 1g`(k), we consider the predicate f : f0; 1gk+1 !f0; 1g that satis�es f(x) = 1 if and only if there exists s 2 f0; 1gjxj�1 such that x is a pre�xof G(s). Note that f is in E and that an algorithm computing f yields a distinguisher ofG(Uk) and U`(k).Exercise 8.25 (limitations on the stretch of (s; ")-pseudorandom generators)Referring to De�nition 8.20, establish the following upper-bounds on the stretch `of (s; ")-pseudorandom generators.

376 CHAPTER 8. PSEUDORANDOM GENERATORS1. If s(k) � 2 and "(k) � 1=2 then `(k) < "(k) � (k + 2) � 2k+2�s(k).2. For every s(k) � 1 and "(k) < 1 it holds that `(k) < 2k.Guideline: Part 2 follows by combining Exercises 8.37 and 8.38. For Part 1, considertowards the contradiction a generator of stretch `(k) = "(k) � (k + 2) � 2k+2�s(k) and anenumeration, �(1); :::; �(2k) 2 f0; 1g`(k), of all 2k outputs of the generator (on k-bit longseeds). Construct a non-uniform automaton of space s that accepts x1 � � �x`(k) 2 f0; 1g`(k)if for some i 2 [`(k)=(k + 2)] it holds that x(i�1)�(k+2)+1 � � �xi�(k+2) equals some string inSi, where Si contains the projection of the strings �((i�1)�2s(k)�1+1); :::; �(i�2s(k)�1) onthe coordinates (i� 1) � (k + 2) + 1; :::; i � (k + 2). Note that such an automaton acceptsat least (`(k)=(k + 2)) � 2s(k)�1 = 2"(k) � 2k of the possible outputs of the generator,whereas a random (`(k)-bit long) string is accepted with probability at most (`(k)=(k +2)) � 2(s(k)�1)�(k+2) = "(k)=2.Exercise 8.26 (on the existence of (s; ")-pseudorandom generators) In con-trast to Exercise 8.25, for any s and " such that s(k) < k � 2 log2(k="(k))�O(1),prove the existence of (non-e�cient) (s; ")-pseudorandom generators of stretch`(k) =
("(k)2 � 2k�s(k)=s(k)).Guideline: Use the Probabilistic Method as in Exercise 8.1. Note that non-uniformautomata of space s and time ` can be described by strings of length ` � 2s2s.Exercise 8.27 (multiple samples and space-bounded distinguishers) Supposethat two probability ensembles, fXkgk2N and fYkgk2N, are (s; ")-indistinguishableby non-uniform automata (i.e., the distinguishability-gap of any non-uniform au-tomaton of space s is bounded by the function "). For any function t : N!N ,prove that the ensembles f(X(1)k ; :::; X(t(k))k)gk2N and f(Y (1)k ; :::; X(t(k))k)gk2N are(s; t")-indistinguishable, where X(1)k through X(t(k))k and Y (1)k through Y (t(k))k areindependent random variables, with each X(i)k identical to Xk and each Y (i)k iden-tical to Yk.Guideline: Use the hybrid technique. When distinguishing the ith and (i+1)st hybrids,note that the �rst i blocks (i.e., copies of Xk) as well as the last t(k)� (i+1) blocks (i.e.,copies of Yk) can be �xed and hard-wired into the non-uniform distinguisher.Exercise 8.28 Provide a more explicit description of the generator outlined in theproof of Theorem 8.21.Guideline: for r 2 f0; 1gn and h(1); :::; h(t) 2 Hn, the generator outputs a 2t-longsequence of n-bit strings such that the ith string in this sequence equals h0(r), where h0is a composition of some of the h(j)'s.Exercise 8.29 (adaptive t-wise independence tests) Recall that a generatorG : f0; 1gk ! f0; 1g`0(k)�b(k) is called t-wise independent if for any t �xed block posi-tions, the distribution G(Uk) restricted to these t blocks is uniform over f0; 1gt�b(k).Prove that the output of a t-wise independence generator is (perfectly) indistin-guishable from the uniform distribution by any test that examines t of the blocks,

8.5. SPECIAL PURPOSE GENERATORS 377even if the examined blocks are selected adaptively (i.e., the location of the ith blockto be examined is determined based on the contents of the previously inspectedblocks).Guideline: First show that, without loss of generality, it su�ces to consider deterministic(adaptive) testers. Next, show that the probability that such a tester sees any �xedsequence of t values at the locations selected adaptively (in the generator's output) equals2�t�b(k), where b(k) is the block length.Exercise 8.30 (a t-wise independence generator) Prove that G as de�ned inProposition 8.24 produces a t-wise independent sequence over GF(2b(k)).Guideline: For every t �xed indices i1; :::; it 2 [`0(k)], consider the distribution ofG(Uk)i1;:::;it (i.e., the projection of G(Uk) on locations i1; :::; it). Show that for everysequence of t possible values v1; :::; vt 2 GF(2b(k)), there exists a unique seed s 2 f0; 1gksuch that G(s)i1;:::;it = (v1; :::; vt).Exercise 8.31 (pairwise independence generators) As a warm-up, considera construction analogous to the one in Proposition 8.25, except that here theseed speci�es an arbitrary a�ne b(k)-by-m(k) transformation. That is, for s 2f0; 1gb(k)�m(k) and r 2 f0; 1gb(k), where k = b(k) �m(k) + b(k), letG(s; r) def= (Asv1 + r ; Asv2 + r ; :::; Asv`0(k) + r) (8.23)where As is an b(k)-by-m(k) matrix speci�ed by the string s. Show that G asin Eq. (8.23) is a pairwise independence generator of block-length b and stretch`. (Note that a related construction appears in the proof of Theorem 7.7; seealso Exercise 7.5.) Next, show that G as in Eq. (8.17) is a pairwise independencegenerator of block-length b and stretch `.Guideline: The following description applies to both constructions. First note that forevery �xed i 2 [`0(k)], the ith element in the sequence G(Uk), denoted G(Uk)i, is uniformlydistributed in f0; 1gb(k). Actually, show that for every �xed s 2 f0; 1gk�b(k), it holds thatG(s; Ub(k))i is uniformly distributed in f0; 1gb(k). Next note that it su�ces to show that,for every j 6= i, conditioned on the value of G(Uk)i, the value of G(Uk)j is uniformlydistributed in f0; 1gb(k). The key technical detail is showing that, for any non-zero vectorv 2 f0; 1gm(k) and a uniformly selected s 2 f0; 1gk�b(k), it holds that Asv (resp., Tsv) isuniformly distributed in f0; 1gb(k). This is easy in case of a random b(k)-by-m(k) matrix,and can be proven also for a random Toeplitz matrix.Exercise 8.32 (adaptive t-wise independence tests, revisited) Note that incontrast to Exercise 8.29, with respect to non-perfect indistinguishability, there isa discrepancy between adaptive and non-adaptive tests that inspects t locations.1. Present a distribution over 2t�1-bit long strings in which every t �xed bitpositions are t � 2�t-close to uniform, but there exists a test that adaptivelyinspects t positions and distinguish this distribution from the uniform onewith gap 1/2.

378 CHAPTER 8. PSEUDORANDOM GENERATORSGuideline: Modify the uniform distribution over ((t� 1) + 2t�1)-bit long stringssuch that the �rst t � 1 locations indicate a bit position (among the rest) that isset to zero.2. On the other hand, prove that if every t �xed bit positions in a distributionX are "-close to uniform, then every test that adaptively inspects t positionscan distinguish X the uniform distribution with gap at most 2t � ".Guideline: See Exercise 8.29.Exercise 8.33 Suppose that G is an "-bias generator with stretch `. Show thatequality between the `(k)-bit strings x and y can be probabilistically checked (witherror probability (1 + ")=2) by comparing the inner product modulo 2 of x andG(s) to the inner product modulo 2 of y and G(s), where s 2 f0; 1gk is selecteduniformly.(Hint: reduce the problem to the special case in which y = 0`(k).)Exercise 8.34 (bias versus statistical di�erence from uniform) Let X bea random variable assuming values in f0; 1gt. Prove that if X has bias at most "over any non-empty set then the statistical di�erence between X and Ut is at most2t=2 � ", and that for every x 2 f0; 1gt it holds that Pr[X = x] = 2�t � ".Guideline: Consider the probability function p : f0; 1gt ! [0; 1] de�ned by p(x) def=Pr[X = x], and let �(x) def= p(x)� 2�t denote the deviation of p from the uniform proba-bility function. Viewing the set of real functions over f0; 1gt as a 2t-dimensional vectorspace, consider two orthonormal bases for this space. The �rst basis consists of the(Kroniker) functions fk�g�2f0;1gt such that k�(x) = 1 if x = � and k�(x) = 0 other-wise. The second basis consists of the (normalize Fourier) functions ffSgS�[t] de�ned byfS(x1 � � �xt) def= 2�t=2Qi2S(�1)xi (where f; � 2�t=2).53 Note that the bias of X over anyS 6= ; equals jPx p(x) � 2t=2fS(x)j, which in turn equals 2t=2jPx �(x)fS(x)j. Thus, forevery S (including the empty set), we have jPx �(x)fS(x)j � 2�t=2", which means thatthe representation of � in the normalize Fourier basis is by coe�cients that have each anabsolute value of at most 2�t=2". It follows that the Norm-2 of this vector of coe�cientsis upper-bounded by p2t � (2�t=2")2 = ", and the two claims follow by noting that theyrefer to norms of � according to the Kroniker basis. In particular, Norm-2 is preservedunder orthonormal bases, the max-norm is upper-bounded by Norm-2, and Norm-1 isupper-bounded by p2t times the value of the Norm-2.Exercise 8.35 (on the existence of (non-explicit) small-bias generators)Prove that, for k = log2(`(k)="(k)2) + O(1), there exists a function G : f0; 1gk !f0; 1g`(k) such that G(Uk) has bias at most "(k) over any non-empty subset of[`(k)].Guideline: Use the Probabilistic Method as in Exercise 8.1.53Verify that both bases are indeed orthogonal (i.e.,Px k�(x)k�(x) = 0 for every � 6= � andPx fS(x)fT (x) = 0 for every S 6= T) and normal (i.e.,Px k�(x)2 = 1 andPx fS(x)2 = 1).

8.5. SPECIAL PURPOSE GENERATORS 379Exercise 8.36 (The LFSR small-bias generator (following [9])) Using thefollowing guidelines (and letting t = k=2), analyze the construction outlined fol-lowing Theorem 8.26 (and depicted in Figure 8.5):1. Prove that ri equalsPt�1j=0 c(f;i)j � sj , where c(f;i)j is the coe�cient of zj in the(degree t � 1) polynomial obtained by reducing zi modulo the polynomialf(z) (i.e., zi �Pt�1j=0 c(f;i)j zj (mod f(z))).Guideline: Recall that zt � Pt�1j=0 fjzj (mod f(z)), and thus for every i � tit holds that zi � Pt�1j=0 fjzi�t+j (mod f(z)). Note the correspondence to ri =Pt�1j=0 fj � ri�t+j.2. For any non-empty S � f0; :::; `(k) � 1g, evaluate the bias of the sequencer0; :::; r`(k)�1 over S, where f is a random irreducible polynomial of degree tand s = (s0; :::; st�1) 2 f0; 1gt is uniformly distributed. Speci�cally:(a) For a �xed f and random s 2 f0; 1gt, prove that Pi2S ri has non-zerobias if and only if f(z) divides Pi2S zi.(Hint: Note thatPi2S ri =Pt�1j=0Pi2S c(f;i)j sj , and use Item 1.)(b) Prove that the probability that a random irreducible polynomial of de-gree t divides Pi2S zi is �(`(k)=2t).(Hint: A polynomial of degree n can be divided by at most n=d di�erent irreduciblepolynomials of degree d. On the other hand, the number of irreducible polynomialsof degree d over GF(2) is �(2d=d).)Conclude that for random f and s, the sequence r0; :::; r`(k)�1 has biasO(`(k)=2t).Note that an implementation of the LFSR generator requires a mapping of randomk=2-bit long string to almost random irreducible polynomials of degree k=2. Such amapping can be constructed in exp(k) time, which is poly(`(k)) if `(k) = exp(
(k)).A more e�cient mapping that uses a O(k)-bit long seek is described in [9, Sec. 8].Exercise 8.37 (limitations on small-bias generators) LetG be an "-bias gen-erator with stretch `, and view G as a mapping from GF(2)k to GF(2)`(k). As such,each bit in the output of G can be viewed as a polynomial54 in the k input variables(each ranging in GF(2)). Prove that if "(k) < 1 and each of these polynomials hastotal degree at most d, then `(k) �Pdi=1 �ki�. Derive the following corollaries:1. If "(k) < 1 then `(k) < 2k (regardless of d).552. If "(k) < 1 and `(k) > k then G cannot be a linear transformation.5654Recall that every Boolean function over GF(p) can be expressed as a polynomial of individualdegree at most p� 1.55This upper-bound is optimal, because (e�cient) "-bias generators of stretch `(k) = poly("(k))�2k do exists (see [169]).56In contrast, bilinear "-bias generators do exist; for example, G(s) = (s; b(s)), whereb(s1; :::; sk) = Pk=2i=1 sis(k=2)+i mod 2, is an "-bias generator with "(k) = exp(�
(k)). (Hint:Focusing on bias over sets that include the last output bit, prove that without loss of generalityit su�ces to analyze the bias of b(Uk).)

380 CHAPTER 8. PSEUDORANDOM GENERATORSGuideline (for the main claim): Note that, without loss of generality, all the afore-mentioned polynomials have a free term equal to zero (and have individual degree atmost 1 in each variable). Next, consider the vector space spanned by all d-monomialsover k variables (i.e., monomial having at most d variables). Since "(k) < 1, the poly-nomials representing the output bits of G must correspond to a sequence of independentvectors in this space.Exercise 8.38 (a sanity check for space-bounded pseudorandomness) Thefollowing fact is suggested as a sanity check for candidate pseudorandom genera-tors with respect to space-bounded automata. The fact (to be proven as an ex-ercise) is that, for every "(�) and s(�) such that s(k) � 1 for every k, if G is(s; ")-pseudorandom (as per De�nition 8.20), then G is an "-bias generator.Exercise 8.39 In contrast to Exercise 8.38, prove that there exist exp(�
(n))-bias distributions over f0; 1gn that are not (2; 0:666)-pseudorandom.Guideline: Show that the uniform distribution over the set(�1 � � ��n : nXi=1 �i � 0 (mod 3))has bias exp(�
(n)).Exercise 8.40 (approximate t-wise independence generators (following [169]))Combining a small-bias generator as in Theorem 8.26 with the t-wise indepen-dence generator of Eq. (8.16), and relying on the linearity of the latter, con-struct a generator producing `-bit long sequences in which any t positions areat most "-away from uniform (in variation distance), while using a seed of lengthO(t + log(1=") + log log `). (For max-norm a seed of length O(log(t=") + log log `)su�ces.)Guideline: First note that, for any t; `0 and b � log2 `0, the transformation of Eq. (8.16)can be implemented by a �xed linear (over GF(2)) transformation of a t � b-bit seed intoan `-bit long sequence, where ` = `0 � b. It follows that, for b = log2 `0, there exists a �xedGF(2)-linear transformation T of a random seed of length t � b into a t-wise independentbit sequence of the length ` (i.e., T Ut�b is t-wise independent over f0; 1g`). Thus, everyt rows of T are linearly independent. The key observation is that when we replace theaforementioned random seed by an "0-bias sequence, every i � t positions in the outputsequence have bias at most "0 (because they de�ne a non-zero linear test on the bits of the"0-bias sequence). Note that the length of the new seed (used to produce "0-bias sequenceof length t �b) is O(log tb="0). Applying Exercise 8.34, we conclude that any t positions areat most 2t=2 � "0-away from uniform (in variation distance). Recall that this was obtainedusing a seed of length O(log(t="0)+ log log `), and the claim follows by using "0 = 2�t=2 �".Exercise 8.41 (small-bias generator and error-correcting codes) Show a cor-respondence between "-bias generators of stretch ` and binary linear error-correctingcodes (cf. Appendix E.1) mapping `(k)-bit long strings to 2k-bit long strings suchthat every two codewords are at distance (1� "(k)) � 2k�1 apart.

8.5. SPECIAL PURPOSE GENERATORS 381Guideline: Associate f0; 1gk with [2k]. Then, a generator G : [2k] ! f0; 1g`(k) corre-sponds to the code C : f0; 1g`(k) ! f0; 1g2k such that, for every i 2 [`(k)] and j 2 [2k],the ith bit of G(j) equals the jth bit of C(0i�110`(k)�i).Exercise 8.42 (on the bias of sequences over a �nite �eld) For a prime p,let � be a random variable assigned values in GF(p) and �(v) def= Pr[� = v]� (1=p).Prove that maxv2GF(p)fj�(v)jg is upper-bounded by b def= maxc2f1;:::;p�1gfkE[!c�]kg,where ! denotes the pth (complex) root of unity, and thatPv2GF(p) j�(v)j is upper-bounded by pp � b.Guideline: Analogously to Exercise 8.34, view probability distributions over GF(p) asp-dimensional vectors, and consider two bases for the set of complex functions over GF(p):the Kroniker basis (i.e., ki(x) = 1 if x = i and ki(x) = 0) and the (normalize) Fourierbasis (i.e., fi(x) = p�1=2 �!ix). Note that the biases of � corresponds to the inner productsof � with the non-constant Fourier functions, whereas the distances of � from the uniformdistribution correspond to the inner products of � with the Kroniker functions.Exercise 8.43 (a version of the Expander Random Walk Theorem) Usingnotations as in Theorem 8.28, prove that the probability that a random walk oflength `0 stays in W is at most (� + (�=d)2)`0=2. In fact, prove a more generalclaim that refers to the probability that a random walk of length `0 intersectsW0 �W1 � � � � �W`0�1. The claimed upper-bound isp�0 � `0�1Yi=1 q�i + (�=d)2; (8.24)where �i def= jWij=jV j.Guideline: View the random walk as the evolution of a corresponding probability vectorunder suitable transformations. The transformations correspond to taking a random stepin the graph and to passing through a \sieve" that keeps only the entries that correspondto the current set Wi. The key observation is that the �rst transformation shrinks thecomponent that is orthogonal to the uniform distribution (which is the �rst eigenvalueof the adjacency matrix of the expander), whereas the second transformation shrinks thecomponent that is in the direction of the uniform distribution. For further details, seexE.2.1.3.Exercise 8.44 Using notations as in Theorem 8.28, prove that the probabilitythat a random walk of length `0 visits W more than �`0 times is smaller than� `0�`0� � (�+(�=d)2)�`0=2. For example, for � = 1=2 and �=d < p�, we get an upper-bound of (32�)`0=4. We comment that much better bounds can be obtained (cf.,e.g., [119]).Guideline: Use a union bound on all possible sequences of m = �`0 visits, and upper-bound the probability of visitingW in steps j1; :::; jm by applying Eq. (8.24) withWi =Wif i 2 fj1; :::; jmg and W = V otherwise.

382 CHAPTER 8. PSEUDORANDOM GENERATORS

Chapter 9Probabilistic Proof SystemsA proof is whatever convinces me.Shimon Even (1935{2004)The glory attached to the creativity involved in �nding proofs makes us forget thatit is the less glori�ed process of veri�cation that gives proofs their value. Conceptu-ally speaking, proofs are secondary to the veri�cation process; whereas technicallyspeaking, proof systems are de�ned in terms of their veri�cation procedures.The notion of a veri�cation procedure presumes the notion of computation andfurthermore the notion of e�cient computation. This implicit stipulation is madeexplicit in the de�nition of NP, where e�cient computation is associated withdeterministic polynomial-time algorithms. However, as argued next, we can gain alot if we are willing to take a somewhat non-traditional step and allow probabilisticveri�cation procedures.In this chapter, we shall study three types of probabilistic proof systems, calledinteractive proofs, zero-knowledge proofs, and probabilistic checkable proofs. In eachof these three cases, we shall present fascinating results that cannot be obtainedwhen considering the analogous deterministic proof systems.Summary: The association of e�cient procedures with deterministicpolynomial-time procedures is the basis for viewing NP-proof systemsas the canonical formulation of proof systems (with e�cient veri�ca-tion procedures). Allowing probabilistic veri�cation procedures and,moreover, ruling by statistical evidence gives rise to various types ofprobabilistic proof systems. Indeed, these probabilistic proof systemscarry a probability of error (which is explicitly bounded and can bereduced by successive application of the proof system), yet they of-fer various advantages over the traditional (deterministic and errorless)proof systems.Randomized and interactive veri�cation procedures, giving rise to inter-active proof systems, seem much more powerful than their deterministic383

384 CHAPTER 9. PROBABILISTIC PROOF SYSTEMScounterparts. In particular, such interactive proof systems exist for anyset in PSPACE � coNP (e.g., for the set of unsatis�ed propositionalformulae), whereas it is widely believed that some sets in coNP do nothave NP-proof systems (i.e., NP 6= coNP). We stress that a \proof"in this context is not a �xed and static object, but rather a randomized(and dynamic) process in which the veri�er interacts with the prover.Intuitively, one may think of this interaction as consisting of questionsasked by the veri�er, to which the prover has to reply convincingly.Such randomized and interactive veri�cation procedures allow for themeaningful conceptualization of zero-knowledge proofs, which are ofgreat theoretical and practical interest (especially in cryptography).Loosely speaking, zero-knowledge proofs are interactive proofs thatyield nothing (to the veri�er) beyond the fact that the assertion isindeed valid. For example, a zero-knowledge proof that a certain propo-sitional formula is satis�able does not reveal a satisfying assignment tothe formula nor any partial information regarding such an assignment(e.g., whether the �rst variable can assume the value true). Thus,the successful veri�cation of a zero-knowledge proof exhibit an extremecontrast between being convinced of the validity of a statement andlearning nothing else (while receiving such a convincing proof). It turnsout that, under reasonable complexity assumptions (i.e., assuming theexistence of one-way functions), every set in NP has a zero-knowledgeproof system.NP-proofs can be e�ciently transformed into a (redundant) form thato�ers a trade-o� between the number of locations (randomly) exam-ined in the resulting proof and the con�dence in its validity. In par-ticular, it is known that any set in NP has an NP-proof system thatsupports probabilistic veri�cation such that the error probability de-creases exponentially with the number of bits read from the allegedproof. These redundant NP-proofs are called probabilistically checkableproofs (or PCPs). In addition to their conceptually fascinating nature,PCPs are closely related to the study of the complexity of numerousnatural approximation problems.Introduction and PreliminariesConceptually speaking, proofs are secondary to the veri�cation process. Indeed,both in mathematics and in real-life, proofs are meaningful only with respect tocommonly agreed principles of reasoning, and the veri�cation process amounts tochecking that these principles were properly applied. Thus, these principles, whichare typically taken for granted, are more fundamental than any speci�c proof thatapplies them; that is, the mere attempt to reason about anything is based oncommonly agreed principles of reasoning.

385The commonly agreed principles of reasoning are associated with a veri�cationprocedure that distinguishes proper applications of these principles from improperones. A line of reasoning is considered valid with respect to such �xed principles(and is thus deemed a proof) if and only if it proceeds by a proper applicationsof these principles. Thus, a line of reasoning is considered valid if and only if it isaccepted by the corresponding veri�cation procedure. This means that, technicallyspeaking, proofs are de�ned in terms of a predetermined veri�cation procedure(or are de�ne with respect to such a procedure) . Indeed, this state of a�airs isbest illustrated in the formal study of proofs (i.e., logic), which is actually thestudy of formally de�ned proof systems: The point is that these proof systems arede�ned (often explicitly and sometimes only implicitly) in terms of their veri�cationprocedures.The notion of a veri�cation procedure presumes the notion of computation. Thisfact explains the historical interest of logicians in computer science (cf. [224, 54]).Furthermore, the veri�cation of proofs is supposed to be relatively easy, and hencea natural connection emerges between veri�cation procedures and the notion ofe�cient computation. This connection was made explicit by complexity theorists,and is captured by the de�nition of NP and NP-proof systems (cf. De�nition 2.5),which targets all e�cient veri�cation procedures.1Recall that De�nition 2.5 identi�es e�cient (veri�cation) procedures with de-terministic polynomial-time algorithms, and that it explicitly restricts the lengthof proofs to be polynomial in the length of the assertion. Thus, veri�cation isperformed in a number of steps that is polynomial in the length of the assertion.We comment that deterministic proof systems that allow for longer proofs (butrequire that veri�cation is e�cient in terms of the length of the alleged proof) canbe modeled as NP-proof systems by adequate padding (of the assertion).Indeed, NP-proofs provide the ultimate formulation of e�ciently veri�able proofs(i.e., proof systems with e�cient veri�cation procedures), provided that one asso-ciates e�cient procedures with deterministic polynomial-time algorithms. How-ever, as we shall see, we can gain a lot if we are willing to take a somewhatnon-traditional step and allow probabilistic (polynomial-time) algorithms and, inparticular, probabilistic veri�cation procedures.� Randomized and interactive veri�cation procedures seem much more powerfulthan their deterministic counterparts.� Such interactive proof systems allow for the construction of (meaningful)zero-knowledge proofs, which are of great conceptual and practical interest.� NP-proofs can be e�ciently transformed into a (redundant) form that sup-ports super-fast probabilistic veri�cation via very few random probes into thealleged proof.1In contrast, traditional proof systems are formulated based on rules of inference that seemnatural in the relevant context. The fact that these inference rules yield an e�cient veri�cationprocedure is merely a consequence of the correspondence between processes that seem naturaland e�cient computation.

386 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSIn all these cases, explicit bounds are imposed on the computational complexity ofthe veri�cation procedure, which in turn is personi�ed by the notion of a veri�er.Furthermore, in all these proof systems, the veri�er is allowed to toss coins andrule by statistical evidence. Thus, all these proof systems carry a probability oferror; yet, this probability is explicitly bounded and, furthermore, can be reducedby successive application of the proof system.One important convention. When presenting a proof system, we state allcomplexity bounds in terms of the length of the assertion to be proved (which isviewed as an input to the veri�er). Namely, when we say \polynomial-time" wemean time that is polynomial in the length of this assertion. Indeed, as will becomeevident, this is the natural choice in all the cases that we consider. Note that thisconvention is consistent with the foregoing discussion of NP-proof systems.2Notational Conventions. We denote by poly the set of all integer functionsthat are upper-bounded by a polynomial, and by log the set of all integer functionsbounded by a logarithmic function (i.e., f 2 log if and only if f(n) = O(log n)).All complexity measures mentioned in this chapter are assumed to be constructiblein polynomial-time.Organization. In Section 9.1 we present the basic de�nitions and results regard-ing interactive proof systems. The de�nition of an interactive proof systems is thestarting point for a discussion of zero-knowledge proofs, which is provided in Sec-tion 9.2. Section 9.3, which presents the basic de�nitions and results regardingprobabilistically checkable proofs (PCP), can be read independently of the othersections.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1).9.1 Interactive Proof SystemsIn light of the growing acceptability of randomized and interactive computations,it is only natural to associate the notion of e�cient computation with probabilisticand interactive polynomial-time computations. This leads naturally to the notionof an interactive proof system in which the veri�cation procedure is interactive andrandomized, rather than being non-interactive and deterministic. Thus, a \proof"in this context is not a �xed and static object, but rather a randomized (dynamic)process in which the veri�er interacts with the prover. Intuitively, one may think ofthis interaction as consisting of questions asked by the veri�er, to which the proverhas to reply convincingly.2Recall that De�nition 2.5 refers to polynomial-time veri�cation of alleged proofs, which inturn must have length that is bounded by a polynomial in the length of the assertion.

9.1. INTERACTIVE PROOF SYSTEMS 387The foregoing discussion, as well as the de�nition provided in Section 9.1.2,makes explicit reference to a prover, whereas a prover is only implicit in the tradi-tional de�nitions of proof systems (e.g., NP-proof systems). Before turning to theactual de�nition, we highlight and further discuss this issue as well as some otherconceptual issues.9.1.1 Motivation and PerspectiveWe shall discuss the various interpretations given to the notion of a proof in dif-ferent human contexts, and the attitudes that underly and/or accompany theseinterpretations. This discussion is aimed at emphasizing that the motivation forthe de�nition of interactive proof systems is not replacing the notion of a mathemat-ical proof, but rather capturing other forms of proofs that are of natural interest.We also discuss the roles of the prover and the veri�er, in these settings, and thegeneral notions of completeness and soundness.9.1.1.1 A static object versus an interactive processTraditionally in mathematics, a \proof" is a �xed sequence consisting of statementsthat are either self-evident or are derived from previous statements via self-evidentrules. Actually, both conceptually and technically, it is more accurate to substitutethe phrase \self-evident" by the phrase \commonly agreed" (because, at the lastaccount, self-evidence is a matter of common agreement). In fact, in the formalstudy of proofs (i.e., logic), the commonly agreed statements are called axioms,whereas the commonly agreed rules are referred to as derivation rules. We highlighta key property of mathematics proofs: these proofs are viewed as �xed (static)objects.In contrast, in other areas of human activity, the notion of a \proof" has amuch wider interpretation. In particular, a proof is not a �xed object but rathera process by which the validity of an assertion is established. For example, in thecontext of Law, standing a cross-examination by an opponent, who may ask toughand/or tricky questions, is considered a proof of the facts claimed by the witness.Likewise, various debates that take place in daily life have an analogous potential ofestablishing claims and are then perceived as proofs. This perception is quite com-mon in philosophical and political debates, and applies even in scienti�c debates.Needless to say, a key property of such debates is their interactive (\dynamic")nature. Interestingly, the appealing nature of such \interactive proofs" is reectedin the fact that they are mimicked (in a rigorous manner) in some mathemati-cal proofs by contradiction, which emulate an imaginary debate with a potential(generic) skeptic.Another di�erence between mathematical proofs and various forms of \dailyproofs" is that, while the former aim at certainty, the latter are intended (\only")for establishing claims beyond any reasonable doubt. Arguably, an explicitly boundederror probability (as present in our de�nition of interactive proof systems) is anextremely strong form of establishing a claim beyond any reasonable doubt.

388 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSWe also note that, in mathematics, proofs are often considered more importantthan their consequence (i.e., the theorem). In contrast, in many daily situations,proofs are considered secondary (in importance) to their consequence. These con-icting attitudes are well-coupled with the di�erence between written proofs and\interactive" proofs: If one values the proof itself then one may insist on having itarchived, whereas if one only cares about the consequence then the way in whichit is reached is immaterial.Interestingly, the foregoing set of daily attitudes (rather than the mathematicalones) will be adequate in the current chapter, where proofs are viewed merely asa vehicle for the veri�cation of the validity of claims. (This attitude gets to anextreme in the case of zero-knowledge proofs, where we actually require that theproofs themselves be useless beyond being convincing of the validity of the claimedassertion.)In general, we will be interested in modeling various forms of proofs that mayoccur in the world, focusing on proofs that can be veri�ed by automated procedures.These veri�cation procedures are designed to check the validity of potential proofs,and are oblivious of additional features that may appeal to humans such as beauty,insightfulness, etc. In the current section we will consider the most general formof proof systems that still allow e�cient veri�cation.We note that the proof systems that we study refer to mundane theorems (e.g.,asserting that a speci�c propositional formula is not satis�able or that a party senta message as instructed by a predetermined protocol). We stress that the (meta)theorems that we shall state regarding these proof systems will be proved in thetraditional mathematical sense.9.1.1.2 Prover and Veri�erThe wide interpretation of the notion of a proof system, which includes interactiveprocesses of veri�cation, calls for the explicit introduction of two interactive players,called the prover and the veri�er. The veri�er is the party that employs theveri�cation procedure, which underlies the de�nition of any proof system, whilethe prover is the party that tries to convince the veri�er. In the context of static(or non-interactive) proofs, the prover is the transcendental entity providing theproof, and thus in this context the prover is often not mentioned at all (whendiscussing the veri�cation of alleged proofs). Still, explicitly mentioning potentialprovers may be bene�cial even when discussing such static (non-interactive) proofs.We highlight the \distrustful attitude" towards the prover, which underlies anyproof system. If the veri�er trusts the prover then no proof is needed. Hence,whenever discussing a proof system, one should envision a setting in which theveri�er is not trusting the prover, and furthermore is skeptic of anything that theprover says. In such a setting the prover's goal is to convince the veri�er, while theveri�er should make sure that it is not fooled by the prover. (See further discussionin x9.1.1.3.) Note that the veri�er is \trusted" to protect its own interests byemploying the predetermined veri�cation procedure; indeed, the asymmetry withrespect to who we trust is an artifact of our focus on the veri�cation process (ortask). In general, each party is trusted to protect its own interests (i.e., the veri�er

9.1. INTERACTIVE PROOF SYSTEMS 389is trusted to protect its own interests), but no party is trusted to protect theinterests of the other party (i.e., the prover is not trusted to protect the veri�er'sinterest of not being fooled by the prover).Another asymmetry between the two parties is that our discussion focuses onthe complexity of the veri�cation task and ignores (as a �rst approximation) thecomplexity of the proving task (which is only discussed in x9.1.5.1). Note that thisasymmetry is reected in the de�nition of NP-proof systems; that is, veri�cationis required to be e�cient, whereas for sets NP n P �nding adequate proofs isinfeasible. Thus, as a �rst approximation, we consider the question of what canbe e�ciently veri�ed when interacting with an arbitrary prover (which may bein�nitely powerful). Once this question is resolved, we shall also consider thecomplexity of the proving task (indeed, see x9.1.5.1).9.1.1.3 Completeness and SoundnessTwo fundamental properties of a proof system (i.e., of a veri�cation procedure) areits soundness (or validity) and completeness. The soundness property asserts thatthe veri�cation procedure cannot be \tricked" into accepting false statements. Inother words, soundness captures the veri�er's ability to protect itself from beingconvinced of false statements (no matter what the prover does in order to foolit). On the other hand, completeness captures the ability of some prover to con-vince the veri�er of true statements (belonging to some predetermined set of truestatements). Note that both properties are essential to the very notion of a proofsystem.We note that not every set of true statements has a \reasonable" proof systemin which each of these statements can be proved (while no false statement can be\proved"). This fundamental phenomenon is given a precise meaning in resultssuch as G�odel's Incompleteness Theorem and Turing's theorem regarding the un-decidability of the Halting Problem. In contrast, recall that NP was de�ned as theclass of sets having proof systems that support e�cient deterministic veri�cation(of \written proofs"). This section is devoted to the study of a more liberal notionof e�cient veri�cation procedures (allowing both randomization and interaction).9.1.2 De�nitionLoosely speaking, an interactive proof is a game between a computationally boundedveri�er and a computationally unbounded prover whose goal is to convince theveri�er of the validity of some assertion. Speci�cally, the veri�er employs a proba-bilistic polynomial-time strategy (whereas no computational restrictions apply tothe prover's strategy). It is required that if the assertion holds then the veri�eralways accepts (i.e., when interacting with an appropriate prover strategy). On theother hand, if the assertion is false then the veri�er must reject with probabilityat least 12 , no matter what strategy is being employed by the prover. (The errorprobability can be reduced by running such a proof system several times.)We formalize the interaction between parties by referring to the strategies that

390 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe parties employ.3 A strategy for a party describes the party's next move (i.e.,its next message or its �nal decision) as a function of the common input (i.e.,the aforementioned assertion), its internal coin tosses, and all messages it hasreceived so far. That is, we assume that each party records the outcomes of its pastcoin tosses as well as all the messages it has received, and determines its movesbased on these. Thus, an interaction between two parties, employing strategiesA and B respectively, is determined by the common input, denoted x, and therandomness of both parties, denoted rA and rB . Assuming that A takes the �rstmove (and B takes the last move), the corresponding (t-round) interaction transcript(on common input x and randomness rA and rB) is �1; �1; :::; �t; �t, where �i =A(x; rA; �1; :::; �i�1) and �i = B(x; rB ; �1; :::; �i). The corresponding �nal decisionof A is de�ned as A(x; rA; �1; :::; �t).We say that a party employs a probabilistic polynomial-time strategy if its nextmove can be computed in a number of steps that is polynomial in the length ofthe common input. In particular, this means that, on input common input x, thestrategy may only consider a polynomial in jxj many messages, which are each ofpoly(jxj) length.4 Intuitively, if the other party exceeds an a priori (polynomial injxj) bound on the total length of the messages that it is allowed to send, then theexecution is suspended. Thus, referring to the aforementioned strategies, we saythat A is a probabilistic polynomial-time strategy if, for every i and rA; �1; :::; �i,the value of A(x; rA; �1; :::; �i) can be computed in time polynomial in jxj. Again,in proper use, it must hold that jrAj; t and the j�ij's are all polynomial in jxj.De�nition 9.1 (Interactive Proof systems { IP):5 An interactive proof system fora set S is a two-party game, between a veri�er executing a probabilistic polynomial-time strategy, denoted V , and a prover that executes a (computationally unbounded)strategy, denoted P , satisfying the following two conditions:� Completeness: For every x 2 S, the veri�er V always accepts after interactingwith the prover P on common input x.� Soundness: For every x 62 S and every strategy P �, the veri�er V rejects withprobability at least 12 after interacting with P � on common input x.We denote by IP the class of sets having interactive proof systems.The error probability (in the soundness condition) can be reduced by successiveapplications of the proof system. (This is easy to see in the case of sequentialrepetitions, but holds also for parallel repetitions; see Exercise 9.1.) In particular,3An alternative formulation refers to the interactive machines that capture the behavior of eachof the parties (see, e.g., [90, Sec. 4.2.1.1]). Such an interactive machine invokes the correspondingstrategy, while handling the communication with the other party and keeping a record of allmessages received so far.4Needless to say, the number of internal coin tosses fed to a polynomial-time strategy mustalso be bounded by a polynomial in the length of x.5We follow the convention of specifying strategies for both the veri�er and the prover. Analternative presentation only speci�es the veri�er's strategy, while rephrasing the completenesscondition as follows: There exists a prover strategy P such that, for every x 2 S, the veri�er Valways accepts after interacting with P on common input x.

9.1. INTERACTIVE PROOF SYSTEMS 391repeating the proving process for k times, reduces the probability that the veri�eris fooled (i.e., accepts a false assertion) to 2�k, and we can a�ord doing so for anyk = poly(jxj). Variants on the basic de�nition are discussed in Section 9.1.4.The role of randomness. Randomness is essential to the power of interactiveproofs; that is, restricting the veri�er to deterministic strategies yields a class ofinteractive proof systems that has no advantage over the class of NP-proof systems.The reason being that, in case the veri�er is deterministic, the prover can predictthe veri�er's part of the interaction. Thus, the prover can just supply its ownsequence of answers to the veri�er's sequence of (predictable) questions, and theveri�er can just check that these answers are convincing. Actually, we establishthat soundness error (and not merely randomized veri�cation) is essential to thepower of interactive proof systems (i.e., their ability to reach beyond NP-proofs).Proposition 9.2 Suppose that S has an interactive proof system (P; V) with nosoundness error; that is, for every x 62 S and every potential strategy P �, the veri�erV rejects with probability one after interacting with P � on common input x. ThenS 2 NP.Proof: We may assume, without loss of generality, that V is deterministic (by just�xing arbitrarily the contents of its random-tape (e.g., to the all-zero string) andnoting that both (perfect) completeness and perfect (i.e., errorless) soundness stillhold). Thus, the case of zero soundness error reduces to the case of deterministicveri�ers.Now, since V is deterministic, the prover can predict each message sent by V ,because each such message is uniquely determined by the common input and theprevious prover messages. Thus, a sequence of optimal prover's messages (i.e., asequence of messages leading V to accept x 2 S) can be (pre)determined (withoutinteracting with V) based solely on the common input x.6 Hence, x 2 S if and onlyif there exists a sequence of (prover's) messages that make (the deterministic) Vaccept x, where the question of whether a speci�c sequence (of prover's messages)makes V accept x depends only on the sequence and on the common input x(because V tosses no coins that may a�ect this decision).7 The foregoing conditioncan be checked in polynomial-time, and so a \passing sequence" constitutes anNP-witness for x 2 S. It follows that S 2 NP .Reection. The moral of the reasoning underlying the proof Proposition 9.2 isthat there is no point to interact with a party whose moves are easily predictable,because such moves can be determined without any interaction. This moral repre-sents the prover's point of view (regarding interaction with deterministic veri�ers).6As usual, we do not care about the complexity of determining such a sequence, since nocomputational bounds are placed on the prover.7Recall that in the case that V is randomized, its �nal decision also depends on its internalcoin tosses (and not only on the common input and on the sequence of prover's messages). Inthat case, the veri�er's own messages may reveal information about the veri�er's internal cointosses, which in turn may help the prover to answer with convincing messages.

392 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSIn contrast, even an in�nitely powerful party (e.g., a prover) may gain by inter-acting with an unpredictable party (e.g., a randomized veri�er), because this in-teraction may provide useful information (e.g., information regarding the veri�er'scoin tosses, which in turn allows the prover to increase its probability of answer-ing convincingly). Furthermore, from the veri�er's point of view it is bene�cial tointeract with the prover, because the latter is computationally stronger (and thusits moves may not be easily predictable by the veri�er even in the case that theyare predictable in an information theoretic sense).9.1.3 The Power of Interactive ProofsWe have seen that randomness is essential to the power of interactive proof systemsin the sense that without randomness interactive proofs are not more powerful thanNP-proofs. Indeed, the power of interactive proof arises from the combination ofrandomization and interaction. We �rst demonstrate this point by a simple proofsystem for a speci�c coNP-set that is not known to have an NP-proof system, andnext prove the celebrated result IP = PSPACE , which suggests that interactiveproofs are much stronger than NP-proofs.9.1.3.1 A simple exampleOne day on the Olympus, bright-eyed Athena claimed that Nectarpoured out of the new silver-coated jars tastes less good than Nec-tar poured out of the older gold-decorated jars. Mighty Zeus, who wasforced to introduce the new jars by the practically oriented Hera, wasannoyed at the claim. He ordered that Athena be served one hundredglasses of Nectar, each poured at random either from an old jar or froma new one, and that she tell the source of the drink in each glass. Toeverybody's surprise, wise Athena correctly identi�ed the source of eachserving, to which the Father of the Gods responded \my child, you areeither right or extremely lucky." Since all gods knew that being luckywas not one of the attributes of Pallas-Athena, they all concluded thatthe impeccable goddess was right in her claim.The foregoing story illustrates the main idea underlying the interactive proof forGraph Non-Isomorphism, presented in Construction 9.3. Informally, this interac-tive proof system is designed for proving dissimilarity of two given objects (in theforegoing story these are the two brands of Nectar, whereas in Construction 9.3these are two non-isomorphic graphs). We note that, typically, proving similaritybetween objects is easy, because one can present a mapping (of one object to theother) that demonstrates this similarity. In contrast, proving dissimilarity seemsharder, because in general there seems to be no succinct proof of dissimilarity (e.g.,clearly, showing that a particular mapping fails does not su�ce, while enumerat-ing all possible mappings (and showing that each fails) does not yield a succinctproof). More generally, it is typically easy to prove the existence of an easily veri-�able structure in a given object by merely presenting this structure, but proving

9.1. INTERACTIVE PROOF SYSTEMS 393the non-existence of such a structure seems hard. Formally, membership in anNP-set is proved by presenting an NP-witness, but it is not clear how to provethe non-existence of such a witness. Indeed, recall that the common belief is thatcoNP 6= NP .Two graphs, G1=(V1; E1) and G2=(V2; E2), are called isomorphic if there existsa 1-1 and onto mapping, �, from the vertex set V1 to the vertex set V2 such thatfu; vg 2 E1 if and only if f�(v); �(u)g 2 E2. This (\edge preserving") mapping�, in case it exists, is called an isomorphism between the graphs. The followingprotocol speci�es a way of proving that two graphs are not isomorphic, while it isnot known whether such a statement can be proved via a non-interactive process(i.e., via an NP-proof system).Construction 9.3 (Interactive proof for Graph Non-Isomorphism):� Common Input: A pair of graphs, G1=(V1; E1) and G2=(V2; E2).� Veri�er's �rst step (V1): The veri�er selects at random one of the two inputgraphs, and sends to the prover a random isomorphic copy of this graph.Namely, the veri�er selects uniformly � 2 f1; 2g, and a random permutation� from the set of permutations over the vertex set V�. The veri�er constructsa graph with vertex set V� and edge setE def= ff�(u); �(v)g : fu; vg2E�gand sends (V� ; E) to the prover.� Motivating Remark: If the input graphs are non-isomorphic, as the proverclaims, then the prover should be able to distinguish (not necessarily by ane�cient algorithm) isomorphic copies of one graph from isomorphic copies ofthe other graph. However, if the input graphs are isomorphic, then a randomisomorphic copy of one graph is distributed identically to a random isomorphiccopy of the other graph.� Prover's step: Upon receiving a graph, G0 = (V 0; E0), from the veri�er, theprover �nds a � 2 f1; 2g such that the graph G0 is isomorphic to the inputgraph G� . (If both �=1; 2 satisfy the condition then � is selected arbitrarily.In case no � 2 f1; 2g satis�es the condition, � is set to 0). The prover sends� to the veri�er.� Veri�er's second step (V2): If the message, � , received from the prover equals� (chosen in Step V1) then the veri�er outputs 1 (i.e., accepts the commoninput). Otherwise the veri�er outputs 0 (i.e., rejects the common input).The veri�er's strategy in Construction 9.3 is easily implemented in probabilisticpolynomial-time. We do not known of a probabilistic polynomial-time implemen-tation of the prover's strategy, but this is not required. The motivating remarkjusti�es the claim that Construction 9.3 constitutes an interactive proof system for

394 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe set of pairs of non-isomorphic graphs.8 Recall that the latter is a coNP-set(which is not known to be in NP).9.1.3.2 The full power of interactive proofsThe interactive proof system of Construction 9.3 refers to a speci�c coNP-set thatis not known to be in NP . It turns out that interactive proof systems are powerfulenough to prove membership in any coNP-set (e.g., prove that a graph is not 3-colorable). Thus, assuming that NP 6= coNP, this establishes that interactiveproof systems are more powerful than NP-proof systems. Furthermore, the classof sets having interactive proof systems coincides with the class of sets that can bedecided using a polynomial amount of work-space.Theorem 9.4 (The IP Theorem): IP = PSPACE.Recall that it is widely believed that NP is a proper subset of PSPACE . Thus,under this conjecture, interactive proofs are more powerful than NP-proofs.Sketch of the Proof of Theorem 9.4We �rst show that coNP � IP , by presenting an interactive proof system forthe coNP-complete set of unsatis�able CNF formulae. Next we extend this proofsystem to obtain one for the PSPACE-complete set of unsatis�able Quanti�edBoolean Formulae. Finally, we observe that IP � PSPACE . Indeed, proving thatsome coNP-complete set has an interactive proof system is the core of the proofof Theorem 9.4 (see Exercise 9.2).We show that the set of unsatis�able CNF formulae has an interactive proofsystem by using algebraic methods, which are applied to an arithmetic generaliza-tion of the said Boolean problem (rather than to the problem itself). That is, inorder to demonstrate that this Boolean problem has an interactive proof system, we�rst introduce an arithmetic generalization of CNF formulae, and then constructan interactive proof system for the resulting arithmetic assertion (by capitalizingon the arithmetic formulation of the assertion). Intuitively, we present an iterativeprocess, which involves interaction between the prover and the veri�er, such that ineach iteration the residual claim to be established becomes simpler (i.e., containsone variable less). This iterative process seems to be enabled by the fact that thevarious claims refer to the arithmetic problem rather than to the original Booleanproblem. (Actually, one may say that the key point is that these claims refer to ageneralized problem rather than to the original one.)8In case G1 is not isomorphic to G2, no graph can be isomorphic to both input graphs (i.e.,both to G1 and to G2). In this case the graph G0 sent in Step (V1) uniquely determines the bit�. On the other hand, if G1 and G2 are isomorphic then, for every G0 sent in Step (V1), thenumber of isomorphisms between G1 and G0 equals the number of isomorphisms between G2 andG0. It follows that, in this case G0, yields no information about � (chosen by the veri�er), and sono prover may convince the veri�er with probability exceeding 1=2.

9.1. INTERACTIVE PROOF SYSTEMS 395Teaching note: We devote most of the presentation to establishing that coNP � IP,and recommend doing the same in class. Our presentation focuses on the main ideas,and neglects some minor implementation details (which can be found in [161, 204]).The starting point: We prove that coNP � IP by presenting an interactiveproof system for the set of unsatis�able CNF formulae, which is coNP-complete.Thus, our starting point is a given Boolean CNF formula, which is claimed to beunsatis�able.Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF) for-mula, we replace the Boolean variables by integer variables, and replace the logicaloperations by corresponding arithmetic operations. In particular, the Boolean val-ues false and true are replaced by the integer values 0 and 1 (respectively),or-clauses are replaced by sums, and the top level conjunction is replaced by aproduct. This translation is depicted in Figure 9.1. Note that the Boolean formulaBoolean arithmeticvariable values false, true 0, 1connectives :x, _ and ^ 1� x, + and ��nal values false, true 0, positiveFigure 9.1: Arithmetization of CNF formulae.is satis�ed (resp., unsatis�ed) by a speci�c truth assignment if and only if evaluat-ing the resulting arithmetic expression at the corresponding 0-1 assignment yieldsa positive (integer) value (resp., yields the value zero). Thus, the claim that theoriginal Boolean formula is unsatis�able translates to the claim that the summa-tion of the resulting arithmetic expression, over all 0-1 assignments to its variables,yields the value zero. For example, the Boolean formula(x3 _ :x5 _ x17) ^ (x5 _ x9) ^ (:x3 _ :x4)is replaces by the arithmetic expression(x3 + (1� x5) + x17) � (x5 + x9) � ((1� x3) + (1� x4))and the Boolean formula is unsatis�able if and only if the sum of the correspondingarithmetic expression, taken over all choices of x1; x2; :::; x17 2 f0; 1g, equals 0.Thus, proving that the original Boolean formula is unsatis�able reduces to provingthat the corresponding arithmetic summation evaluates to 0. We highlight twoadditional observations regarding the resulting arithmetic expression:1. The arithmetic expression is a low degree polynomial over the integers; specif-ically, its (total) degree equals the number of clauses in the original Booleanformula.

396 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS2. For any Boolean formula, the value of the corresponding arithmetic expression(for any choice of x1; :::; xn 2 f0; 1g) resides within the interval [0; vm], wherev is the maximum number of variables in a clause, and m is the number ofclauses. Thus, summing over all 2n possible 0-1 assignments, where n � vmis the number of variables, yields an integer value in [0; 2nvm].Moving to a Finite Field: In general, whenever we need to check equalitybetween two integers in [0;M], it su�ces to check their equality mod q, whereq > M . The bene�t is that, if q is prime then the arithmetic is now in a �nite�eld (mod q), and so certain things are \nicer" (e.g., uniformly selecting a value).Thus, proving that a CNF formula is not satis�able reduces to proving an equalityof the following formXx1=0;1 � � � Xxn=0;1�(x1; :::; xn) � 0 (mod q); (9.1)where � is a low-degree multi-variate polynomial (and q can be represented usingO(j�j) bits). In the rest of this exposition, all arithmetic operations refer to the�nite �eld of q elements, denoted GF(q).Overview of the actual protocol: stripping summations in iterations.Given a formal expression as in Eq. (9.1), we strip o� summations in iterations,stripping a single summation at each iteration, and instantiate the correspondingfree variable as follows. At the beginning of each iteration the prover is supposedto supply the univariate polynomial representing the residual expression as a func-tion of the (single) currently stripped variable. (By Observation 1, this is a lowdegree polynomial and so it has a short description.)9 The veri�er checks that thepolynomial (say, p) is of low degree, and that it corresponds to the current value(say, v) being claimed (i.e., it veri�es that p(0) + p(1) � v). Next, the veri�er ran-domly instantiates the currently free variable (i.e., it selects uniformly r 2 GF(q)),yielding a new value to be claimed for the resulting expression (i.e., the veri�ercomputes v p(r), and expects a proof that the residual expression equals v).The veri�er sends the uniformly chosen instantiation (i.e., r) to the prover, and theparties proceed to the next iteration (which refers to the residual expression andto the new value v). At the end of the last iteration, the veri�er has a closed formexpression (i.e., an expression without formal summations), which can be easilychecked against the claimed value.A single iteration (detailed): The ith iteration is aimed at proving a claim ofthe form Xxi=0;1 � � � Xxn=0;1�(r1; :::; ri�1; xi; xi+1; :::; xn) � vi�1 (mod q); (9.2)9We also use Observation 2, which implies that we may use a �nite �eld with elements havinga description length that is polynomial in the length of the original Boolean formula (i.e., log2 q =O(vm)).

9.1. INTERACTIVE PROOF SYSTEMS 397where v0 = 0, and r1; :::; ri�1 and vi�1 are as determined in previous iterations.The ith iteration consists of two steps (messages): a prover step followed by averi�er step. The prover is supposed to provide the veri�er with the univariatepolynomial pi that satis�espi(z) def= Xxi+1=0;1 � � � Xxn=0;1�(r1; :::; ri�1; z; xi+1; :::; xn) mod q : (9.3)Note that, module q, the value pi(0)+pi(1) equals the l.h.s of Eq. (9.2). Denote byp0i the actual polynomial sent by the prover (i.e., the honest prover sets p0i = pi).Then, the veri�er �rst checks if p0i(0)+ p0i(1) � vi�1 (mod q), and next uniformlyselects ri 2 GF(q) and sends it to the prover. Needless to say, the veri�er willreject if the �rst check is violated. The claim to be proved in the next iteration isXxi+1=0;1 � � � Xxn=0;1�(r1; :::; ri�1; ri; xi+1; :::; xn) � vi (mod q); (9.4)where vi def= p0i(ri) mod q is computed by each party.Completeness of the protocol: When the initial claim (i.e., Eq. (9.1)) holds,the prover can supply the correct polynomials (as determined in Eq. (9.3)), andthis will lead the veri�er to always accept.Soundness of the protocol: It su�ces to upper-bound the probability that, fora particular iteration, the entry claim (i.e., Eq. (9.2)) is false while the ending claim(i.e., Eq. (9.4)) is valid. Indeed, let us focus on the ith iteration, and let vi�1 andpi be as in Eq. (9.2) and Eq. (9.3), respectively; that is, vi�1 is the (wrong) valueclaimed at the beginning of the ith iteration and pi is the polynomial representingthe expression obtained when stripping the current variable (as in Eq. (9.3)). Letp0i(�) be any potential answer by the prover. We may assume, without loss ofgenerality, that p0i(0) + p0i(1) � vi�1 (mod q) and that p0i is of low-degree (sinceotherwise the veri�er will de�nitely reject). Using our hypothesis (that the entryclaim of Eq. (9.2) is false), we know that pi(0) + pi(1) 6� vi�1 (mod q). Thus,p0i and pi are di�erent low-degree polynomials, and so they may agree on very fewpoints (if at all). Now, if the veri�er's instantiation (i.e., its choice of a random ri)does not happen to be one of these few points (i.e., pi(ri) 6� p0i(ri) (mod q)), thenthe ending claim (i.e., Eq. (9.4)) is false too (because the new value (i.e., vi) is setto p0i(ri) mod q, while the residual expression evaluates to pi(ri)). Details are leftas an exercise (see Exercise 9.3).This establishes that the set of unsatis�able CNF formulae has an interactiveproof system. Actually, a similar proof system (which uses a related arithmeti-zation { see Exercise 9.5) can be used to prove that a given formula has a givennumber of satisfying assignment; i.e., prove membership in the (\counting") setf(�; k) : jf� : �(�) = 1gj = kg : (9.5)

398 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSUsing adequate reductions, it follows that every problem in #P has an interactiveproof system (i.e., for every R 2 PC, the set f(x; k) : jfy : (x; y)2Rgj = kg is inIP). Proving that PSPACE � IP requires a little more work, as outlined next.Obtaining interactive proofs for PSPACE (the basic idea). We presentan interactive proof for the set of satis�ed Quanti�ed Boolean Formulae (QBF),which is complete for PSPACE (see Theorem 5.15).10 Recall that the number ofquanti�ers in such formulae is unbounded (e.g., it may be polynomially related tothe length of the input), that there are both existential and universal quanti�ers,and furthermore these quanti�ers may alternate. In the arithmetization of theseformulae, we replace existential quanti�ers by summations and universal quanti�ersby products. Two di�culties arise when considering the application of the foregoingprotocol to the resulting arithmetic expression. Firstly, the (integral) value ofthe expression (which may involve a big number of nested formal products) isonly upper-bounded by a double-exponential function (in the length of the input).Secondly, when stripping a summation (or a product), the expression may be apolynomial of high degree (due to nested formal products that may appear in theremaining expression).11 For example, both phenomena occur in the followingexpression Xx=0;1 Yy1=0;1 � � � Yyn=0;1 (x+ yn) ;which equals Px=0;1 x2n�1 � (1 + x)2n�1 . The �rst di�culty is easy to resolve byusing the fact (to be established in Exercise 9.7) that if two integers in [0;M] aredi�erent then they must be di�erent modulo most of the primes in the interval[3; poly(logM)]. Thus, we let the veri�er selects a random prime q of length thatis linear in the length of the original formula, and the two parties consider thearithmetic expression reduced modulo this q. The second di�culty is resolved bynoting that PSPACE is actually reducible to a special form of (non-canonical) QBFin which no variable appears both to the left and to the right of more than oneuniversal quanti�er (see the proof of Theorem 5.15 or alternatively Exercise 9.6).It follows that when arithmetizing and stripping summations (or products) fromthe resulting arithmetic expression, the corresponding univariate polynomial is oflow degree (i.e., at most twice the length of the original formula, where the factor10Actually, the following extension of the foregoing proof system yields a proof system for theset of unsatis�ed Quanti�ed Boolean Formulae (which is also complete for PSPACE). Alterna-tively, an interactive proof system for QBF can be obtained by extending the related proof systempresented in Exercise 9.5.11This high degree causes two di�culties, where only the second one is acute. The �rst di�cultyis that the soundness of the corresponding protocol will require working in a �nite �eld thatis su�ciently larger than this high degree, but we can a�ord doing so (since the degree is atmost exponential in the formula's length). The second (and more acute) di�culty is that thepolynomial may have a large (i.e., exponential) number of non-zero coe�cients and so the veri�ercannot a�ord to read the standard representation of this polynomial (as a list of all non-zerocoe�cients). Indeed, other succinct and e�ective representations of such polynomials may existin some cases (as in the following example), but it is unclear how to obtain such representationsin general.

9.1. INTERACTIVE PROOF SYSTEMS 399of two is due to the single universal quanti�er that has this variable quanti�ed onits left and appearing on its right).IP is contained in PSPACE: We shall show that, for every interactive proofsystem, there exists an optimal prover strategy that can be implemented in polynomial-space, where an optimal prover strategy is one that maximizes the probability thatthe prescribed veri�er accepts the common input. It follows that IP � PSPACE,because (for every S 2 IP) we can emulate, in polynomial space, all possible inter-actions of the prescribed veri�er with any �xed polynomial-space prover strategy(e.g., an optimal one).Proposition 9.5 Let V be a probabilistic polynomial-time (veri�er) strategy. Then,there exists a polynomial-space computable (prover) strategy f that, for every x,maximizes the probability that V accepts x. That is, for every P � and every x itholds that the probability that V accepts x after interacting with P � is upper-boundedby the probability that V accepts x after interacting with f .Proof Sketch: For every common input x and any possible partial transcript ofthe interaction so far, the strategy12 f determines an optimal next-message for theprover by considering all possible coin tosses of the veri�er that are consistent with(x;). Speci�cally, f is determined recursively such that f(x;) = m if m maxi-mizes the number of outcomes of the veri�er's coin-tosses that are consistent with(x;) and lead the veri�er to accept when subsequent prover moves are determinedby f (which is where recursion is used). That is, the veri�er's random sequence rsupport the setting f(x;) = m, where = (�1; �1; :::; �t; �t), if the following twoconditions hold:1. r is consistent with (x;), which means that for every i 2 f1; :::; tg it holdsthat �i = V (x; r; �1; :::; �i).2. r leads V to accept when the subsequent prover moves are determined by f ,which means at termination (i.e., after T rounds) it holds thatV (x; r; �1; :::; �t;m; �t+2; :::; �T) = 1 ;where for every i 2 ft+1; :::; T�1g it holds that �i+1 = f(x; ;m; �t+1; :::; �i; �i)and �i = V (x; r; �1; :::; �t;m; �t+2; :::; �i).Thus, f(x;) = m if m maximizes the value of E[�f;V (x;R ; ;m)], where R isselected uniformly among the r's that are consistent with (x;) and �f;V (x; r; ;m)indicates whether or not V accepts x in the subsequent interaction with f (whichrefers to randomness r and partial transcript (;m)). It follows that the valuef(x;) can be computed in polynomial-space when given oracle access to f(x; ; �; �).The proposition follows by standard composition of space-bounded computations(i.e., allocating separate space to each level of the recursion, while using the samespace in all recursive calls of each level).12For sake of convenience, when describing the strategy f , we refer to the entire partial tran-script of the interaction with V (rather than merely to the sequence of previous messages sentby V).

400 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS9.1.4 Variants and �ner structure: an overviewIn this subsection we consider several variants on the basic de�nition of interactiveproofs as well as �ner complexity measures. This is an advanced subsection, whichonly provides an overview of the various notions and results (as well as pointers toproofs of the latter).9.1.4.1 Arthur-Merlin games a.k.a public-coin proof systemsThe veri�er's messages in a general interactive proof system are determined arbi-trarily (but e�ciently) based on the veri�er's view of the interaction so far (whichincludes its internal coin tosses, which without loss of generality can take place atthe onset of the interaction). Thus, the veri�er's past coin tosses are not necessarilyrevealed by the messages that it sends. In contrast, in public-coin proof systems(a.k.a Arthur-Merlin proof systems), the veri�er's messages contain the outcomeof any coin that it tosses at the current round. Thus, these messages reveal therandomness used towards generating them (i.e., this randomness becomes public).Actually, without loss of generality, the veri�er's messages can be identical to theoutcome of the coins tossed at the current round (because any other string that theveri�er may compute based on these coin tosses is actually determined by them).Note that the proof systems presented in the proof of Theorem 9.4 are of thepublic-coin type, whereas this is not the case for the Graph Non-Isomorphism proofsystem (of Construction 9.3). Thus, although not all natural proof systems are ofthe public-coin type, by Theorem 9.4 every set having an interactive proof systemalso has a public-coin interactive proof system. This means that, in the context ofinteractive proof systems, asking random questions is as powerful as asking cleverquestions. (A stronger statement appears at the end of x9.1.4.3.)Indeed, public-coin proof systems are a syntactically restricted type of inter-active proof systems. This restriction may make the design of such systems moredi�cult, but potentially facilitates their analysis (and especially when the analy-sis refers to a generic system). Another advantage of public-coin proof systems isthat the veri�er's actions (except for its �nal decision) are oblivious of the prover'smessages. This property is used in the proof of Theorem 9.12.9.1.4.2 Interactive proof systems with two-sided errorIn De�nition 9.1 error probability is allowed in the soundness condition but not inthe completeness condition. In such a case, we say that the proof system has perfectcompleteness (or one-sided error probability). A more general de�nition allows anerror probability (upper-bounded by, say, 1=3) in both the completeness and thesoundness conditions. Note that sets having such generalized (two-sided error)interactive proofs are also in PSPACE, and thus (by Theorem 9.4) allowing two-sided error does not increase the power of interactive proofs. See further discussionat the end of x9.1.4.3.

9.1. INTERACTIVE PROOF SYSTEMS 4019.1.4.3 A hierarchy of interactive proof systemsDe�nition 9.1 only refers to the total computation time of the veri�er, and thusallows an arbitrary (polynomial) number of messages to be exchanged. A �nerde�nition refers to the number of messages being exchanged (also called the numberof rounds).13De�nition 9.6 (The round-complexity of interactive proof):� For an integer function m, the complexity class IP(m) consists of sets havingan interactive proof system in which, on common input x, at most m(jxj)messages are exchanged between the parties.14� For a set of integer functions, M , we let IP(M) def= Sm2M IP(m). Thus,IP = IP(poly).For example, interactive proof systems in which the veri�er sends a single messagethat is answered by a single message of the prover corresponds to IP(2). Clearly,NP � IP(1), yet the inclusion may be strict because in IP(1) the veri�er may tosscoins after receiving the prover's single message. (Also note that IP(0) = coRP.)De�nition 9.6 gives rise to a natural hierarchy of interactive proof systems,where di�erent \levels" of this hierarchy correspond to di�erent \growth rates" ofthe round-complexity of these systems. The following results are known regardingthis hierarchy.� A linear speed-up (see Appendix F.2 (or [22] and [110])): For every integerfunction, f , such that f(n) � 2 for all n, the class IP(O(f(�))) collapses tothe class IP(f(�)). In particular, IP(O(1)) collapses to IP(2).� The class IP(2) contains sets that are not known to be in NP ; e.g., GraphNon-Isomorphism (see Construction 9.3). However, under plausible intractabil-ity assumptions, IP(2) = NP (see [166]).� If coNP � IP(2) then the Polynomial-Time Hierarchy collapses (see [44]).It is conjectured that coNP is not contained in IP(2), and consequently that inter-active proofs with an unbounded number of message exchanges are more powerfulthan interactive proofs in which only a bounded (i.e., constant) number of messagesare exchanged.15The class IP(1), also denotedMA, seems to be the \real" randomized (and yetnon-interactive) version of NP : Here the prover supplies a candidate (polynomial-size) \proof", and the veri�er assesses its validity probabilistically (rather thandeterministically).13An even �ner structure emerges when considering also the total length of the messages sentby the prover (see [105]).14We count the total number of messages exchanged regardless of the direction ofcommunication.15Note that the linear speed-up cannot be applied for an unbounded number of times, becauseeach application may increase (e.g., square) the time-complexity of veri�cation.

402 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSThe IP-hierarchy (i.e., IP(�)) equals an analogous hierarchy, denoted AM(�),that refers to public-coin (a.k.a Arthur-Merlin) interactive proofs. That is, forevery integer function f , it holds that AM(f) = IP(f). For f � 2, it is also thecase that AM(f) = AM(O(f)); actually, the aforementioned linear speed-up forIP(�) is established by combining the following two results:1. Emulating IP(�) by AM(�) (see xF.2.1 or [110]): IP(f) � AM(f + 3).2. Linear speed-up for AM(�) (see xF.2.2 or [22]): AM(2f) � AM(f + 1).In particular, IP(O(1)) = AM(2), even ifAM(2) is restricted such that the veri�ertosses no coins after receiving the prover's message. (Note that IP(1) = AM(1)and IP(0) = AM(0) are trivial.) We comment that it is common to shorthandAM(2) by AM, which is indeed inconsistent with the convention of using IP asshorthand of IP(poly).The fact that IP(O(f)) = IP(f) is proved by establishing an analogous resultfor AM(�) demonstrates the advantage of the public-coin setting for the studyof interactive proofs. A similar phenomenon occurs when establishing that theIP-hierarchy equals an analogous two-sided error hierarchy (see Exercise 9.8).9.1.4.4 Something completely di�erentWe stress that although we have relaxed the requirements from the veri�cationprocedure (by allowing it to interact with the prover, toss coins, and risk some(bounded) error probability), we did not restrict the validity of its assertions byassumptions concerning the potential prover. This should be contrasted with othernotions of proof systems, such as computationally-sound ones (see x9.1.5.2), inwhich the validity of the veri�er's assertions depends on assumptions concerningthe potential prover(s).9.1.5 On computationally bounded provers: an overviewRecall that our de�nition of interactive proofs (i.e., De�nition 9.1) makes no ref-erence to the computational abilities of the potential prover. This fact has twoconicting consequences:1. The completeness condition does not provide any upper bound on the com-plexity of the corresponding proving strategy (which convinces the veri�er toaccept valid assertions).2. The soundness condition guarantees that, regardless of the computationale�ort spend by a cheating prover, the veri�er cannot be fooled to acceptinvalid assertions (with probability exceeding the soundness error).Note that providing an upper-bound on the complexity of the (prescribed) proverstrategy P of a speci�c interactive proof system (P; V) only strengthens the claimthat (P; V) is a proof system for the corresponding set (of valid assertions). Westress that the prescribed prover strategy is referred to only in the completeness

9.1. INTERACTIVE PROOF SYSTEMS 403condition (and is irrelevant to the soundness condition). On the other hand, relax-ing the de�nition of interactive proofs such that soundness holds only for a speci�cclass of cheating prover strategies (rather than for all cheating prover strategies)weakens the corresponding claim. In this advanced section we consider both pos-sibilities.Teaching note: Indeed, this is an advanced subsection, which is best left for indepen-dent reading. It merely provides an overview of the various notions, and the reader isdirected to the chapter's notes for further detail (i.e., pointers to the relevant literature).9.1.5.1 How powerful should the prover be?Suppose that a set S is in IP . This means that there exists a veri�er V thatcan be convinced to accept any input in S but cannot be fooled to accept anyinput not in S (except with small probability). One may ask how powerful shoulda prover be such that it can convince the veri�er V to accept any input in S.Note that Proposition 9.5 asserts that an optimal prover strategy (for convincingany �xed veri�er V) can be implemented in polynomial-space, and that we cannotexpect any better for a generic set in PSPACE = IP (because the emulation ofthe interaction of V with any optimal prover strategy yields a decision procedurefor the set). Still, we may seek better upper-bounds on the complexity of someprover strategy that convinces a speci�c veri�er, which in turn corresponds to aspeci�c set S. More interestingly, considering all possible veri�ers that give rise tointeractive proof systems for S, we ask what is the minimum power required froma prover that satis�es the completeness requirement with respect to one of theseveri�ers?We stress that, unlike the case of computationally-sound proof systems (seex9.1.5.2), we do not restrict the power of the prover in the soundness condition,but rather consider the minimum complexity of provers meeting the completenesscondition. Speci�cally, we are interested in relatively e�cient provers that meetthe completeness condition. The term \relatively e�cient prover" has been giventhree di�erent interpretations, which are briey surveyed next.1. A prover is considered relatively e�cient if, when given an auxiliary input (inaddition to the common input in S), it works in (probabilistic) polynomial-time. Speci�cally, in case S 2 NP , the auxiliary input maybe an NP-proofthat the common input is in the set. Still, even in this case the interac-tive proof need not consist of the prover sending the auxiliary input to theveri�er; for example, an alternative procedure may allow the prover to bezero-knowledge (see Construction 9.10).This interpretation is adequate and in fact crucial for applications in whichsuch an auxiliary input is available to the otherwise polynomial-time parties.Typically, such auxiliary input is available in cryptographic applications inwhich parties wish to prove in (zero-knowledge) that they have correctly con-ducted some computation. In these cases, the NP-proof is just the transcript

404 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSof the computation by which the claimed result has been generated, and thusthe auxiliary input is available to the proving party.2. A prover is considered relatively e�cient if it can be implemented by a proba-bilistic polynomial-time oracle machine with oracle access to the set S itself.Note that the prover in Construction 9.3 has this property (and see alsoExercise 9.10).This interpretation generalizes the notion of self-reducibility of NP-proof sys-tems. Recall that by self-reducibility of an NP-set (or rather of the corre-sponding NP-proof system) we mean that the search problem of �nding anNP-witness is polynomial-time reducible to deciding membership in the set(cf. De�nition 2.14). Here we require that implementing the prover strategy(in the relevant interactive proof) be polynomial-time reducible to decidingmembership in the set.3. A prover is considered relatively e�cient if it can be implemented by a prob-abilistic machine that runs in time that is polynomial in the deterministiccomplexity of the set. This interpretation relates the time-complexity of con-vincing a \lazy person" (i.e., a veri�er) to the time-complexity of determiningthe truth (i.e., deciding membership in the set).Hence, in contrast to the �rst interpretation, which is adequate in settingswhere assertions are generated along with their NP-proofs, the current in-terpretation is adequate in settings in which the prover is given only theassertion and has to �nd a proof to it by itself (before trying to convince alazy veri�er of its validity).9.1.5.2 Computational-soundnessRelaxing the soundness condition such that it only refers to relatively-e�cient waysof trying to fool the veri�er (rather than to all possible ways) yields a fundamen-tally di�erent notion of a proof system. Assertions proved in such a system arenot necessarily correct; they are correct only if the potential cheating prover doesnot exceed the presumed complexity limits. As in x9.1.5.1, the notion of \rela-tive e�ciency" can be given di�erent interpretations, the most popular one beingthat the cheating prover strategy can be implemented by a (non-uniform) fam-ily of polynomial-size circuits. The latter interpretation coincides with the �rstinterpretation used in x9.1.5.1 (i.e., a probabilistic polynomial-time strategy thatis given an auxiliary input (of polynomial length)). Speci�cally, in this case, thesoundness condition is replaced by the following computational soundness conditionthat asserts that it is infeasible to fool the veri�er into accepting false statements.Formally:For every prover strategy that is implementable by a family of polynomial-size circuits fCng, and every su�ciently long x 2 f0; 1g� n S, the prob-ability that V accepts x when interacting with Cjxj is less than 1=2.

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 405As in case of standard soundness, the computational-soundness error can be re-duced by repetitions. We warn, however, that unlike in the case of standard sound-ness (where both sequential and parallel repetitions will do), the computational-soundness error cannot always be reduced by parallel repetitions.It is common and natural to consider proof systems in which the prover strate-gies considered both in the completeness and soundness conditions satisfy the samenotion of relative e�ciency. Protocols that satisfy these conditions with respectto the foregoing interpretation are called arguments. We mention that argumentsystems may be more e�cient (e.g., in terms of their communication complexity)than interactive proof systems.9.2 Zero-Knowledge Proof SystemsStandard mathematical proofs are believed to yield (extra) knowledge and notmerely establish the validity of the assertion being proved; that is, it is commonlybelieved that (good) proofs provide a deeper understanding of the theorem beingproved. At the technical level, an NP-proof of membership in some set S 2 NP nPyields something (i.e., the NP-proof itself) that is hard to compute (even whenassuming that the input is in S). For example, a 3-coloring of a graph constitutes anNP-proof that the graph is 3-colorable, but it yields information (i.e., the coloring)that seems infeasible to compute (when given an arbitrary 3-colorable graph).A natural question that arises is whether or not proving an assertion alwaysrequires giving away some extra knowledge. The setting of interactive proof systemsenables a negative answer to this fundamental question: In contrast to NP-proofs,which seem to yield a lot of knowledge, zero-knowledge (interactive) proofs yield noknowledge at all; that is, zero-knowledge proofs are both convincing and yet yieldnothing beyond the validity of the assertion being proved. For example, a zero-knowledge proof of 3-colorability does not yield any information about the graph(e.g., partial information about a 3-coloring) that is infeasible to compute fromthe graph itself. Thus, zero-knowledge proofs exhibit an extreme contrast betweenbeing convincing (of the validity of a assertion) and teaching anything on top ofthe validity of the assertion.Needless to say, the notion of zero-knowledge proofs is fascinating (e.g., sinceit di�erentiates proof-veri�cation from learning). Still, the reader may wonderwhether such a phenomenon is desirable, because in many settings we do careto learn as much as possible (rather than learn as little as possible). However,in other settings (most notably in cryptography), we may actually wish to limitthe gain that other parties may obtained from a proof (and, in particular, limitthis gain to the minimal level of being convinced in the validity of the assertion).Indeed, the applicability of zero-knowledge proofs in the domain of cryptography isvast; they are typically used as a tool for forcing (potentially malicious) parties tobehave according to a predetermined protocol (without having them reveal theirown private inputs). The interested reader is referred to discussions in xC.4.3.3and xC.7.3.2 (and to detailed treatments in [90, 91]). We also mention that, inaddition to their direct applicability in Cryptography, zero-knowledge proofs serve

406 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS
X

?
!

?
!

 !

??
X is true!

Figure 9.2: Zero-knowledge proofs { an illustration.as a good bench-mark for the study of various questions regarding cryptographicprotocols.Teaching note: We believe that the treatment of zero-knowledge proofs provided inthis section su�ces for the purpose of a course in complexity theory. For an extensivetreatment of zero-knowledge proofs, the interested reader is referred to [90, Chap. 4].9.2.1 De�nitional IssuesLoosely speaking, zero-knowledge proofs are proofs that yield nothing beyond thevalidity of the assertion; that is, a veri�er obtaining such a proof only gains convic-tion in the validity of the assertion. This is formulated by saying that anything thatcan be feasibly obtained from a zero-knowledge proof is also feasibly computablefrom the (valid) assertion itself. The latter formulation follows the simulationparadigm, which is discussed next.9.2.1.1 A wider perspective: the simulation paradigmIn de�ning zero-knowledge proofs, we view the veri�er as a potential adversarythat tries to gain knowledge from the (prescribed) prover.16 We wish to state thatno (feasible) adversary strategy for the veri�er can gain anything from the prover(beyond conviction in the validity of the assertion). The question addressed hereis how to formulate the \no gain" requirement.Let us consider the desired formulation from a wide perspective. A key ques-tion regarding the modeling of security concerns is how to express the intuitiverequirement that an adversary \gains nothing substantial" by deviating from theprescribed behavior of an honest user. The answer is that the adversary gains noth-ing if whatever it can obtain by unrestricted adversarial behavior can be obtained16Recall that when de�ning a proof system (e.g., an interactive proof system), we view theprover as a potential adversary that tries to fool the (prescribed) veri�er (into accepting invalidassertions).

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 407within essentially the same computational e�ort by a benign (or prescribed) behav-ior. The de�nition of the \benign behavior" captures what we want to achievein terms of security, and is speci�c to the security concern to be addressed. Forexample, in the context of zero-knowledge, a benign behavior is any computationthat is based (only) on the assertion itself (while assuming that the latter is valid).Thus, a zero-knowledge proof is an interactive proof in which no feasible adversar-ial veri�er strategy can obtain from the interaction more than a \benign party"(which believes the assertion) can obtain from the assertion itself.The foregoing interpretation of \gaining nothing" means that any feasible ad-versarial behavior can be \simulated" by a benign behavior (and thus there is nogain in the former). This line of reasoning is called the simulation paradigm, andis pivotal to many de�nitions in cryptography (e.g., it underlies the de�nitions ofsecurity of encryption schemes and cryptographic protocols); for further details seeAppendix C.9.2.1.2 The basic de�nitionsWe turn back to the concrete task of de�ning zero-knowledge. Firstly, we com-ment that zero-knowledge is a property of some prover strategies; actually, moregenerally, zero-knowledge is a property of some strategies. Fixing any strategy(e.g., a prescribed prover), we consider what can be gained (i.e., computed) by anarbitrary feasible adversary (e.g., a veri�er) that interacts with the aforementioned�xed strategy on a common input taken from a predetermined set (in our case theset of valid assertions). This gain is compared against what can be computed by anarbitrary feasible algorithm (called a simulator) that is only given the input itself.The �xed strategy is zero-knowledge if the \computational power" of these two(fundamentally di�erent settings) is essentially equivalent. Details follow.The formulation of the zero-knowledge condition refers to two types of probabil-ity ensembles, where each ensemble associates a single probability distribution toeach relevant input (e.g., a valid assertion). Speci�cally, in the case of interactiveproofs, the �rst ensemble represents the output distribution of the veri�er afterinteracting with the speci�ed prover strategy P (on some common input), wherethe veri�er is employing an arbitrary e�cient strategy (not necessarily the speci�edone). The second ensemble represents the output distribution of some probabilisticpolynomial-time algorithm (which is only given the corresponding input (and doesnot interact with anyone)). The basic paradigm of zero-knowledge asserts that forevery ensemble of the �rst type there exist a \similar" ensemble of the second type.The speci�c variants di�er by the interpretation given to the notion of similarity.The most strict interpretation, leading to perfect zero-knowledge, is that similaritymeans equality.De�nition 9.7 (perfect zero-knowledge, over-simpli�ed):17 A prover strategy, P ,17In the actual de�nition one relaxes the requirement in one of the following two ways. The�rst alternative is allowing A� to run for expected (rather than strict) polynomial-time. Thesecond alternative consists of allowing A� to have no output with probability at most 1=2 andconsidering the value of its output conditioned on it having output at all. The latter alternativeimplies the former, but the converse is not known to hold.

408 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSis said to be perfect zero-knowledge over a set S if for every probabilistic polynomial-time veri�er strategy, V �, there exists a probabilistic polynomial-time algorithm,A�, such that (P; V �)(x) � A�(x) ; for every x 2 Swhere (P; V �)(x) is a random variable representing the output of veri�er V � afterinteracting with the prover P on common input x, and A�(x) is a random variablerepresenting the output of algorithm A� on input x.We comment that any set in coRP has a perfect zero-knowledge proof system inwhich the prover keeps silence and the veri�er decides by itself. The same holdsfor BPP provided that we relax the de�nition of interactive proof system to allowtwo-sided error. Needless to say, our focus is on non-trivial proof systems; that is,proof systems for sets outside of BPP.A somewhat more relaxed interpretation (of the notion of similarity), leadingto almost-perfect zero-knowledge (a.k.a statistical zero-knowledge), is that similar-ity means statistical closeness (i.e., negligible di�erence between the ensembles).The most liberal interpretation, leading to the standard usage of the term zero-knowledge (and sometimes referred to as computational zero-knowledge), is thatsimilarity means computational indistinguishability (i.e., failure of any e�cient pro-cedure to tell the two ensembles apart). Combining the foregoing discussion withthe relevant de�nition of computational indistinguishability (i.e., De�nition C.5),we obtain the following de�nition.De�nition 9.8 (zero-knowledge, somewhat simpli�ed): A prover strategy, P , issaid to be zero-knowledge over a set S if for every probabilistic polynomial-timeveri�er strategy, V �, there exists a probabilistic polynomial-time simulator, A�,such that for every probabilistic polynomial-time distinguisher, D, it holds thatd(n) def= maxx2S\f0;1gnfjPr[D(x; (P; V �)(x))=1]� Pr[D(x;A�(x))=1]jgis a negligible function.18 We denote by ZK the class of sets having zero-knowledgeinteractive proof systems.De�nition 9.8 is a simpli�ed version of the actual de�nition, which is presented inAppendix C.4.2. Speci�cally, in order to guarantee that zero-knowledge is preservedunder sequential composition it is necessary to slightly augment the de�nition (byproviding V � and A� with the same value of an arbitrary (poly(jxj)-bit long) aux-iliary input). Other de�nitional issues and related notions are briey discussed inAppendix C.4.4.18That is, d vanishes faster that the reciprocal of any positive polynomial (i.e., for every positivepolynomial p and for su�ciently large n, it holds that d(n) < 1=p(n)). Needless to say, d(n) def= 0if S \ f0; 1gn = ;.

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 409On the role of randomness and interaction. It can be shown that onlysets in BPP have zero-knowledge proofs in which the veri�er is deterministic (seeExercise 9.13). The same holds for deterministic provers, provided that we consider\auxiliary-input" zero-knowledge (as in De�nition C.9). It can also be shown thatonly sets in BPP have zero-knowledge proofs in which a single message is sent (seeExercise 9.14). Thus, both randomness and interaction are essential to the non-triviality of zero-knowledge proof systems. (For further details, see [90, Sec. 4.5.1].)Advanced Comment: Knowledge Complexity. Zero-knowledge is the lowestlevel of a knowledge-complexity hierarchy which quanti�es the \knowledge revealedin an interaction." Speci�cally, the knowledge complexity of an interactive proofsystem may be de�ned as the minimum number of oracle-queries required in orderto e�ciently simulate an interaction with the prover. (See [89, Sec. 2.3.1] forreferences.)9.2.2 The Power of Zero-KnowledgeWhen faced with a de�nition as complex (and seemingly self-contradictory) as thede�nition of zero-knowledge, one should indeed wonder whether the de�nition canbe met (in a non-trivial manner).19 It turns out that the existence of non-trivialzero-knowledge proofs is related to the existence of intractable problems in NP .In particular, we will show that if one-way functions exist then every NP-set has azero-knowledge proof system. (For the converse, see [90, Sec. 4.5.2] or [227].) But�rst, we demonstrate the non-triviality of zero-knowledge by a presenting a simple(perfect) zero-knowledge proof system for a speci�c NP-set that is not known tobe in BPP. In this case we make no intractability assumptions (yet, the result issigni�cant only if NP is not contained in BPP).9.2.2.1 A simple exampleA story not found in the Odyssey refers to the not so famous Labyrinthof the Island of Aeaea. The Sorceress Circe, daughter of Helius, chal-lenged godlike Odysseus to traverse the Labyrinth from its North Gateto its South Gate. Canny Odysseus doubted whether such a path ex-isted at all and asked beautiful Circe for a proof, to which she repliedthat if she showed him a path this would trivialize for him the chal-lenge of traversing the Labyrinth. \Not necessarily," clever Odysseusreplied, \you can use your magic to transport me to a random place inthe labyrinth, and then guide me by a random walk to a gate of mychoice. If we repeat this enough times then I'll be convinced that thereis a labyrinth-path between the two gates, while you will not reveal tome such a path." \Indeed," wise Circe thought to herself, \showingthis mortal a random path from a random location in the labyrinth to19Recall that any set in BPP has a trivial zero-knowledge (two-sided error) proof system inwhich the veri�er just determines membership by itself. Thus, the issue is the existence of zero-knowledge proofs for sets outside BPP.

410 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe gate he chooses will not teach him more than his taking a randomwalk from that gate."The foregoing story illustrates the main idea underlying the zero-knowledge prooffor Graph Isomorphism presented next. Recall that the set of pairs of isomorphicgraphs is not known to be in BPP, and thus the straightforward NP-proof system(in which the prover just supplies the isomorphism) may not be zero-knowledge.Furthermore, assuming that Graph Isomorphism is not in BPP, this set has nozero-knowledge NP-proof system. Still, as we shall shortly see, this set does havea zero-knowledge interactive proof system.Construction 9.9 (zero-knowledge proof for Graph Isomorphism):� Common Input: A pair of graphs, G1=(V1; E1) and G2=(V2; E2).If the input graphs are indeed isomorphic, then we let � denote an arbitraryisomorphism between them; that is, � is a 1-1 and onto mapping of the vertexset V1 to the vertex set V2 such that fu; vg 2 E1 if and only if f�(v); �(u)g 2E2.� Prover's �rst Step (P1): The prover selects a random isomorphic copy ofG2, and sends it to the veri�er. Namely, the prover selects at random, withuniform probability distribution, a permutation � from the set of permutationsover the vertex set V2, and constructs a graph with vertex set V2 and edge setE def= ff�(u); �(v)g : fu; vg2E2g :The prover sends (V2; E) to the veri�er.� Motivating Remark: If the input graphs are isomorphic, as the prover claims,then the graph sent in Step P1 is isomorphic to both input graphs. However,if the input graphs are not isomorphic then no graph can be isomorphic toboth of them.� Veri�er's �rst Step (V1): Upon receiving a graph, G0 = (V 0; E0), from theprover, the veri�er asks the prover to show an isomorphism between G0 andone of the input graphs, chosen at random by the veri�er. Namely, the veri�eruniformly selects � 2 f1; 2g, and sends it to the prover (who is supposed toanswer with an isomorphism between G� and G0).� Prover's second Step (P2): If the message, �, received from the veri�er equals2 then the prover sends � to the veri�er. Otherwise (i.e., � 6= 2), the proversends � � � (i.e., the composition of � on �, de�ned as � � �(v) def= �(�(v)))to the veri�er.(Indeed, the prover treats any � 6= 2 as � = 1. Thus, in the analysis we shallassume, without loss of generality, that � 2 f1; 2g always holds.)� Veri�er's second Step (V2): If the message, denoted , received from theprover is an isomorphism between G� and G0 then the veri�er outputs 1,otherwise it outputs 0.

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 411The veri�er strategy in Construction 9.9 is easily implemented in probabilisticpolynomial-time. If the prover is given an isomorphism between the input graphs asauxiliary input, then also the prover's program can be implemented in probabilisticpolynomial-time. The motivating remark justi�es the claim that Construction 9.9constitutes an interactive proof system for the set of pairs of isomorphic graphs.Thus, we focus on establishing the zero-knowledge property.We consider �rst the special case in which the veri�er actually follows theprescribed strategy (and selects � at random, and in particular obliviously of thegraph G0 it receives). The view of this veri�er can be easily simulated by selecting� and at random, constructing G0 as a random isomorphic copy of G� (viathe isomorphism), and outputting the triple (G0; �;). Indeed (even in thiscase), the simulator behaves di�erently from the prescribed prover (which selectsG0 as a random isomorphic copy of G2, via the isomorphism �), but its outputdistribution is identical to the veri�er's view in the real interaction. However,the foregoing description assumes that the veri�er follows the prescribed strategy,while in general the veri�er may (adversarially) select � depending on the graphG0. Thus, a slightly more complicated simulation (described next) is required.A general clari�cation may be in place. Recall that we wish to simulate theinteraction of an arbitrary veri�er strategy with the prescribed prover. Thus, thissimulator must depend on the corresponding veri�er strategy, and indeed we shalldescribe the simulator while referring to such a generic veri�er strategy. Formally,this means that the simulator's program incorporates the program of the corre-sponding veri�er strategy. Actually, the following simulator uses the generic veri�erstrategy as a subroutine.Turning back to the speci�c protocol of Construction 9.9, the basic idea is thatsimulator tries to guess � and completes a simulation if its guess turns out to becorrect. Speci�cally, the simulator selects � 2 f1; 2g uniformly (hoping that theveri�er will later select � = �), and constructs G0 by randomly permuting G� (andthus being able to present an isomorphism between G� and G0). Recall that thesimulator is analyzed only on yes-instances (i.e., the input graphs G1 and G2 areisomorphic). The point is that if G1 and G2 are isomorphic, then the graph G0does not yield any information regarding the simulator's guess (i.e., �).20 Thus,the value � selected by the adversarial veri�er may depend on G0 but not on � ,which implies that Pr[�= �] = 1=2. In other words, the simulator's guess (i.e., �)is correct (i.e., equals �) with probability 1=2. Now, if the guess is correct then thesimulator can produce an output that has the correct distribution, and otherwisethe entire process is repeated.Digest: a few useful conventions. We highlight three conventions that wereeither used (implicitly) in the foregoing analysis or can be used to simplify thedescription of (this and/or) other zero-knowledge simulators.1. Without loss of generality, we may assume that the cheating veri�er strategyis implemented by a deterministic polynomial-size circuit (or, equivalently,20Indeed, this observation is identical to the observation made in the analysis of the soundnessof Construction 9.3.

412 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSby a deterministic polynomial-time algorithm with an auxiliary input).21This is justi�ed by �xing any outcome of the veri�er's coins, and observingthat our (uniform) simulation of the various (residual) deterministic strategiesyields a simulation of the original probabilistic strategy.2. Without loss of generality, it su�ces to consider cheating veri�ers that (only)output their view of the interaction (i.e., the common input, their internalcoin tosses, and the messages that they have received). In other words, itsu�ces to simulate the view that cheating veri�ers have of the real interaction.This is justi�ed by noting that the �nal output of any veri�er can be obtainedfrom its view of the interaction, where the complexity of the transformationis upper-bounded by the complexity of the veri�er's strategy.3. Without loss of generality, it su�ces to construct a \weak simulator" thatproduces output with some noticeable22 probability such that whenever anoutput is produced it is distributed \correctly" (i.e., similarly to the distri-bution occuring in real interactions with the prescribed prover).This is justi�ed by repeatedly invoking such a weak simulator (polynomially)many times and using the �rst output produced by any of these invocations.Note that by using an adequate number of invocations, we fail to producean output with negligible probability. Furthermore, note that a simulatorthat fails to produce output with negligible probability can be convertedto a simulator that always produces an output, while incurring a negligiblestatistic deviation in the output distribution.9.2.2.2 The full power of zero-knowledge proofsThe zero-knowledge proof system presented in Construction 9.9 refers to one spe-ci�c NP-set that is not known to be in BPP. It turns out that, under reasonableassumptions, zero-knowledge can be used to prove membership in any NP-set. In-tuitively, it su�ces to establish this fact for a single NP-complete set, and thus wefocus on presenting a zero-knowledge proof system for the set of 3-colorable graphs.It is easy to prove that a given graph G is 3-colorable by just presenting a 3-coloring of G (and the same holds for membership in any set in NP), but this NP-proof is not a zero-knowledge proof (unless NP � BPP). In fact, assuming NP 6�BPP, graph 3-colorability has no zero-knowledge NP-proof system. Still, as weshall shortly see, graph 3-colorability does have a zero-knowledge interactive proofsystem. This proof system will be described while referring to \boxes" in whichinformation can be hidden and later revealed. Such boxes can be implementedusing one-way functions (see, e.g., Theorem 9.11).21This observation is not crucial, but it does simplify the analysis (by eliminating the need tospecify a sequence of coin tosses in each invocation of the veri�er's strategy).22Recall that a probability is called noticeable if it is greater than the reciprocal of some positivepolynomial (in the relevant parameter).

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 413Construction 9.10 (Zero-knowledge proof of 3-colorability, abstract description):The description refers to abstract non-transparent boxes that can be perfectly lockedand unlocked such that these boxes perfectly hide their contents while being locked.� Common Input: A simple graph G=(V;E).� Prover's �rst step: Let be a 3-coloring of G. The prover selects a randompermutation, �, over f1; 2; 3g, and sets �(v) def= �((v)), for each v 2 V .Hence, the prover forms a random relabeling of the 3-coloring . The proversends to the veri�er a sequence of jV j locked and non-transparent boxes suchthat the vth box contains the value �(v).� Veri�er's �rst step: The veri�er uniformly selects an edge fu; vg 2 E, andsends it to the prover.� Motivating Remark: The boxes are supposed to contain a 3-coloring of thegraph, and the veri�er asks to inspect the colors of vertices u and v. Indeed,for the zero-knowledge condition, it is crucial that the prover only respondsto pairs that correspond to edges of the graph.� Prover's second step: Upon receiving an edge fu; vg 2 E, the prover sends tothe veri�er the keys to boxes u and v.For simplicity of the analysis, if the veri�er sends fu; vg 62 E then the proverbehaves as if it has received a �xed (or random) edge in E, rather than sus-pending the interaction, which would have been the natural thing to do.� Veri�er's second step: The veri�er unlocks and opens boxes u and v, andaccepts if and only if they contain two di�erent elements in f1; 2; 3g.The veri�er strategy in Construction 9.10 is easily implemented in probabilisticpolynomial-time. The same holds with respect to the prover's strategy, providedthat it is given a 3-coloring of G as auxiliary input. Clearly, if the input graphis 3-colorable then the veri�er accepts with probability 1 when interacting withthe prescribed prover. On the other hand, if the input graph is not 3-colorable,then any contents put in the boxes must be invalid with respect to at least oneedge, and consequently the veri�er will reject with probability at least 1jEj . Hence,the foregoing protocol exhibits a non-negligible gap in the accepting probabilitiesbetween the case of 3-colorable graphs and the case of non-3-colorable graphs. Toincrease the gap, the protocol may be repeated su�ciently many times (of course,using independent coin tosses in each repetition).So far we showed that Construction 9.10 constitutes (a weak form of) an in-teractive proof system for Graph 3-Colorability. The point, however, is that theprescribed prover strategy is zero-knowledge. This is easy to see in the abstractsetting of Construction 9.10, because all that the veri�er sees in the real interac-tion is a sequence of boxes and a random pair of di�erent colors (which is easy tosimulate). Indeed, the simulation of the real interaction proceeds by presenting asequence of boxes and providing a random pair of di�erent colors as the contents

414 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSof the two boxes indicated by the veri�er. Note that the foregoing argument relieson the fact that the boxes (indicated by the veri�er) correspond to vertices thatare connected by an edge in the graph.This simple demonstration of the zero-knowledge property is not possible inthe digital implementation (discussed next), because in that case the boxes arenot totally una�ected by their contents (but are rather a�ected, yet in an indistin-guishable manner). Thus, the veri�er's selection of the inspected edge may dependon the \outside appearance" of the various boxes, which in turn may depend (inan indistinguishable manner) on the contents of these boxes. Consequently, wecannot determine the boxes' contents after a pair of boxes are selected, and so thesimple foregoing simulation is inapplicable. Instead, we simulate the interaction asfollows.1. We �rst guess (at random) which pair of boxes (corresponding to an edge)the veri�er would ask to open, and place a random pair of distinct colorsin these boxes (and garbage in the rest).23 Then, we hand all boxes to theveri�er, which asks us to open a pair of boxes (corresponding to an edge).2. If the veri�er asks for the pair that we chose (i.e., our guess is successful),then we can complete the simulation by opening these boxes. Otherwise, wetry again (i.e., repeat Step 1 with a new random guess and random colors).The key observation is that if the boxes hide the contents in the sense thata box's contents is indistinguishable based on it outside appearance, thenour guess will succeed with probability approximately 1=jEj. Furthermore,in this case, the simulated execution will be indistinguishable from the realinteraction.Thus, it su�ces to use boxes that hide their contents almost perfectly (rather thanbeing perfectly opaque). Such boxes can be implemented digitally.Teaching note: Indeed, we recommend presenting and analyzing in class only theforegoing abstract protocol. It su�ces to briey comment about the digital implemen-tation, rather than presenting a formal proof of Theorem 9.11 (which can be foundin [99] (or [90, Sec. 4.4])).Digital implementation (overview). We implement the abstract boxes (re-ferred to in Construction 9.10) by using adequately de�ned commitment schemes.Loosely speaking, such a scheme is a two-phase game between a sender and a re-ceiver such that after the �rst phase the sender is \committed" to a value and yet,at this stage, it is infeasible for the receiver to �nd out the committed value (i.e.,the commitment is \hiding"). The committed value will be revealed to the receiverin the second phase and it is guaranteed that the sender cannot reveal a value otherthan the one committed (i.e., the commitment is \binding"). Such commitment23An alternative (and more e�cient) simulation consists of putting random independent colorsin the various boxes, hoping that the veri�er asks for an edge that is properly colored. The latterevent occurs with probability (approximately) 2=3, provided that the boxes hide their contents(almost) perfectly.

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 415schemes can be implemented assuming the existence of one-way functions (as inDe�nition 7.3); see xC.4.3.1.Zero-knowledge proofs for other NP-sets. Using the fact that 3-colorabilityis NP-complete, one can derive (from Construction 9.10) zero-knowledge proof sys-tems for any NP-set.24 Furthermore, NP-witnesses can be e�ciently transformedinto polynomial-size circuits that implement the corresponding (prescribed zero-knowledge) prover strategies.Theorem 9.11 (The ZK Theorem): Assuming the existence of (non-uniformlyhard) one-way functions, it holds that NP � ZK. Furthermore, every S 2 NP hasa (computational) zero-knowledge interactive proof system in which the prescribedprover strategy can be implemented in probabilistic polynomial-time, provided thatit is given as auxiliary-input an NP-witness for membership of the common inputin S.The hypothesis of Theorem 9.11 (i.e., the existence of one-way functions) seems un-avoidable, because the existence of zero-knowledge proofs for \hard on the average"problems implies the existence of one-way functions (and, likewise, the existenceof zero-knowledge proofs for sets outside BPP implies the existence of \auxiliary-input one-way functions").Theorem 9.11 has a dramatic e�ect on the design of cryptographic protocols(see Appendix C). In a di�erent vein we mention that, under the same assumption,any interactive proof can be transformed into a zero-knowledge one. (This trans-formation, however, does not necessarily preserve the complexity of the prover.)Theorem 9.12 (The ultimate ZK Theorem): Assuming the existence of (non-uniformly hard) one-way functions, it holds that IP = ZK.Loosely speaking, Theorem 9.12 can be proved by recalling that IP = AM(poly)and modifying any public-coin protocol as follows: the modi�ed prover sends com-mitments to its messages rather than the messages themselves, and once the orig-inal interaction is completed it proves (in zero-knowledge) that the correspondingtranscript would have been accepted by the original veri�er. Indeed, the latter as-sertion is of the \NP type", and thus the zero-knowledge proof system guaranteedin Theorem 9.11 can be invoked for proving it.Reection. The proof of Theorem 9.11 uses the fact that 3-colorability is NP-complete in order to obtain a zero-knowledge proofs for any set inNP by using sucha protocol for 3-colorability (i.e., Construction 9.10). Thus, an NP-completenessresult is used here in a \positive" way; that is, in order to construct somethingrather than in order to derive a (\negative") hardness result (cf., Section 2.2.4).2524Actually, we should either rely on the fact that the standard Karp-reductions are invertiblein polynomial time or on the fact that the 3-colorability protocol is actually zero-knowledge withrespect to auxiliary inputs (as in De�nition C.9).25Historically, the proof of Theorem 9.11 was probably the �rst positive application of NP-completeness. Subsequent positive uses of completeness results have appeared in the context of

416 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSPerfect and Statistical Zero-Knowledge. The foregoing results, which referto computational zero-knowledge proof systems, should be contrasted with theknown results regarding the complexity of statistical zero-knowledge proof systems:Statistical zero-knowledge proof systems exist only for sets in IP(2)\coIP(2), andthus are unlikely to exist for all NP-sets. On the other hand, the class StatisticalZero-Knowledge is known to contain some seemingly hard problems, and turnsout to have interesting complexity theoretic properties (e.g., being closed undercomplementation, and having very natural complete problems). The interestedreader is referred to [226].9.2.3 Proofs of Knowledge { a parenthetical subsectionTeaching note: Technically speaking, this topic belongs to Section 9.1, but its moreinteresting demonstrations refer to zero-knowledge proofs of knowledge { hence its cur-rent positioning.Loosely speaking, \proofs of knowledge" are interactive proofs in which the proverasserts \knowledge" of some object (e.g., a 3-coloring of a graph), and not merelyits existence (e.g., the existence of a 3-coloring of the graph, which in turn is equiv-alent to the assertion that the graph is 3-colorable). Note that the entity assertingknowledge is actually the prover's strategy, which is an automated computing de-vice, hereafter referred to as a machine. This raises the question of what do wemean by saying that a machine knows something.9.2.3.1 Abstract reectionsAny standard dictionary suggests several meanings for the verb to know, but theseare typically phrased with reference to the notion of awareness, a notion which iscertainly inapplicable in the context of machines. Instead, we should look for abehavioristic interpretation of the verb to know. Indeed, it is reasonable to linkknowledge with the ability to do something (e.g., the ability to write down whateverone knows). Hence, we may say that a machine knows a string � if it can outputthe string �. But this seems as total non-sense too: a machine has a well de�nedoutput { either the output equals � or it does not, so what can be meant by sayingthat a machine can do something?Interestingly, a sound interpretation of the latter phrase does exist. Looselyspeaking, by saying that a machine can do something we mean that the machinecan be easily modi�ed such that it (or rather its modi�ed version) does whateveris claimed. More precisely, this means that there exists an e�cient machine that,using the original machine as a black-box (or given its code as an input), outputswhatever is claimed.Technically speaking, using a machine as a black-box seems more appealingwhen the said machine is interactive (i.e., implements an interactive strategy).Indeed, this will be our focus here. Furthermore, conceptually speaking, whateverinteractive proofs (see the proof of Theorem 9.4), probabilistically checkable proofs (see the proofof Theorem 9.16), and the study of statistical zero-knowledge (cf. [226]).

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 417a machine knows (or does not know) is its own business, whereas what can beof interest and reference to the outside is whatever can be deduced about theknowledge of a machine by interacting with it. Hence, we are interested in proofsof knowledge (rather than in mere knowledge).9.2.3.2 A concrete treatmentFor sake of simplicity let us consider a concrete question: how can a machine provethat it knows a 3-coloring of a graph? An obvious way is just sending the 3-coloringto the veri�er. Yet, we claim that applying the protocol in Construction 9.10 (i.e.,the zero-knowledge proof system for 3-Colorability) is an alternative way of provingknowledge of a 3-coloring of the graph.The de�nition of a veri�er of knowledge of 3-coloring refers to any possibleprover strategy and links the ability to \extract" a 3-coloring (of a given graph)from such a prover to the probability that this prover convinces the veri�er. That is,the de�nition postulates the existence of an e�cient universal way of \extracting" a3-coloring of a given graph by using any prover strategy that convinces this veri�erto accept this graph with probability 1 (or, more generally, with some noticeableprobability). On the other hand, we should no expect this extractor to obtainmuch from prover strategies that fail to convince the veri�er (or, more generally,convince it with negligible probability). A robust de�nition should allow a smoothtransition between these two extremes (and in particular between provers thatconvince the veri�er with noticeable probability and those that convince it withnegligible probability). Such a de�nition should also support the intuition by whichthe following strategy of Alice is zero-knowledge: Alice sends Bob a 3-coloring ofa given graph provided that Bob has successfully convinced her that he knows thiscoloring.26 We stress that the zero-knowledge property of Alice's strategy shouldhold regardless of the proof-of-knowledge system used for proving Bob's knowledgeof a 3-coloring.Loosely speaking, we say that a strategy, V , constitutes a veri�er for knowledgeof 3-coloring if, for any prover strategy P , the complexity of extracting a 3-coloringof G when using P as a \black box"27 is inversely proportional to the probabilitythat V is convinced by P (to accept the graph G). Namely, the extraction of the3-coloring is done by an oracle machine, called an extractor, that is given access tothe strategy P (i.e., the function specifying the message that P sends in response toany sequence of messages it may receive). We require that the (expected) runningtime of the extractor, on input G and oracle access to P , be inversely related (bya factor polynomial in jGj) to the probability that P convinces V to accept G. Inparticular, if P always convinces V to accept G, then the extractor runs in expectedpolynomial-time. The same holds in case P convinces V to accept with noticeableprobability. On the other hand, if P never convinces V to accept, then nothing isrequired of the extractor. We stress that the latter special cases do not su�ce for26For simplicity, the reader may consider graphs that have a unique 3-coloring (up-to a rela-beling). In general, we refer here to instances that have unique solution (cf. Section 6.2.3), whicharise naturally in some (cryptographic) applications.27Indeed, one may consider also non-black-box extractors.

418 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSa satisfactory de�nition; see discussion in [90, Sec. 4.7.1].Proofs of knowledge, and in particular zero-knowledge proofs of knowledge,have many applications to the design of cryptographic schemes and cryptographicprotocols (see, e.g., [90, 91]). These are enabled by the following general result.Theorem 9.13 (Theorem 9.11, revisited): Assuming the existence of (non-uniformlyhard) one-way functions, any NP-relation has a zero-knowledge proof of knowledge(of a corresponding NP-witnesses). Furthermore, the prescribed prover strategycan be implemented in probabilistic polynomial-time, provided it is given such anNP-witness.9.3 Probabilistically Checkable Proof SystemsTeaching note: Probabilistically checkable proof (PCP) systems may be viewed asa restricted type of interactive proof systems in which the prover is memoryless andresponds to each veri�er message as if it were the �rst such message. This perspectivecreates a tighter link with previous sections, but is somewhat contrived. Indeed, sucha memoryless prover may be viewed as a static object that the veri�er may query atlocations of its choice. But then it is more appealing to present the model using the(more traditional) terminology of oracle machines rather than using (and degenerating)the terminology of interactive machines (or strategies).Probabilistically checkable proof systems can be viewed as standard (determinis-tic) proof systems that are augmented with a probabilistic procedure capable ofevaluating the validity of the assertion by examining few locations in the allegedproof. Actually, we focus on the latter probabilistic procedure, which in turn im-plies the existence of a deterministic veri�cation procedure (obtained by going overall possible random choices of the probabilistic procedure and making the adequateexaminations).Modeling such probabilistic veri�cation procedures, which may examine fewlocations in the alleged proof, requires providing these procedures with direct accessto the individual bits of the alleged proof (so that they need not scan the proofbit-by-bit). Thus, the alleged proof is a string, as in the case of a traditionalproof system, but the (probabilistic) veri�cation procedure is given direct accessto individual bits of this string.We are interested in probabilistic veri�cation procedures that access only fewlocations in the proof, and yet are able to make a meaningful probabilistic verdictregarding the validity of the alleged proof. Speci�cally, the veri�cation procedureshould accept any valid proof (with probability 1), but rejects with probabilityat least 1=2 any alleged proof for a false assertion. Such probabilistic veri�cationprocedures are called probabilistically checkable proof (PCP) systems.The fact that one can (meaningfully) evaluate the correctness of proofs byexamining few locations in them is indeed amazing and somewhat counter-intuitive.Needless to say, such proofs must be written in a somewhat non-standard format,

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 419because standard proofs cannot be veri�ed without reading them in full (since a awmay be due to a single improper inference). In contrast, proofs for a PCP systemtend to be very redundant; they consist of superuously many pieces of information(about the claimed assertion), but their correctness can be (meaningfully) evaluatedby checking the consistency of a randomly chosen collection of few related pieces.We stress that by a \meaningful evaluation" we mean rejecting alleged proofs offalse assertions with constant probability (rather than with probability that isinversely proportional to the length of the alleged proof).The main complexity measure associated with PCPs is indeed their query com-plexity. Another complexity measure of natural concern is the length of the proofsbeing employed, which in turn is related to the randomness complexity of thesystem. The randomness complexity of PCPs plays a key role in numerous appli-cations (e.g., in composing PCP systems as well as when applying PCP systems toderive inapproximability results), and thus we specify this parameter rather thanthe proof length.Teaching note: Indeed, PCP systems are most famous for their role in deriving nu-merous inapproximability results (see Section 9.3.3), but our view is that the latteris merely one extremely important application of the fundamental notion of a PCPsystem. Our presentation is organized accordingly.9.3.1 De�nitionLoosely speaking, a probabilistically checkable proof system consists of a probabilis-tic polynomial-time veri�er having access to an oracle that represents an allegedproof (in redundant form). Typically, the veri�er accesses only few of the oraclebits, and these bit positions are determined by the outcome of the veri�er's cointosses. As in the case of interactive proof systems, it is required that if the asser-tion holds then the veri�er always accepts (i.e., when given access to an adequateoracle); whereas, if the assertion is false then the veri�er must reject with proba-bility at least 12 , no matter which oracle is used. The basic de�nition of the PCPsetting is given in Part (1) of the following de�nition. Yet, the complexity measuresintroduced in Part (2) are of key importance for the subsequent discussions.De�nition 9.14 (Probabilistically Checkable Proofs { PCP):1. A probabilistically checkable proof system (PCP) for a set S is a probabilisticpolynomial-time oracle machine, called veri�er and denoted V , that satis�esthe following two conditions:� Completeness: For every x 2 S there exists an oracle �x such that, oninput x and access to oracle �x, machine V always accepts x.� Soundness: For every x 62 S and every oracle �, on input x and accessto oracle �, machine V rejects x with probability at least 12 .2. We say that a probabilistically checkable proof system has query complexityq :N!N if, on any input of length n, the veri�er makes at most q(n) oracle

420 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSqueries.28 Similarly, the randomness complexity r :N ! N upper-bounds thenumber of coin tosses performed by the veri�er on a generic n-bit long input.For integer functions r and q, we denote by PCP(r; q) the class of sets havingprobabilistically checkable proof systems of randomness complexity r and querycomplexity q. For sets of integer functions, R and Q,PCP(R;Q) def= [r2R ; q2QPCP(r; q) :The error probability (in the soundness condition) of PCP systems can be reducedby successive applications of the proof system. In particular, repeating the processfor k times, reduces the probability that the veri�er is fooled by a false assertion to2�k, whereas all complexities increase by at most a factor of k. Thus, PCP systemsof non-trivial query-complexity (cf. Section 9.3.2) provide a trade-o� between thenumber of locations examined in the proof and the con�dence in the validity of theassertion.We note that the oracle �x referred to in the completeness condition of a PCPsystem constitutes a proof in the standard mathematical sense. Indeed any PCPsystem yields a standard proof system (with respect to a veri�cation procedurethat scans all possible outcomes of V 's internal coin tosses and emulates all thecorresponding checks). Furthermore, the oracles in PCP systems of logarithmicrandomness-complexity constitute NP-proofs (see Exercise 9.15). However, theoracles of a PCP system have the extra remarkable property of enabling a lazyveri�er to toss coins, take its chances and \assess" the validity of the proof withoutreading all of it (but rather by reading a tiny portion of it). Potentially, this allowsthe veri�er to examine very few bits of an NP-proof and even utilize very longproofs (i.e., of super-polynomial length).Adaptive versus non-adaptive veri�ers. De�nition 9.14 allows the veri�erto be adaptive; that is, the veri�er may determine its queries based on the an-swers it has received to previous queries (in addition to their dependence on theinput and on the veri�er's internal coin tosses). In contrast, non-adaptive veri�ersdetermine all their queries based solely on their input and internal coin tosses.Note that q adaptive (binary) queries can be emulated by Pqi=1 2i�1 < 2q non-adaptive (binary) queries. We comment that most constructions of PCP systemsuse non-adaptive veri�ers, and in fact in many sources PCP systems are de�ned asnon-adaptive.Randomness versus proof length. Fixing a veri�er V , we say that locationi (in the oracle) is relevant to input x if there exists a computation of V on inputx in which location i is queried (i.e., there exists ! and � such that, on inputx, randomness ! and access to the oracle �, the veri�er queries location i). Thee�ective proof length of V is the smallest function ` : N!N such that for everyinput x there are at most `(jxj) locations (in the oracle) that are relevant to x.28As usual in complexity theory, the oracle answers are binary values (i.e., either 0 or 1).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 421We claim that the e�ective proof length of any PCP system is closely related toits randomness (and query) complexity. On one hand, if the PCP system hasrandomness-complexity r and query-complexity q, then its e�ective proof length isupper-bounded by 2r+q, whereas a bound of 2r � q holds for non-adaptive systems(see Exercise 9.15). Thus, PCP systems of logarithmic randomness complexity havee�ective proof length that is polynomial, and hence yield NP-proof systems. On theother hand, in some sense, the randomness complexity of a PCP system can beupper-bounded by the logarithm of the (e�ective) length of the proofs employed(provided we allow non-uniform veri�ers; see Exercise 9.16).On the role of randomness. The PCP Theorem (i.e., NP � PCP(log; O(1)))asserts that a meaningful probabilistic evaluation of proofs is possible based ona constant number of examined bits. We note that, unless P = NP , such aphenomena is impossible when requiring the veri�er to be deterministic. Firstly,note that PCP(0; O(1)) = P holds (as a special case of PCP(r; q) � Dtime(22rq+r �poly); see Exercise 9.17). Secondly, as shown in Exercise 9.19, P 6= NP implies thatNP is not contained in PCP(o(log); o(log)). Lastly, assuming that not all NP-setshave NP-proof systems that employs proofs of length ` (e.g., `(n) = n), it followsthat if 2r(n)q(n) < `(n) then PCP(r; q) does not contain NP (see Exercise 9.17again).9.3.2 The Power of Probabilistically Checkable ProofsThe celebrated PCP Theorem asserts that NP = PCP(log; O(1)), and this resultis indeed the focus of the current section. But before getting to it we make severalsimple observations regarding the PCP Hierarchy.We �rst note that PCP(poly; 0) equals coRP , whereas PCP(0; poly) equalsNP . It is easy to prove an upper bound on the non-deterministic time complexityof sets in the PCP hierarchy (see Exercise 9.17):Proposition 9.15 (upper-bounds on the power of PCPs): For every polynomiallybounded integer function r, it holds that PCP(r; poly) � Ntime(2r � poly). Inparticular, PCP(log; poly) � NP.The focus on PCP systems of logarithmic randomness complexity reects an inter-est in PCP systems that utilize proof oracles of polynomial length (see discussion inSection 9.3.1). We stress that such PCP systems (i.e., PCP(log; q)) are NP-proofsystems with a (potentially amazing) extra property: the validity of the assertioncan be \probabilistically evaluated" by examining a (small) portion (i.e., q(n) bits)of the proof. Thus, for any �xed polynomially bounded function q, a result of theform NP � PCP(log; q) (9.6)is interesting (because it applies also to NP-sets having witnesses of length exceed-ing q). Needless to say, the smaller q { the better. The PCP Theorem asserts theamazing fact by which q can be made a constant.

422 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSTheorem 9.16 (The PCP Theorem): NP � PCP(log; O(1)).Thus, probabilistically checkable proofs in which the veri�er tosses only logarith-mically many coins and makes only a constant number of queries exist for everyset in NP . This constant is essentially three (see x9.3.4.1). Before reviewing theproof of Theorem 9.16, we make a couple of comments.E�cient transformation of NP-witnesses to PCP oracles: The proof ofTheorem 9.16 is constructive in the sense that it allows to e�ciently transformany NP-witness (for an instance of a set in NP) into an oracle that makes thePCP veri�er accept (with probability 1). That is, for every (NP-witness relation)R 2 PC there exists a PCP veri�er V as in Theorem 9.16 and a polynomial-timecomputable function � such that for every (x; y)2R the veri�er V always accepts theinput x when given oracle access to the proof �(x; y) (i.e., Pr[V �(x;y)(x)=1] = 1).Recalling that the latter oracles are themselves NP-proofs, it follows that NP-proofscan be transformed into NP-proofs that o�er a trade-o� between the portion of theproof being read and the con�dence it o�ers. Speci�cally, for every " > 0, if one iswilling to tolerate an error probability of " then it su�ces to examine O(log(1="))bits of the (transformed) NP-proof. Indeed (as discussed in Section 9.3.1), thesebit locations need to be selected at random.The foregoing strengthening of Theorem 9.16 o�ers a wider range of applica-tions than Theorem 9.16 itself. Indeed, Theorem 9.16 itself su�ces for \negative"applications such as establishing the infeasibility of certain approximation prob-lems (see Section 9.3.3). But for \positive" applications (see x9.3.4.2), typicallysome user (or a real entity) will be required to actually construct the PCP-oracle,and in such cases the strengthening of Theorem 9.16 will be useful.A characterization of NP: Combining Theorem 9.16 with Proposition 9.15 weobtain the following characterization of NP .Corollary 9.17 (The PCP characterization of NP): NP = PCP(log; O(1)).Road-map for the proof of the PCP Theorem: Theorem 9.16 is a culmina-tion of a sequence of remarkable works, each establishing meaningful and increas-ingly stronger versions of Eq. (9.6). A presentation of the full proof of Theorem 9.16is beyond the scope of the current work (and is, in our opinion, unsuitable for abasic course in complexity theory). Instead, we present an overview of the originalproof (see x9.3.2.2) as well as of an alternative proof (see x9.3.2.3), which was foundmore than a decade later. We will start, however, by presenting a weaker resultthat is used in both proofs of Theorem 9.16 and is also of independent interest.This weaker result (see x9.3.2.1) asserts that every NP-set has a PCP system withconstant query-complexity (albeit with polynomial randomness complexity); thatis, NP � PCP(poly; O(1)).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 423Teaching note: In our opinion, presenting in class any part of the proof of the PCPTheorem should be given low priority. In particular, presenting the connections betweenPCP and the complexity of approximation should be given a higher priority. As forrelative priorities among the following three subsections, we strongly recommend givingx9.3.2.1 the highest priority, because it o�ers a direct demonstration of the power ofPCPs. As for the two alternative proofs of the PCP Theorem itself, our recommendationdepends on the intended goal. On one hand, for the purpose of merely giving a tasteof the ideas involved in the proof, we prefer an overview of the original proof (providedin x9.3.2.2). On the other hand, for the purpose of actually providing a full proof, wede�nitely prefer the new proof (which is only outlined in x9.3.2.3).9.3.2.1 Proving that NP � PCP(poly; O(1))The fact that every NP-set has a PCP system with constant query-complexity(regardless of its randomness-complexity) already testi�es to the power of PCPsystems. It asserts that probabilistic veri�cation of proofs is possible by inspectingvery few locations in a (potentially huge) proof. Indeed, the PCP systems presentednext utilize exponentially long proofs, but they do so while inspecting these proofsat a constant number of (randomly selected) locations.We start with a brief overview of the construction. We �rst note that it su�cesto construct a PCP for proving the satis�ability of a given system of quadraticequations over GF(2), because this problem is NP-complete (see Exercise 2.25).29For an input consisting of a system of quadratic equations with n variables, theoracle (of this PCP) is supposed to provide the evaluation of all quadratic ex-pressions (in these n variables) at some �xed assignment to these variables. Thisassignment is supposed to satisfy the system of quadratic equations that is given asinput. We distinguish two tables in the oracle: the �rst table corresponding to all2n linear expressions and the second table to all 2n2 quadratic expressions. Eachtable is tested for self-consistency (via a \linearity test"), and the two tables aretested to be consistent with each other (via a \matrix-equality" test, which utilizes\self-correction"). Finally, we test that the assignment encoded in these tables sat-is�es the quadratic system that is given as input. This is done by taking a randomlinear combination of the quadratic equations that appear in the quadratic system,and obtaining the value assigned to the corresponding quadratic expression by theaforementioned tables (again, via self-correction). The key point is that each of theforegoing tests utilizes a constant number of Boolean queries, and has time (andrandomness) complexity that is polynomial in the size of the input. Details follow.Teaching note: The following text refers to notions such as the Hadamard encoding,testing and self-correction, which appear in other parts of this work (see, e.g., xE.1.1.2,Section 10.1.2. and x7.2.1.1, respectively). While a wider perspective (provided in theaforementioned parts) is always useful, the current text is self-contained.29Here and elsewhere, we denote by GF(2) the 2-element �eld.

424 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSThe starting point. We construct a PCP system for the set of satis�ablequadratic equations over GF(2). The input is a sequence of such equations over thevariables x1; :::; xn, and the proof oracle consist of two parts (or tables), which aresupposed to provide information regarding some satisfying assignment � = �1 � � � �n(also viewed as an n-ary vector over GF(2)). The �rst part, denoted T1, is sup-posed to provide a Hadamard encoding of the said satisfying assignment; that is,for every � 2 GF(2)n this table is supposed to provide the inner product mod 2 ofthe n-ary vectors � and � (i.e., T1(�) is supposed to equalPni=1 �i�i). The secondpart, denoted T2, is supposed to provide all linear combinations of the values ofthe �i�j 's; that is, for every � 2 GF(2)n2 (viewed as an n-by-n matrix over GF(2)),the value of T2(�) is supposed to equal Pi;j �i;j�i�j . (Indeed T1 is contained inT2, because �2 = � for any � 2 GF(2).) The PCP veri�er will use the two tablesfor checking that the input (i.e., a sequence of quadratic equations) is satis�ed bythe assignment that is encoded in the two tables. Needless to say, these tables maynot be a valid encoding of any n-ary vector (let alone one that satis�es the input),and so the veri�er also needs to check that the encoding is (close to being) valid.We will focus on this task �rst.Testing the Hadamard Code. Note that T1 is supposed to encode a linearfunction; that is, there must exist some � = �1 � � � �n 2 GF(2)n such that T1(�) =Pni=1 �i�i holds for every � = �1 � � ��n 2 GF(2)n. This can be tested by selectinguniformly �0; �00 2 GF(2)n and checking whether T1(�0) + T1(�00) = T1(�0 + �00),where �0+�00 denotes addition of vectors over GF(2). The analysis of this naturaltester turns out to be quite complex. Nevertheless, it is indeed the case that anytable that is 0:02-far from being linear is rejected with probability at least 0:01(see Exercise 9.20), where T is "-far from being linear if T disagrees with any linearfunction f on more than an " fraction of the domain (i.e., Prr[T (r) 6=f(r)] > ").By repeating the linearity test for a constant number of times, we may rejecteach table that is 0:02-far from being a codeword of the Hadamard Code withprobability at least 0:99. Thus, using a constant number of queries, the veri�errejects any T1 that is 0:02-far from being a Hadamard encoding of any � 2 GF(2)n,and likewise rejects any T2 that is 0:02-far from being a Hadamard encoding ofany � 0 2 GF(2)n2 . We may thus assume that T1 (resp., T2) is 0:02-close to theHadamard encoding of some � (resp., � 0).30 (Needless to say, this does not meanthat � 0 equals the outer produce of � with itself.)In the rest of the analysis, we �x � 2 GF(2)n and � 0 2 GF(2)n2 , and denote theHadamard encoding of � (resp., � 0) by f� :GF(2)n!GF(2) (resp., f� 0 :GF(2)n2!GF(2)). Recall that T1 (resp., T2) is 0:02-close to f� (resp., f� 0).Self-correction of the Hadamard Code. Suppose that T is "-close to a linearfunction f : GF(2)m! GF(2) (i.e., Prr[T (r) 6= f(r)] � "). Then, we can recoverthe value of f at any desired point x, by making two (random) queries to T .30Note that � (resp., � 0) is uniquely determined by T1 (resp., T2), because every two di�erentlinear functions GF(2)m ! GF(2) agree on exactly half of the domain (i.e., the Hadamard codehas relative distance 1=2).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 425Speci�cally, for a uniformly selected r 2 GF(2)m, we use the value T (x+r)�T (r).Note that the probability that we recover the correct value is at least 1�2", becausePrr[T (x + r) � T (r) = f(x + r) � f(r)] � 1 � 2" and f(x + r) � f(r) = f(x) bylinearity of f . (Needless to say, for " < 1=4, the function T cannot be "-close totwo di�erent linear functions.)31 Thus, assuming that T1 is 0:02-close to f� (resp.,T2 is 0:02-close to f� 0) we may correctly recover (i.e., with error probability 0:04)the value of f� (resp., f� 0) at any desired point by making 2 queries to T1 (resp.,T2). This process is called self-correction (cf., e.g., x7.2.1.1).
= = f (r) f (s)

srr s

.
τ τ

τA τFigure 9.3: Detail for testing consistency of linear and quadratic forms.Checking consistency of f� and f� 0. Suppose that we are given access tof� : GF(2)n ! GF(2) and f� 0 : GF(2)n2 ! GF(2), where f� (�) = Pi �i�iand f� 0(�0) = Pi;j � 0i;j�0i;j , and that we wish to verify that � 0i;j = �i�j for ev-ery i; j 2 f1; :::; ng. In other words, we are given a (somewhat weird) encodingof two matrices, A = (�i�j)i;j and A0 = (� 0i;j)i;j , and we wish to check whetheror not these matrices are identical. It can be shown (see Exercise 9.22) that ifA 6= A0 then Prr;s[r>As 6= r>A0s] � 1=4, where r and s are uniformly distributedn-ary vectors. Note that, in our case (where A = (�i�j)i;j and A0 = (� 0i;j)i;j), itholds that r>As = Pj(Pi ri�i�j)sj = f� (r)f� (s) (see Figure 9.3) and r>A0s =Pj(Pi ri� 0i;j)sj = f� 0(rs>), where rs> is the outer-product of s and r. Thus, (for(�i�j)i;j 6= (� 0i;j)i;j) we have Prr;s[f� (r)f� (s) 6= f� 0(rs>)] � 1=4.Recall, however, that we do not have direct access to the functions f� and f� 0 ,but rather to tables (i.e., T1 and T2) that are 0:02-close to these functions. Still,using self-correction, we can obtain the values of f� and f� 0 at any desired point,with very high probability. Actually, when implementing the foregoing consistencytest it su�ces to use self-correction for f� 0 , because we use the values of f� attwo independently and uniformly distributed points in GF(2)n (i.e., r; s) but thevalue f� 0 is required at rs>, which is not uniformly distributed in GF(2)n2 . Thus,we test the consistency of f� and f� 0 by selecting uniformly r; s 2 GF(2)n andR 2 GF(2)n2 , and checking that T1(r)T1(s) = T2(rs> +R)� T2(R).By repeating the aforementioned (self-corrected) consistency test for a constantnumber of times, we may reject an inconsistent pair of tables with probability atleast 0:99. Thus, in the rest of the analysis, we may assume that (�i�j)i;j = (� 0i;j)i;j .31Indeed, this fact follows from the self-correction argument, but a simpler proof merely refersto the fact that the Hadamard code has relative distance 1=2.

426 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSChecking that � satis�es the quadratic system. Suppose that we are givenaccess to f� and f� 0 as in the foregoing (where, in particular, � 0 = ��>). A keyobservation is that if � does not satisfy a system of (quadratic) equations then,with probability 1=2, it does not satisfy a random linear combination of theseequations. Thus, in order to check whether � satis�es the quadratic system (whichis given as input), we create a single quadratic equation by taking such a randomlinear combination, and check whether this quadratic equation is satis�ed by � .The punch-line is that testing whether � satis�es the quadratic equation Q(x) = �amounts to testing whether f� 0(Q) = �. Again, the actual checking is implementedby using self-correction (of the table T2).This completes the description of the veri�er. Note that this veri�er performsa constant number of codeword tests for the Hadamard Code, and a constantnumber of consistency and satis�ability tests, where each of the latter involves self-correction of the Hadamard Code. Each of the individual tests utilizes a constantnumber of queries (ranging between two and four) and uses randomness that isquadratic in the number of variables (and linear in the number of equations in theinput). Thus, the query-complexity is a constant and the randomness-complexityis at most quadratic in the length of the input (quadratic system). Clearly, ifthe input quadratic system is satis�able (by some �), then the veri�er accepts thecorresponding tables T1 and T2 (i.e., T1 = f� and T2 = f��>) with probability 1.On the other hand, if the input quadratic system is unsatis�able, then any pair oftables (T1; T2) will be rejected with constant probability (by one of the foregoingtests). It follows that NP � PCP(q; O(1)), where q is a quadratic polynomial.Reection. Indeed, the actual test of the satis�ability of the quadratic systemthat is given as input is facilitated by the fact that a satisfying assignment isencoded (in the oracle) in a very redundant manner, which �ts the �nal test ofsatis�ability. But then the burden of testing moves to checking that this encodingis indeed valid. In fact, most of the tests performed by the foregoing veri�er areaimed at verifying the validity of the encoding. Such a test of validity (of encoding)may be viewed as a test of consistency between the various parts of the encoding.All these themes are present also in more advanced constructions of PCP systems.9.3.2.2 Overview of the �rst proof of the PCP TheoremThe original proof of the PCP Theorem (Theorem 9.16) consists of three mainconceptual steps, which we briey sketch �rst and further discuss later.1. Constructing a (non-adaptive) PCP system for NP having logarithmic ran-domness and polylogarithmic query complexity; that is, this PCP has thedesired randomness complexity and a very low (but non-constant) query com-plexity. Furthermore, this proof system has additional properties that enableproof composition as in the following Step 3.2. Constructing a PCP system for NP having polynomial randomness and con-stant query complexity; that is, this PCP has the desired (constant) query

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 427complexity but its randomness complexity is prohibitingly high. (Indeed, weshowed such a construction in x9.3.2.1.) Furthermore, this proof system toohas additional properties enabling proof composition as in Step 3.3. The proof composition paradigm:32 In general, this paradigm allows to com-pose two proof systems such that the \inner" one is used for probabilisticallyverifying the acceptance criteria of the \outer" veri�er. The aim is to conductthis (\composed") veri�cation using much fewer queries than the query com-plexity of the \outer" proof system. In particular, the inner veri�er cannota�ord to read its input, which makes composition more subtle than the termsuggests.Loosely speaking, the outer veri�er should be robust in the sense that itssoundness condition guarantee that with high probability the oracle answersare \far" from satisfying the residual decision predicate (rather than merelynot satisfy it). (Furthermore, the latter predicate, which is well-de�ned bythe non-adaptive nature of the outer veri�er, must have a circuit of sizebounded by a polynomial in the number of queries.) The inner veri�er isgiven oracle access to its input and is charged for each query made to it, butis only required to reject with high probability inputs that are far from beingvalid (and, as usual, accept inputs that are valid). That is, the inner veri�eris actually a veri�er of proximity.Composing two such PCPs yields a new PCP for NP , where the new prooforacle consists of the proof oracle of the \outer" system and a sequence ofproof oracles for the \inner" system (one \inner" proof per each possiblerandom-tape of the \outer" veri�er). The resulting veri�er selects coins forthe outer-veri�er and uses the corresponding \inner" proof in order to verifythat the outer-veri�er would have accepted under this choice of coins. Notethat such a choice of coins determines locations in the \outer" proof that theouter-veri�er would have inspected, and the combined veri�er provides theinner-veri�er with oracle access to these locations (which the inner-veri�erconsiders as its input) as well as with oracle access to the corresponding\inner" proof (which the inner-veri�er considers as its proof-oracle).Note that composing an outer-veri�er of randomness-complexity r0 and query-complexity q0 with an inner-veri�er of randomness-complexity r00 and query-complexity q00 yields a PCP of randomness-complexity r(n) = r0(n)+r00(q0(n))and query-complexity q(n) = q00(q0(n)), because q0(n) represents the lengthof the input (oracle) that is accessed by the inner-veri�er. Recall that theouter-veri�er is non-adaptive, and thus if the inner-veri�er is non-adaptive(resp., robust) then so is the veri�er resulting from the composition, which isimportant in case we wish to compose the latter veri�er with another inner-veri�er.In particular, the proof system of Step 1 is composed with itself [using r0(n) =r00(n) = O(log n) and q0(n) = q00(n) = poly(logn)] yielding a PCP system (for32Our presentation of the composition paradigm follows [34], rather than the original presen-tation of [15, 14].

428 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSNP) of randomness-complexity r(n) = r0(n) + r00(q0(n)) = O(log n) and query-complexity q(n) = q00(q0(n)) = poly(log logn). Composing the latter system (usedas an \outer" system) with the PCP system of Step 2, yields a PCP system (forNP) of randomness-complexity r(n)+poly(q(n)) = O(log n) and query-complexityO(1), thus establishing the PCP Theorem.A more detailed overview { the plan. The foregoing description uses two(non-trivial) PCP systems and refers to additional properties such as robustnessand veri�cation of proximity. A PCP system of polynomial randomness-complexityand constant query-complexity (as postulated in Step 2) is outlined in x9.3.2.1. Wethus start by discussing the notions of verifying proximity and being robust, whiledemonstrating their applicability to the said PCP. Finally, we outline the otherPCP system that is used (i.e., the one postulated in Step 1).PCPs of Proximity. Recall that a standard PCP veri�er gets an explicit inputand is given oracle access to an alleged proof (for membership of the input in apredetermined set). In contrast, a PCP of proximity veri�er is given (direct) accessto two oracles, one representing an input and the other being an alleged proof,and its queries to both oracles are counted in its query-complexity. Typically, thequery-complexity of this veri�er is lower than the length of the input oracle, andhence this veri�er cannot a�ord reading the entire input and cannot be expectedto make absolute statements about it. Indeed, instead of deciding whether or notthe input is in a predetermined set, the veri�er is only required to distinguish thecase that the input is in the set from the case that the input is far from the set(where far means being at relative Hamming distance at least 0.01 (or any othersmall constant)).For example, consider a variant of the system of x9.3.2.1 in which the quadraticsystem is �xed33 and the veri�er needs to determine whether the assignment ap-pearing in the input oracle satis�es the said system or is far from any assignmentthat satis�es it. We use a proof oracle is as in x9.3.2.1, and a PCP veri�er ofproximity that proceeds as in x9.3.2.1 and in addition perform a proximity test toverify that the input oracle is close to the assignment encoded in the proof oracle.Speci�cally, the veri�er reads a uniformly selected bit of the input oracle and com-pares this value to the self-corrected value obtained from the proof oracle (i.e., fora uniformly selected i 2 f1; :::; ng, we compare the ith bit of the input oracle to theself-correction of the value T1(0i�110n�i), obtained from the proof oracle).Robust PCPs. Composing an \outer" PCP veri�er with an \inner" PCP veri-�er of proximity makes sense provided that the outer veri�er rejects in a \robust"manner. That is, the soundness condition of a robust veri�er requires that (withprobability at least 1/2) the oracle answers are far from any sequence that is ac-ceptable by the residual predicate (rather than merely that the answers are rejectedby this predicate). Indeed, if the outer veri�er is (non-adaptive and) robust, then33Indeed, in our applications the quadratic system will be \known" to the (\inner") veri�er,because it is determined by the (\outer") veri�er.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 429it su�ces that the inner veri�er distinguish (with the help of an adequate proof)answers that are valid from answers that are far from being valid.For example, if robustness is de�ned as referring to relative constant distance(which is indeed the case), then the PCP of x9.3.2.1 (as well as any PCP of con-stant query complexity) is trivially robust. However, we will not care about therobustness of this PCP, because we only use this PCP as an inner veri�er in proofcomposition. In contrast, we will care about the robustness of PCPs that are usedas outer veri�ers (e.g., the PCP presented next).Teaching note: Unfortunately, the construction of a PCP of logarithmic randomnessand polylogarithmic query complexity for NP involves many technical details. Further-more, obtaining a robust version of this PCP is beyond the scope of the current text.Thus, the following description should be viewed as merely providing a avor of theunderlying ideas.PCP of logarithmic randomness and polylogarithmic query complexityfor NP . We focus on showing that NP � PCP(f; f), for f(n) = poly(logn),and the claimed result will follow by a relatively minor modi�cation (discussedafterwards). The proof system underlying NP � PCP(f; f) is based on an arith-metization of 3CNF formulae, which is di�erent from the one used in x9.1.3.2 (forconstructing an interactive proof system for coNP). We start by describing thisarithmetization, and later outline the PCP system that is based on it.In the current arithmetization, the names of the variables (resp., clauses) of a3CNF formula � are represented by binary strings of logarithmic (in j�j) length, anda generic variable (resp., clause) of � is represented by a logarithmic number of newvariables, which are assigned values in a �nite �eld F � f0; 1g. Indeed, throughoutthe rest of the description, we refer to the arithmetic operations of this �nite �eldF (which will have cardinality poly(j�j)). The (structure of the) 3CNF formula�(x1; :::; xn) is represented by a Boolean function C� : f0; 1gO(logn) ! f0; 1g suchthat C�(�; �1; �2; �3) = 1 if and only if, for i = 1; 2; 3, the ith literal in the �thclause of � has index �i = (i; �i), which is viewed as a variable name augmented byits sign. Thus, for every � 2 f0; 1glog j�j there is a unique (�1; �2; �3) 2 f0; 1g3 log 2nsuch that C�(�; �1; �2; �3) = 1 holds. Next, we consider a multi-linear extensionof C� over F, denoted �; that is, � is the (unique) multi-linear polynomial thatagrees with C� on f0; 1gO(logn) � FO(log n).Turning to the PCP, we �rst note that the veri�er can reduce the original 3SAT-instance � to the aforementioned arithmetic instance �; that is, on input a 3CNFformula �, the veri�er �rst constructs C� and � (as in Exercise 7.12). Part of theproof oracle for this veri�er is viewed as function A : Flog n ! F, which is supposedto be a multi-linear extension of a truth assignment that satis�es � (i.e., for every 2 f0; 1glogn � [n], the value A() is supposed to be the value of the th variablein such an assignment). Thus, we wish to check whether, for every � 2 f0; 1glog j�j,it holds that X�1�2�32f0;1g3 log 2n�(�; �1; �2; �3) � 3Yi=1 (1�A0(�i)) = 0 (9.7)

430 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSwhere A0(�) is the value of the �th literal under the (variable) assignment A;that is, for � = (; �), where 2 f0; 1glogn is a variable name and � 2 f0; 1gindicates the literal's type (i.e., whether the variable is negated), it holds thatA0(�) = (1� �) �A() + � � (1�A()). Thus, Eq. (9.7) holds if and only if the �thclause is satis�ed by the assignment induced by A (because A0(�) = 1 must holdfor at least one of the three literals � that appear in this clause).34As in x9.3.2.1, we cannot a�ord to verify all j�j instances of Eq. (9.7). Fur-thermore, unlike in x9.3.2.1, we cannot a�ord to take a random linear combinationof these j�j instances either (because this requires too much randomness). For-tunately, taking a \pseudorandom" linear combination of these equations is goodenough. Speci�cally, using an adequate (e�ciently constructible) small-bias prob-ability space (cf. x8.5.2.3) will do. Denoting such a space (of size poly(j�j � jF j)and bias at most 1=6) by S � Fj�j, we may select uniformly (s1; :::; sj�j) 2 S andcheck whether X��1�2�32f0;1g` s� ��(�; �1; �2; �3) � 3Yi=1 (1�A0(�i)) = 0 (9.8)where ` def= log j�j+ 3 log 2n. The small-bias property guarantees that if A fails tosatisfy any of the equations of type Eq. (9.7) then, with probability at least 1=3(taken over the choice of (s1; :::; sj�j) 2 S), it is the case that A fails to satisfyEq. (9.8). Since jSj = poly(j�j � jF j) rather that jSj = 2j�j, we can select a samplein S using O(log j�j) coin tosses. Thus, we have reduced the original problem tochecking whether, for a random (s1; :::; sj�j) 2 S, Eq. (9.8) holds.Assuming (for a moment) that A is a low-degree polynomial, we can probabilis-tically verify Eq. (9.8) by applying a \summation test" (as in the interactive prooffor coNP); that is, we refer to stripping the ` binary summations in iterations,where in each iteration the veri�er obtains a corresponding univariate polynomialand instantiates it at a random point. Indeed, the veri�er obtains the relevant uni-variate polynomials by making adequate queries (which specify the entire sequenceof choices made so far in the summation test).35 Note that after stripping the `summations, the veri�er end-ups with an expression that contains three unknownvalues of A0, which it may obtain by making corresponding queries to A. The sum-mation test involves tossing ` � log jFj coins and making (`+3) �O(log jFj) Booleanqueries (which correspond to ` queries that are each answered by a univariate poly-nomial of constant degree (over F), and three queries to A (each answered by anelement of F)). Soundness of the summation test follows by setting jF j � O(`),where ` = O(log j�j).Recall, however, that we may not assume that A is a multi-variate polynomial oflow degree. Instead, we must check that A is indeed a multi-variate polynomial of34Note that, for this � there exists a unique triple (�1; �2; �3) 2 f0; 1g3 log 2n such that�(�; �1; �2; �3) 6= 0. This triple (�1; �2; �3) encodes the literals appearing in the �th clause,and this clause is satis�ed by A if and only if 9i 2 [3] s.t. A0(�i) = 1.35The query will also contain a sequence (s1; :::; sj�j) 2 S, selected at random (by the veri�er)and �xed for the rest of the process.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 431low degree (or rather that it is close to such a polynomial), and use self-correctionfor retrieving the values of A (which are needed for the foregoing summation test).Fortunately, a low-degree test of complexities similar to those of the summationtest does exist (and self-correction is also possible within these complexities). Thus,using a �nite �eld F of poly(log(n)) elements, the foregoing yieldsNP � PCP(f; f)for f(n) def= O(log(n) � log log(n)).To obtain the desired PCP system of logarithmic randomness complexity, werepresent the names of the original variables and clauses by O(log n)log logn -long sequencesover f1; :::; logng, rather than by logarithmically-long binary sequences. This re-quires using low degree polynomial extensions (i.e., polynomial of degree (logn)�1),rather than multi-linear extensions. We can still use a �nite �eld of poly(log(n))elements, and so we need only O(log n)log logn �O(log logn) random bits for the summationand low-degree tests. However, the number of queries (needed for obtaining theanswers in these tests) grows, because now the polynomials that are involved haveindividual degree (log n) � 1 rather than constant individual degree. This merelymeans that the query-complexity increases by a factor of lognlog log n (since the individ-ual degree increases by a factor of logn but the number of variables decreases bya factor of log logn). Thus, we obtain NP � PCP(log; q) for q(n) def= O(log2 n).Warning: Robustness and PCP of proximity. Recall that, in order to usethe latter PCP system in composition, we need to guarantee that it (or a versionof it) is robust as well as to present a version that is a PCP of proximity. Thelatter version is relatively easy to obtain (using ideas as applied to the PCP ofx9.3.2.1), whereas obtaining robustness is too complex to be described here. Wecomment that one way of obtaining a robust PCP system is by a generic applicationof a (randomness-e�cient) \parallelization" of PCP systems (cf. [14]), which inturn depends heavily on highly e�cient low-degree tests. An alternative approach(cf. [34]) capitalizes of the speci�c structure of the summation test (as well as onthe evident robustness of a simple low-degree test).Reection. The PCP Theorem asserts a PCP system that obtains simultane-ously the minimal possible randomness and query complexity (up to a multiplica-tive factor, assuming that P 6= NP). The foregoing construction obtains thisremarkable result by combining two di�erent PCPs: the �rst PCP obtains loga-rithmic randomness but uses poly-logarithmically many queries, whereas the secondPCP uses a constant number of queries but has polynomial randomness complex-ity. We stress that each of these two PCP systems is highly non-trivial and veryinteresting by itself. We also highlight the fact that these PCPs are combined us-ing a very simple composition method (which refers to auxiliary properties such asrobustness and proximity testing).3636Advanced comment: We comment that the composition of PCP systems that lack theseextra properties is possible, but is far more cumbersome and complex. In some sense, this alterna-tive composition involves transforming the given PCP systems to ones having properties relatedto robustness and proximity testing.

432 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS9.3.2.3 Overview of the second proof of the PCP TheoremThe original proof of the PCP Theorem focuses on the construction of two PCPsystems that are highly non-trivial and interesting by themselves, and combinesthem in a natural manner. Loosely speaking, this combination (via proof compo-sition) preserves the good features of each of the two systems; that is, it yieldsa PCP system that inherits the (logarithmic) randomness complexity of one sys-tem and the (constant) query complexity of the other. In contrast, the followingalternative proof is focused at the \ampli�cation" of PCP systems, via a gradualprocess of logarithmically many steps. We start with a trivial \PCP" system thathas the desired complexities but rejects false assertions with probability inverselyproportional to their length, and in each step we double the rejection probabilitywhile essentially maintaining the initial complexities. That is, in each step, theconstant query complexity of the veri�er is preserved and its randomness complex-ity is increased only by a constant term. Thus, the process gradually transformsan extremely weak PCP system into a remarkably strong PCP system (i.e., a PCPas postulated in the PCP Theorem).In order to describe the aforementioned process we need to rede�ne PCP sys-tems so to allow arbitrary soundness error. In fact, for technical reasons, it is moreconvenient to describe the process as an iterated reduction of a \constraint satisfac-tion" problem to itself. Speci�cally, we refer to systems of 2-variable constraints,which are readily represented by (labeled) graphs such that the vertices correspondto (non-Boolean) variables and the edges are associated with constraints.De�nition 9.18 (CSP with 2-variable constraints): For a �xed �nite set �, aninstance of CSP consists of a graph G = (V;E) (which may have parallel edgesand self-loops) and a sequence of 2-variable constraints � = (�e)e2E associatedwith the edges, where each constraint has the form �e : �2 ! f0; 1g. The valueof an assignment � : V ! � is the number of constraints satis�ed by �; that is,the value of � is jf(u; v) 2 E : �(u;v)(�(u); �(v)) = 1gj. We denote by vlt(G;�)(standing for violation) the fraction of unsatis�ed constraints under the best possibleassignment; that is,vlt(G;�) = min�:V!�� jf(u; v) 2 E : �(u;v)(�(u); �(v)) = 0gjjEj �: (9.9)For various functions � : N ! (0; 1], we will consider the promise problem gapCSP�� ,having instances as in the foregoing, such that the yes-instances are fully satis-�able instances (i.e., vlt = 0) and the no-instances are pairs (G;�) for whichvlt(G;�) � �(jGj) holds, where jGj denotes the number of edges in G.Note that 3SAT is reducible to gapCSPf1;:::;7g� for �(m) = 1=m; see Exercise 9.23.Our goal is to reduce 3SAT (or rather gapCSPf1;:::;7g�) to gapCSP�c , for some �xed �-nite � and constant c > 0. The PCP Theorem will follow by showing a simple PCPsystem for gapCSP�c ; see Exercise 9.25. (The relationship between constraint satis-faction problems and the PCP Theorem is further discussed in Section 9.3.3.) Thedesired reduction of gapCSP�1=m to gapCSP�
(1) is obtained by iteratively applyingthe following reduction logarithmically many times.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 433Lemma 9.19 (amplifying reduction of gapCSP to itself): For some �nite � andconstant c > 0, there exists a polynomial-time computable function f such that, forevery instance (G;�) of gapCSP�, it holds that (G0;�0) = f(G;�) is an instanceof gapCSP� and the two instances are related as follows:1. If vlt(G;�) = 0 then vlt(G0;�0) = 0.2. vlt(G0;�0) � min(2 � vlt(G;�); c).3. jG0j = O(jGj).That is, satis�able instances are mapped to satis�able instances, whereas instancesthat violate a � fraction of the constraints are mapped to that violate at leasta min(2�; c) fraction of the constraints. Furthermore, the mapping increases thenumber of edges (in the instance) by at most a constant factor. We stress thatboth � and �0 consists of Boolean constraints de�ned over �2.Proof Outline:37 Before turning to the proof, let us highlight the di�culty thatit needs to address. Speci�cally, the lemma asserts a \violation amplifying e�ect"(i.e., Items 1 and 2), while maintaining the alphabet � and allowing only a moderateincrease in the size of the graph (i.e., Item 3). Waiving the latter requirementsallows a relatively simple proof that mimics (an augmented version of)38 the parallelrepetition of the corresponding PCP. Thus, the challenge is signi�cantly decreasingthe \size blow-up" that arises from parallel repetition and maintaining a �xedalphabet. The �rst goal (i.e., Item 3) calls for a suitable derandomization, andindeed we shall use the Expander Random Walk Generator (of Section 8.5.3).Those who read x9.3.2.2 may guess that the second goal (i.e., �xed alphabet)can be handled using the proof composition paradigm. (The rest of the overviewis intended to be understood also by those who did not read Section 8.5.3 andx9.3.2.2.)The lemma is proved by presenting a three-step reduction. The �rst step is apre-processing step that makes the underlying graph suitable for further analysis(e.g., the resulting graph will be an expander). The value of vlt may decreaseduring this step by a constant factor. The heart of the reduction is the secondstep in which we increase vlt by any desired constant factor. This is done by aconstruction that corresponds to taking a random walk of constant length on thecurrent graph. The latter step also increases the alphabet �, and thus a post-processing step is employed to regain the original alphabet (by using any innerPCP systems; e.g., the one presented in x9.3.2.1). Details follow.We �rst stress that the aforementioned � and c, as well as the auxiliary pa-rameters d and t (to be introduced in the following two paragraphs), are �xedconstants that will be determined such that various conditions (which arise in thecourse of our argument) are satis�ed. Speci�cally, t will be the last parameter to37For details, see [66].38Advanced comment: The augmentation is used to avoid using the Parallel RepetitionTheorem of [184]. In the augmented version, with constant probability (say half), a consistencycheck takes place between tuples that contain copies of the same variable (or query).

434 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSbe determined (and it will be made greater than a constant that is determined byall the other parameters).We start with the pre-processing step. Our aim in this step is to reduce the input(G;�) of gapCSP� to an instance (G1;�1) such that G1 is a d-regular expandergraph.39 Furthermore, each vertex in G1 will have at least d=2 self-loops, thenumber of edges will be preserved up to a constant factor (i.e., jG1j = O(jGj)), andvlt(G1;�1) = �(vlt(G;�)). This step is quite simple: essentially, the originalvertices are replaced by expanders of size proportional to their degree, and a big(dummy) expander is superimposed on the resulting graph (see Exercise 9.26).The main step is aimed at increasing the fraction of violated constraints by asu�ciently large constant factor. The intuition underlying this step is that theprobability that a random (t-edge long) walk on the expander G1 intersects a �xedset of edges is closely related to the probability that a random sample of (t) edgesintersects this set. Thus, we may expect such walks to hit a violated edge withprobability that is min(�(t ��); c), where � is the fraction of violated edges. Indeed,the current step consists of reducing the instance (G1;�1) of gapCSP� to an instance(G2;�2) of gapCSP�0 such that �0 = �dt and the following holds:1. The vertex set of G2 is identical to the vertex set of G1, and each t-edgelong path in G1 is replaced by a corresponding edge in G2, which is thus adt-regular graph.2. The constraints in �2 are the natural ones, viewing each element of �0 as a�-labeling of the (\distance � t") neighborhood of a vertex (see Figure 9.4),and checking that two such labelings are consistent as well as satisfy �1. Thatis, the following two types of constraints are introduced:(consistency): If there is a path of length at most t in G1, going from vertexu to vertex w and passing through vertex v, then the �2-constraintassociated with the G2-edge between vertices u and w mandates theequality of the entries corresponding to vertex v in the �0-labeling ofvertices u and w.(satisfying �1): If the G1-edge (v; v0) is on a path of length at most t startingat u then the �2-constraint associated with the G2-edge that corre-sponds to this path enforces the �1-constraint that is associated with(v; v0).Clearly, jG2j = dt�1 � jG1j = O(jG1j), because d is a constant and t will be setto a constant. (Indeed, the relatively moderate increase in the size of the graphcorresponds to the low randomness-complexity of selecting a random walk of lengtht in G1.)39A d-regular graph is a graph in which each vertex is incident to exactly d edges. Looselyspeaking, an expander graph has the property that each moderately balanced cut (i.e., partitionof its vertex set) has relatively many edges crossing it. An equivalent de�nition, also used in theactual analysis, is that the second eigenvalue of the corresponding adjacency matrix has absolutevalue that is bounded away from d. For further details, see xE.2.1.1.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 435
vu w

1

2

4

3

6

5 7

10

11

12

13

14

15

16
17

18

19

21 v

w6 7

3 4 5
19

8 109
18 19v

u w

u 7 20

22

23

23

21

20

89

The alphabet �0 as a labeling of the distance t = 3 neighborhoods,when repetitions are omitted. In this case d = 6 but the self-loopsare not shown (and so the \e�ective" degree is three). The two-sidedarrow indicates one of the edges in G1 that will contribute to the edgeconstraint between u and w in (G2;�2).Figure 9.4: The amplifying reduction in the second proof of the PCP Theorem.Turning to the analysis of this step, we note that vlt(G1;�1) = 0 impliesvlt(G2;�2) = 0. The interesting fact is that the fraction of violated constraintsincreases by a factor of
(pt); that is, vlt(G2;�2) � min(
(pt � vlt(G1;�1)); c).Here we merely provide a rough intuition and refer the interested reader to [66]. Wemay focus on any �0-labeling to the vertices of G2 that is consistent with some �-labeling of G1, because relatively few inconsistencies (among the �-values assignedto a vertex by the �0-labeling of other vertices) can be ignored, while relativelymany such inconsistencies yield violation of the \equality constraints" of manyedges in G2. Intuitively, relying on the hypothesis that G1 is an expander, it followsthat the set of violated edge-constraints (of �1) with respect to the aforementioned�-labeling causes many more edge-constraints of �2 to be violated (because eachedge-constraint of �1 is enforced by many edge-constraints of �2). The point isthat any set F of edges of G1 is likely to appear on a min(
(t) � jF j=jG1j;
(1))fraction of the edges of G2 (i.e., t-paths of G1). (Note that the claim would have

436 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSbeen obvious if G1 were a complete graph, but it also holds for an expander.)40The factor of
(pt) gained in the second step makes up for the constant factorlost in the �rst step (as well as the constant factor to be lost in the last step).Furthermore, for a suitable choice of the constant t, the aforementioned gain yieldsan overall constant factor ampli�cation (of vlt). However, so far we obtained aninstance of gapCSP�0 rather than an instance of gapCSP�, where �0 = �dt . The pur-pose of the last step is to reduce the latter instance to an instance of gapCSP�. Thisis done by viewing the instance of gapCSP�0 as a (weak) PCP system (analogouslyto Exercise 9.25), and composing it with an inner-veri�er using the proof composi-tion paradigm outlined in x9.3.2.2. We stress that the inner-veri�er used here needsonly handle instances of constant size (i.e., having description length O(dt log j�j)),and so the veri�er presented in x9.3.2.1 will do. The resulting PCP-system usesrandomness r def= log2 jG2j+O(dt log j�j)2 and a constant number of binary queries,and has rejection probability
(vlt(G2;�2)), which is independent of the choice ofthe constant t. As in Exercise 9.23, for � = f0; 1gO(1), we can easily obtain an in-stance of gapCSP�, that has a
(vlt(G2;�2)) fraction of violated constraints. Fur-thermore, the size of the resulting instance (which is used as the output (G0;�0) ofthe three-step reduction) is O(2r) = O(jG2j), where the equality uses the fact thatd and t are constants. Recalling that vlt(G2;�2) � min(
(pt � vlt(G1;�1)); c)and vlt(G1;�1) =
(vlt(G;�)), this completes the (outline of the) proof of theentire lemma.Reection. In contrast to the proof presented in x9.3.2.2, which combines tworemarkable constructs by using a simple composition method, the current proofof the PCP Theorem is based on developing a powerful \combining method" thatimproves the quality of the main system to which it is applied. This new method,captured by the Ampli�cation Lemma (Lemma 9.19), does not merely obtain thebest of the combined systems, but rather obtains a better system than the one given.However, the quality-ampli�cation o�ered by Lemma 9.19 is rather moderate, andthus many applications are required in order to derive the desired result. Takingthe opposite perspective, one may say that remarkable results are obtained by agradual process of many moderate ampli�cation steps.9.3.3 PCP and ApproximationThe characterization of NP in terms of probabilistically checkable proofs playsa central role in the study of the complexity of natural approximation problems(cf., Section 10.1.1). To demonstrate this relationship, we �rst note that any PCPsystem V gives rise to an approximation problem that consists of estimating themaximum acceptance probability for a given input; that is, on input x, the taskis approximating the probability that V accepts x when given oracle access tothe best possible � (i.e., we wish to approximate max�fPr[V �(x) = 1]g). Thus,if S 2 PCP(r; q) then deciding membership in S is reducible to approximating40We mention that, due to a technical di�culty, it is easier to establish the claimed bound of
(pt � vlt(G1;�1)) rather than
(t � vlt(G1;�1)).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 437the maximum among exp(2r+q) quantities (corresponding to all e�ective oracles),where each quantity can be evaluated in time 2r � poly. For (the validity of) thisreduction, an approximation up to a constant factor (of 2) will do.Note that the foregoing approximation problem is parameterized by a PCP ver-i�er V , and its instances are given their value with respect to this veri�er (i.e., theinstance x has value max�fPr[V �(x)=1]g). This per se does not yield a \natural"approximation problem. In order to link PCP systems with natural approxima-tion problems, we take a closer look at the approximation problem associated withPCP(r; q).For simplicity, we focus on the case of non-adaptive PCP systems (i.e., all thequeries are determined beforehand based on the input and the internal coin tossesof the veri�er). Fixing an input x for such a system, we consider the 2r(jxj) Booleanformulae that represent the decision of the veri�er on each of the possible outcomesof its coin tosses after inspecting the corresponding bits in the proof oracle. That is,each of these 2r(jxj) formulae depends on q(jxj) Boolean variables that represent thevalues of the corresponding bits in the proof oracle. Thus, if x is a yes-instance thenthere exists a truth assignment (to these variables) that satis�es all 2r(jxj) formulae,whereas if x is a no-instance then there exists no truth assignment that satis�esmore than 2r(jxj)�1 formulae. Furthermore, in the case that r(n) = O(log n), givenx, we can construct the corresponding sequence of formulae in polynomial-time.Hence, the PCP Theorem (i.e., Theorem 9.16) yields NP-hardness results regardingthe approximation of the number of simultaneously satis�able Boolean formulae ofconstant size. This motivates the following de�nition.De�nition 9.20 (gap problems for SAT and generalized-SAT): For constants q 2N and " > 0, the promise problem gapGSATq" refers to instances that are each asequence of q-variable Boolean formulae (i.e., each formula depends on at mostq variables). The yes-instances are sequences that are simultaneously satis�able,whereas the no-instances are sequences for which no Boolean assignment satis�esmore than a 1� " fraction of the formulae in the sequence. The promise problemgapSATq" is de�ned analogously, except that in this case each instance is a sequenceof disjunctive clause (i.e., each formula in each sequence consists of a single dis-junctive clause).Indeed, each instance of gapSATq" is naturally viewed as q-CNF formulae, and weconsider an assignment that satis�es as many clauses (of the input CNF) as possible.As hinted, NP � PCP(log; O(1)) implies that gapGSATO(1)1=2 is NP-complete, whichin turn implies that for some constant " > 0 the problem gapSAT3" is NP-complete.The converses hold too. All these claims are stated and proved next.Theorem 9.21 (equivalent formulations of the PCP Theorem). The followingthree conditions are equivalent:1. The PCP Theorem: there exists a constant q such that NP � PCP(log; q).2. There exists a constant q such that gapGSATq1=2 is NP-hard.

438 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS3. There exists a constant " > 0 such that gapSAT3" is NP-hard.The point of Theorem 9.21 is not its mere validity (which follows from the valid-ity of each of the three items), but rather the fact that its proof is quite simple.Note that Items 2 and 3 make no reference to PCP. Thus, their (easy to estab-lish) equivalence to Item 1 manifests that the hardness of approximating naturaloptimization problems lies at the heart of the PCP Theorem. In general, proba-bilistically checkable proof systems for NP yield strong inapproximability resultsfor various classical optimization problems (cf., Exercise 9.18 and Section 10.1.1).Proof: We �rst show that the PCP Theorem implies the NP-hardness of gapGSAT.We may assume, without loss of generality, that, for some constant q and everyS 2 NP , it holds that S 2 PCP(O(log); q) via a non-adaptive veri�er (becauseq adaptive queries can be emulated by 2q non-adaptive queries). We reduce S togapGSAT as follows. On input x, we scan all 2O(log jxj) possible sequence of outcomesof the veri�er's coin tosses, and for each such sequence of outcomes we determinethe queries made by the veri�er as well as the residual decision predicate (where thispredicate determines which sequences of answers lead this veri�er to accept). Thatis, for each random-outcome ! 2 f0; 1gO(log jxj), we consider the residual predicate,determined by x and !, that speci�es which q-bit long sequence of oracle answersmakes the veri�er accept x on coins !. Indeed, this predicate depends only on qvariables (which represent the values of the q corresponding oracle answers). Thus,we map x to a sequence of poly(jxj) formulae, each depending on q variables,obtaining an instance of gapGSATq. This mapping can be computed in polynomial-time, and indeed x 2 S (resp., x 62 S) is mapped to a yes-instance (resp., no-instance) of gapGSATq1=2.Item 2 implies Item 3 by a standard reduction of GSAT to 3SAT. Speci�cally,gapGSATq1=2 reduces to gapSATq2�(q+1) , which in turn reduces to gapSAT3" for " =2�(q+1)=(q � 2). Note that Item 3 implies Item 2 (e.g., given an instance of gapSAT3",consider all possible conjunctions of 1=" disjunctive clauses in the given instance).We complete the proof by showing that Item 3 implies Item 1. (The sameargument shows that Item 2 implies Item 1.) This is done by showing that gapSAT3"is in PCP("�1 log; 3"�1), and using the reduction of NP to gapSAT3" to derive acorresponding PCP for each set in NP . In fact, we show that gapGSATq" is inPCP("�1 log; "�1q), and do so by presenting a very natural PCP system. In thisPCP system the proof oracle is supposed to be an satisfying assignment, and theveri�er selects at random one of the (q-variable) formulae in the input sequence,and checks whether it is satis�ed by the (assignment given by the) oracle. Thisamounts to tossing logarithmically many coins and making q queries. This veri�eralways accepts yes-instances (when given access to an adequate oracle), whereaseach no-instances is rejected with probability at least " (no matter which oracle isused). To amplify the rejection probability (to the desired threshold of 1/2), weinvoke the foregoing veri�er "�1 times (and note that (1� ")1=" < 1=2).Gap amplifying reductions { a reection. Item 2 (resp., Item 3) of Theo-rem 9.21 implies that GSAT (resp., 3SAT) can be reduce to gapGSAT1=2 (resp., to

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 439gapSAT3"). This means that there exist \gap amplifying" reductions of problemslike 3SAT to themselves, where these reductions map yes-instances to yes-instances(as usual), while mapping no-instances to no-instances that are \far" from beingyes-instances. That is, no-instances are mapped to no-instances of a special typesuch that a \gap" is created between the yes-instances and no-instances at theimage of the reduction. For example, in the case of 3SAT, unsatis�able formu-lae are mapped to formulae that are not merely unsatis�able but rather have noassignment that satis�es more than a 1 � " fraction of the clauses. Thus, PCPconstructions are essentially \gap amplifying" reductions.9.3.4 More on PCP itself: an overviewWe start by discussing variants of the PCP characterization of NP, and next turnto PCPs having expressing power beyond NP. Needless to say, the latter systemshave super-logarithmic randomness complexity.9.3.4.1 More on the PCP characterization of NPInterestingly, the two complexity measures in the PCP-characterization of NPcan be traded o� such that at the extremes we get NP = PCP(log; O(1)) andNP = PCP(0; poly), respectively.Proposition 9.22 For every S 2 NP, there exists a logarithmic function ` (i.e.,` 2 log) such that, for every integer function k that satis�es 0� k(n) � `(n), itholds that S 2 PCP(`� k;O(2k)). (Recall that PCP(log; poly) � NP .)Proof Sketch: By Theorem 9.16, we have S 2 PCP(`; O(1)). To show thatS 2 PCP(` � k;O(2k)), we consider an emulation of the corresponding veri�er inwhich we try all possibilities for the k(n)-bit long pre�x of its random-tape.Following the establishment of Theorem 9.16, numerous variants of the PCPCharacterization of NP were explored. These variants refer to a �ner analysis ofvarious parameters of probabilistically checkable proof systems (for sets in NP).Following is a brief summary of some of these studies.41The length of PCPs. Recall that the e�ective length of the oracle in anyPCP(log; log) system is polynomial (in the length of the input). Furthermore,in the PCP systems underlying the proof of Theorem 9.16 the queries refer only toa polynomially long pre�x of the oracle, and so the actual length of these PCPs forNP is polynomial. Remarkably, the length of PCPs for NP can be made nearly-linear (in the combined length of the input and the standard NP-witness), whilemaintaining constant query complexity, where by nearly-linear we mean linear upto a poly-logarithmic factor. (For details see [35, 66].) This means that a rel-atively modest amount of redundancy in the proof oracle su�ces for supportingprobabilistic veri�cation via a constant number of probes.41With the exception of works that appeared after [89], we provide no references for the resultsquoted here. We refer the interested reader to [89, Sec. 2.4.4].

440 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSThe number of queries in PCPs. Theorem 9.16 asserts that a constant num-ber of queries su�ce for PCPs with logarithmic randomness and soundness errorof 1=2 (for NP). It is currently known that this constant is at most �ve, whereaswith three queries one may get arbitrary close to a soundness error of 1=2. Theobvious trade-o� between the number of queries and the soundness error gives riseto the robust notion of amortized query-complexity, de�ned as the ratio between thenumber of queries and (minus) the logarithm (to based 2) of the soundness error.For every " > 0, any set in NP has a PCP system with logarithmic randomnessand amortized query-complexity 1+ " (cf. [118]), whereas only sets in P have PCPsof logarithmic randomness and amortized query-complexity less than 1.Free-bit complexity. The motivation to the notion of free bits came from thePCP{to{MaxClique connection (see Exercise 9.18 and [28, Sec. 8]), but we believethat this notion is of independent interest. Intuitively, this notion distinguishesbetween queries for which the acceptable answer is determined by previously ob-tained answers (i.e., the veri�er compares the answer to a value determined by theprevious answers) and queries for which the veri�er only records the answer forfuture usage. The latter queries are called free (because any answer to them is \ac-ceptable"). For example, in the linearity test (see x9.3.2.1) the �rst two queries arefree and the third is not (i.e., the test accepts if and only if f(x)+f(y) = f(x+y)).The amortized free-bit complexity is de�ne analogously to the amortized query com-plexity. Interestingly, NP has PCPs with logarithmic randomness and amortizedfree-bit complexity less than any positive constant.Adaptive versus non-adaptive veri�ers. Recall that a PCP veri�er is callednon-adaptive if its queries are determined solely based on its input and the outcomeof its coin tosses. (A general veri�er, called adaptive, may determine its queries alsobased on previously received oracle answers.) Recall that the PCP Characterizationof NP (i.e., Theorem 9.16) is established using a non-adaptive veri�er; however, itturns out that adaptive veri�ers are more powerful than non-adaptive ones in termsof quantitative results: Speci�cally, for PCP veri�ers making three queries andhaving logarithmic randomness complexity, adaptive queries provide for soundnesserror at most 0:51 (actually 0:5 + " for any " > 0) for any set in NP , whereasnon-adaptive queries provide soundness error 5=8 (or less) only for sets in P .Non-binary queries. Our de�nition of PCP allows only binary queries. Cer-tainly, non-binary queries can be emulated by binary queries, but the converse doesnot necessarily hold.42 For this reason, \parallel repetition" is highly non-trivial42Advanced comment: The source of trouble is the adversarial settings (implicit in thesoundness condition), which means that when several binary queries are packed into one non-binary query, the adversary need not respect the packing (i.e., it may answer inconsistently onthe same binary query depending on the other queries packed with it). This trouble becomesacute in the case of PCPs, because they do not correspond to a full information game. Indeed,in contrast, parallel repetition is easy to analyze in the case of interactive proof systems, becausethey can be modeled as full information games: this is obvious in the case of public-coin systems,but also holds for general interactive proof systems (see Exercise 9.1).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 441in the PCP setting. Still, a Parallel Repetition Theorem that refers to indepen-dent invocations of the same PCP is known, but it is not applicable for obtainingsoundness error smaller than a constant (while preserving logarithmic randomness).Nevertheless, using adequate \consistency tests" one may construct PCP systemsfor NP using logarithmic randomness, a constant number of (non-binary) queriesand soundness error exponential in the length of the answers. (Currently, this isknown only for sub-logarithmic answer lengths.)9.3.4.2 Stronger forms of PCP systems for NPAlthough the PCP Theorem is famous mainly for its negative applications to thestudy of natural approximation problems (see Section 9.3.3 and x10.1.1.2), its po-tential for direct positive applications is fascinating. Indeed, the vision of speeding-up the veri�cation of mundane proofs is exciting, where these proofs may refer tomundane assertions such as the correctness of a speci�c computation. Enablingsuch a speed-up requires a strengthening of the PCP Theorem such that it man-dates e�cient veri�cation time rather than \merely" low query-complexity of theveri�cation task. Such a strengthening is possible.Theorem 9.23 (Theorem 9.16 { strengthened): Every set S in NP has a PCPsystem V of logarithmic randomness-complexity, constant query-complexity, andquadratic time-complexity. Furthermore, NP-witnesses for membership in S can betransformed in polynomial-time to corresponding proof-oracles for V .The furthermore part was already stated in Section 9.3.2 (as a strengthening ofTheorem 9.16). Thus, the novelty in Theorem 9.23 is that it provides quadraticveri�cation time, rather than polynomial veri�cation time (where the polynomialmay depend arbitrarily on the set S). Theorem 9.23 is proved by noting that thatthe CNF formulae that is obtained by reducing S to 3SAT are highly uniform, andthus the veri�er V that is outlined in x9.3.2.2 can be implemented in quadratictime. Indeed, the most time-consuming operation required of V is evaluating thelow-degree extension � (of C�), which corresponds to the input formula �, at a fewpoints. In the context of x9.3.2.2, evaluating � in exponential-time su�ces (sincethis means time that is polynomial in j�j). Theorem 9.23 follows by showing thata variant of � can be evaluated in polynomial-time (since this means time that ispolylogarithmic in j�j); for details, see Exercise 9.29.PCPs of Proximity. Clearly, we cannot expect a PCP system (or any standardproof system for that matter) to have sub-linear veri�cation time (since linear-time is required for merely reading the input). Nevertheless, we may consider arelaxation of the veri�cation task (regarding proofs of membership in a set S). Inthis relaxation the veri�er is only required to reject any input that is \far" fromS (regardless of the alleged proof), and, as usual, accept any input that is in S(when accompanied with an adequate proof). Speci�cally, in order to allow sub-linear time veri�cation, we provide the veri�er V with direct access to the bitsof the input (which is viewed as an oracle) as well as with direct access to the

442 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSusual (PCP) proof-oracle, and require that the following two conditions hold (withrespect to some constant " > 0):Completeness: For every x 2 S there exists a string �x such that, when given accessto the oracles x and �x, machine V always accepts.Soundness with respect to proximity ": For every string x that is "-far from S (i.e.,for every x0 2 f0; 1gjxj \ S it holds that x and x0 di�er on at least "jxj bits)and every string �, when given access to the oracles x and �, machine Vrejects with probability at least 12 .Machine V is called a PCP of proximity, and its queries to both oracles are countedin its query-complexity. (Indeed, such a PCP of proximity was used in x9.3.2.2,and the notion is analogous to a relaxation of decision problems that is reviewedin Section 10.1.2.)We mention that every set in NP has a PCPs of proximity of logarithmicrandomness-complexity, constant query-complexity, and polylogarithmic time-complexity.This follows by using ideas as underlying the proof of Theorem 9.23 (see also Ex-ercise 9.29).9.3.4.3 PCP with super-logarithmic randomnessOur focus so far was on the important case where the veri�er tosses logarithmicallymany coins, and hence the \e�ective proof length" is polynomial. Here we mentionthat the PCP Theorem (or rather Theorem 9.23) scales up.43Theorem 9.24 (Theorem 9.16 { Generalized): Let t(�) be an integer function suchthat n<t(n)<2poly(n). Then, Ntime(t) � PCP(O(log t); O(1)).Recall that PCP(r; q) � Ntime(t), for t(n) = poly(n) � 2r(n). Thus, the NtimeHierarchy implies a hierarchy of PCP(�; O(1)) classes, for randomness complexityranging between logarithmic and polynomial functions.Chapter Notes(The following historical notes are quite long and still they fail to properly discussseveral important technical contributions that played an important role in the de-velopment of the area. For further details, the reader is referred to [89, Sec. 2.6.2].)Motivated by the desire to formulate the most general type of \proofs" thatmay be used within cryptographic protocols, Goldwasser, Micali and Racko� [108]introduced the notion of an interactive proof system. Although the main thrust oftheir work was the introduction of a special type of interactive proofs (i.e., onesthat are zero-knowledge), the possibility that interactive proof systems may be morepowerful from NP-proof systems was pointed out in [108]. Independently of [108],43Note that the sketched proof of Theorem 9.23 yields veri�cation time that is quadratic in thelength of the input and polylogarithmic in the length of the NP-witness.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 443Babai [17] suggested a di�erent formulation of interactive proofs, which he calledArthur-Merlin Games. Syntactically, Arthur-Merlin Games are a restricted formof interactive proof systems, yet it was subsequently shown that these restrictedsystems are as powerful as the general ones (cf., [110]). The speed-up result (i.e.,AM(2f) � AM(f)) is due to [22] (improving over [17]).The �rst evidence to the power of interactive proofs was given by Goldreich, Mi-cali, and Wigderson [99], who presented an interactive proof system for Graph Non-Isomorphism (Construction 9.3). More importantly, they demonstrated the gen-erality and wide applicability of zero-knowledge proofs: Assuming the existence ofone-way function, they showed how to construct zero-knowledge interactive proofsfor any set in NP (Theorem 9.11). This result has had a dramatic impact onthe design of cryptographic protocols (cf., [100]). For further discussion of zero-knowledge and its applications to cryptography, see Appendix C. Theorem 9.12(i.e., ZK = IP) is due to [31, 129].Probabilistically checkable proof (PCP) systems are related to multi-prover in-teractive proof systems, a generalization of interactive proofs that was suggestedby Ben-Or, Goldwasser, Kilian and Wigderson [32]. Again, the main motivationcame from the zero-knowledge perspective; speci�cally, presenting multi-proverzero-knowledge proofs for NP without relying on intractability assumptions. Yet,the complexity theoretic prospects of the new class, denotedMIP, have not beenignored.The amazing power of interactive proof systems was demonstrated by usingalgebraic methods. The basic technique was introduced by Lund, Fortnow, Karlo�and Nisan [161], who applied it to show that the polynomial-time hierarchy (andactually P#P) is in IP . Subsequently, Shamir [204] used the technique to showthat IP = PSPACE , and Babai, Fortnow and Lund [19] used it to show thatMIP = NEXP . (Our entire proof of Theorem 9.4 follows [204].)The aforementioned multi-prover proof system of Babai, Fortnow and Lund [19](hereafter referred to as the BFL proof system) has been the starting point for fun-damental developments regarding NP . The �rst development was the discoverythat the BFL proof system can be \scaled-down" from NEXP to NP . This im-portant discovery was made independently by two sets of authors: Babai, Fortnow,Levin, and Szegedy [20] and Feige, Goldwasser, Lov�asz, and Safra [72]. However,the manner in which the BFL proof is scaled-down is di�erent in the two papers,and so are the consequences of the scaling-down.Babai et. al. [20] start by considering (only) inputs encoded using a special error-correcting code. The encoding of strings, relative to this error-correcting code, canbe computed in polynomial time. They presented an almost-linear time algorithmthat transforms NP-witnesses (to inputs in a set S 2 NP) into transparent proofsthat can be veri�ed (as vouching for the correctness of the encoded assertion)in (probabilistic) poly-logarithmic time (by a Random Access Machine). Babaiet. al. [20] stress the practical aspects of transparent proofs; speci�cally, for rapidlychecking transcripts of long computations.In contrast, in the proof system of Feige et. al. [72, 73] the veri�er stayspolynomial-time and only two more re�ned complexity measures (i.e., the ran-

444 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSdomness and query complexities) are reduced to poly-logarithmic. This eliminatesthe need to assume that the input is in a special error-correcting form, and yieldsa re�ned (quantitative) version of the notion of probabilistically checkable proofsystems (introduced in [79]), where the re�nement is obtained by specifying therandomness and query complexities (see De�nition 9.14). Hence, whereas the BFLproof system [19] can be reinterpreted as establishing NEXP = PCP(poly; poly),the work of Feige et. al. [73] establishes NP � PCP(f; f), where f(n) = O(log n �log logn). (In retrospect, we note that the work of Babai et. al. [20] implies thatNP � PCP(log; polylog).)Interest in the new complexity class became immense since Feige et. al. [72, 73]demonstrated its relevance to proving the intractability of approximating some nat-ural combinatorial problems (speci�cally, for MaxClique). When using the PCP{to{MaxClique connection established by Feige et. al., the randomness and querycomplexities of the veri�er (in a PCP system for an NP-complete set) relate tothe strength of the negative results obtained for the approximation problems. Thisfact provided a very strong motivation for trying to reduce these complexities andobtain a tight characterization of NP in terms of PCP(�; �). The obvious challengewas showing that NP equals PCP(log; log). This challenge was met by Arora andSafra [15]. Actually, they showed that NP = PCP(log; q), where q(n) = o(log n).Hence, a new challenge arose; namely, further reducing the query complexity {in particular, to a constant { while maintaining the logarithmic randomness com-plexity. Again, additional motivation for this challenge came from the relevance ofsuch a result to the study of natural approximation problems. The new challengewas met by Arora, Lund, Motwani, Sudan and Szegedy [14], and is captured bythe PCP Characterization Theorem, which asserts that NP = PCP(log; O(1)).Indeed the PCP Characterization Theorem is a culmination of a sequence ofimpressive works [161, 19, 20, 73, 15, 14]. These works are rich in innovative ideas(e.g., various arithmetizations of SAT as well as various forms of proof composi-tion) and employ numerous techniques (e.g., low-degree tests, self-correction, andpseudorandomness). Our overview of the original proof of the PCP Theorem (inx9.3.2.1{9.3.2.2) is based on [14, 15].44 The alternative proof outlined in x9.3.2.3is due to Dinur [66].We mention some of the ideas and techniques involved in deriving even strongervariants of the PCP Theorem (which are surveyed in x9.3.4.1). These includethe Parallel Repetition Theorem [184], the use of the Long-Code [28], and theapplication of Fourier analysis in this setting [115, 116]. We also highlight thenotions of PCPs of proximity and robustness (see [34, 67]).Computationally-Sound Proof Systems. Argument systems were de�ned byBrassard, Chaum and Cr�epeau [48], with the motivation of providing perfect zero-knowledge arguments (rather than zero-knowledge proofs) for NP . A few yearslater, Kilian [144] demonstrated their signi�cance beyond the domain of zero-knowledge by showing that, under some reasonable intractability assumptions, ev-44Our presentation also bene�ts from the notions of PCPs of proximity and robustness, putforward in [34, 67].

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 445ery set in NP has a computationally-sound proof in which the randomness andcommunication complexities are poly-logarithmic.45 Interestingly, these argumentsystems rely on the fact that NP � PCP(f; f), for f(n) = poly(logn). We men-tion that Micali [164] suggested a di�erent type of computationally-sound proofsystems (which he called CS-proofs).Final comment: The current chapter is a revision of [89, Chap. 2]. In particular,more details are provided here for the main topics, whereas numerous secondarytopics discussed in [89, Chap. 2] are not mentioned here (or are only briey men-tioned here). We note that a few of the research directions that were mentionedin [89, Sec. 2.4.4] have received considerable attention in the period that elapsed,and improved results are currently known. In particular, the interested reader isreferred to [34, 35, 66] for a study of the length of PCPs, and to [118] for a studyof their amortized query complexity. Likewise, a few open problems mentionedin [89, Sec. 2.6.3] have been resolved; speci�cally, the interested reader is referredto [24, 171] for breakthrough results regarding zero-knowledge.ExercisesExercise 9.1 (parallel error-reduction for interactive proof systems) Provethat the error probability (in the soundness condition) can be reduced by parallelrepetitions of the proof system. (A proof appears in [89, Apdx. C.1].)Guideline: As a warm-up, consider the special case of public-coin interactive proof sys-tems. Next, generalize the analysis to arbitrary interactive proof systems, by considering(as a mental experiment) a \powerful veri�er" that emulates the original veri�er whilebehaving as in the public-coin model.Exercise 9.2 Prove that if S is Karp-reducible to a set in IP , then S 2 IP .Prove that if S is Cook-reducible to a set S0 such that both S0 and f0; 1g� nS0 arein IP , then S 2 IP .Exercise 9.3 Complete the details of the proof that coNP � IP (i.e., the �rstpart of the proof of Theorem 9.4). In particular, suppose that the protocol forunsatis�ability is applied to a CNF formula with n variables and m clauses. Then,what is the length of the messages sent by the two parties? What is the soundnesserror?Exercise 9.4 Present an interactive proof system for unsatis�ability such that oninput a CNF formula having n variables the parties exchange n=O(logn) messages.Guideline: Modify the (�rst part of the) proof of Theorem 9.4, by stripping O(log n)summations in each round.45We comment that interactive proofs are unlikely to have such low complexities; see [105].

446 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSExercise 9.5 (an interactive proof system for #P) Using the main part ofthe proof of Theorem 9.4, present a proof system for the counting set of Eq. (9.5).Guideline: Use a slightly di�erent arithmetization of CNF formulae. Speci�cally, insteadof replacing the clause x_:y_ z by the term (x+(1�y)+ z), replace it by the term (1�((1�x)�y �(1�z))). The point is that this arithmetization maps Boolean assignments thatsatisfy the CNF formula to 0-1 assignments that when substituted in the correspondingarithmetic expression yield the value 1 (rather than yielding a somewhat arbitrary positiveinteger).Exercise 9.6 Show that QBF can be reduced to a special form of (non-canonical)46QBF in which no variable appears both to the left and to the right of more thanone universal quanti�er.Guideline: Consider a process (which proceeds from left to right) of \refreshing" vari-ables after each universal quanti�er. Let �(x1; :::; xs; y; xs+1; :::; xs+t) be a quanti�er-freeboolean formula and let Qs+1; :::; Qs+t be an arbitrary sequence of quanti�ers. Then, wereplace the quanti�ed (sub-)formula8yQs+1xs+1 � � � Qs+txs+t �(x1; :::; xs; y; xs+1; :::; xs+t)by the (sub-)formula8y9x01 � � � 9x0s[(^si=1(x0i = xi)) ^ Qs+1xs+1 � � � Qs+txs+t �(x01; :::; x0s; y; xs+1; :::; xs+t)] :Note that the variables x1; :::; xs do not appear to the right of the quanti�er Qs+1 inthe replaced formula, and that the length of the replaced formula grows by an additiveterm of O(s). This process of refreshing variables is applied from left to right on theentire sequence of universal quanti�ers (except the inner one, for which this refreshing isuseless).47Exercise 9.7 Prove that if two integers in [0;M] are di�erent then they must bedi�erent modulo most of the primes in the interval [3; L], where L = poly(logM)].Prove the same for the interval [L; 2L].Guideline: Let a 6= b 2 [0;M] and suppose that P1; :::; Pt is an enumeration of all theprimes that satisfy a � b (mod Pi). Using the Chinese Reminder Theorem, prove thatQ def= Qti=1 Pi �M (because otherwise a = b follows by combining a � b (mod Q) withthe hypothesis a; b 2 [0;M]). It follows that t < log2M . Using a lower-bound on thedensity of prime numbers, the claim follows.46See Appendix G.2.47For example, 9z18z29z38z49z58z6 �(z1; z2; z3; z4; z5; z6)is �rst replaced by9z18z29z01 [(z01 = z1) ^ 9z38z49z58z6 �(z01; z2; z3; z4; z5; z6)]and next (written as 9z18z029z01 [(z01 = z1) ^ 9z038z049z058z06 �(z01; z02; z03; z04; z05; z06)]) is replaced by9z18z029z01 [(z01 = z1) ^ 9z038z049z001 9z002 9z003[(^3i=1(z00i = z0i)) ^ 9z058z06�(z001 ; z002 ; z003 ; z04; z05; z06)]]:Thus, in the resulting formula, no variable appears both to the left and to the right of more thana single universal quanti�er.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 447Exercise 9.8 (on interactive proofs with two-sided error (following [81]))Let IP 0(f) denote the class of sets having a two-sided error interactive proof systemin which a total of f(jxj) messages are exchanged on common input x. Speci�cally,suppose that a suitable prover may cause every yes-instance to be accepted withprobability at least 2=3 (rather than 1), while no cheating prover can cause ano-instance to be accepted with probability greater than 1=3 (rather than 1=2).Similarly, let AM0 denote the public-coin version of IP 0.1. Establish IP 0(f) � AM0(f + 3) by noting that the proof of Theorem F.2,which establishes IP(f) � AM(f+3), extends to the two-sided error setting.2. Prove that AM0(f) � AM(f + 1) by extending the ideas underlying theproof of Theorem 6.9, which actually establishes that BPP � AM(1) (whereBPP = AM0(0)).Using the Round Speed-up Theorem (i.e., Theorem F.3), conclude that, for everyfunction f : N ! N n f1g, it holds that IP 0(f) = AM(f) = IP(f).Guideline (for Part 2): Fixing an optimal prover strategy for the given two-sidederror public-coin interactive proof, consider the set of veri�er coins that make the veri�eraccept any �xed yes-instance, and apply the ideas underlying the transformation of BPPtoMA = AM(1). For further details, see [81].Exercise 9.9 In continuation to Exercise 9.8, show that IP 0(f) = IP(f) for everyfunction f : N ! N (including f � 1).Guideline: Focus on establishing IP 0(1) = IP(1), which is identical to Part 2 of Exer-cise 6.12. Note that the relevant classes de�ned in Exercise 6.12 coincide with IP(1) andIP 0(1); that is,MA = IP(1) andMA(2) = IP 0(1).Exercise 9.10 Prove that every PSPACE-complete set S has an interactive proofsystem in which the designated prover can be implemented by a probabilisticpolynomial-time oracle machine that is given oracle access to S.Guideline: Use Theorem 9.4 and Proposition 9.5.Exercise 9.11 (checkers (following [38])) A probabilistic polynomial-time or-acle machine C is called a checker for the decision problem � if the following twoconditions hold:1. For every x it holds that Pr[C�(x)=1] = 1, where (as usual) Cf (x) denotesthe output of A on input x when given oracle access to f .2. For every f : f0; 1g� ! f0; 1g and every x such that f(x) 6= �(x) it holdsthat Pr[Cf (x)=1] � 1=2.Note that nothing is required in the case that f(x) = �(x) but f 6= �. Prove thatif both S1 = fx : �(x)=1g and S0 = fx : �(x)=0g have interactive proof systemsin which the designated prover can be implemented by a probabilistic polynomial-time oracle machine that is given oracle access to �, then � has a checker. UsingExercise 9.10, conclude that any PSPACE-complete problem has a checker.

448 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSGuideline: On input x and oracle access to f , the checker �rst obtains � def= f(x). Theclaim �(x) = � is then checked by combining the veri�er of S� with the probabilisticpolynomial-time oracle machine that describes the designated prover, while referring itsqueries to the oracle f .Exercise 9.12 (weakly optimal deciders for checkable problems (following [132]))Prove that if a decision problem � has a checker (as de�ned in Exercise 9.11) thenthere exists a probabilistic algorithm A that satis�es the following two conditions:1. A solves the decision problem � (i.e., for every x it holds that Pr[A(x) =�(x)] � 2=3).2. For every probabilistic algorithm A0 that solves the decision problem �,there exists a polynomial p such that for every x it holds that tA(x) =p(jxj) �maxjx0j�p(jxj)ftA0(x0)g, where tA(z) (resp., tA0(z)) denotes the numberof steps taken by A (resp., A0) on input z.Note that, compared to Theorem 2.33, the claim of optimality is weaker, but on theother hand it applies to decision problems (rather than to candid search problems).Guideline: Use the ideas of the proof of Theorem 2.33, noting that the correctnessof the answers provided by the various candidate algorithms can be veri�ed by usingthe checker. That is, A invokes copies of the checker, while using di�erent candidatealgorithms as oracles in the various copies.Exercise 9.13 (on the role of soundness error in zero-knowledge proofs)Prove that if S has a zero-knowledge interactive proof system with perfect sound-ness (i.e., the soundness error equals zero) then S 2 BPP.Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)veri�er. Consider the algorithm that on input x, accepts x if and only if M(x) representsa valid view of the veri�er in an accepting interaction (i.e., an interaction that leads theveri�er to accept the common input x). Use the simulation condition to analyze the casex 2 S, and the perfect soundness hypothesis to analyze the case x 62 S.Exercise 9.14 (on the role of interaction in zero-knowledge proofs) Provethat if S has a zero-knowledge interactive proof system with a uni-directional com-munication then S 2 BPP.Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)veri�er, and let M 0(x) denote the part of this view that consists of the prover message.Consider the algorithm that on input x, obtains m M 0(x), and emulates the veri�er'sdecision on input x and messagem. Note that this algorithm ignores the part ofM(x) thatrepresents the veri�er's internal coin tosses, and uses fresh veri�er's coins when decidingon (x;m).Exercise 9.15 (on the e�ective length of PCP oracles) Suppose that V isa PCP veri�er of query-complexity q and randomness-complexity r. Show thatfor every �xed x, the number of possible locations in the proof oracle that are

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 449examined by V on input x (when considering all possible internal coin tosses of Vand all possible answers it may receive) is upper-bounded by 2q(jxj)+r(jxj). Showthat if V is non-adaptive then the upper-bound can be improved to 2r(jxj) � q(jxj).Guideline: In the non-adaptive case, all q queries are determined by V 's internal cointosses.Exercise 9.16 (on the e�ective randomness of PCPs) Suppose that a set Shas a PCP of query-complexity q that utilizes proof oracles of length `. Showthat, for every constant " > 0, the set S has a \non-uniform" PCP of querycomplexity q, soundness error 0:5 + " and randomness complexity r such thatr(n) = log2(`(n) +n)+O(1). By a \non-uniform PCP" we mean one in which theveri�er is a probabilistic polynomial-time oracle machine that is given direct accessto the bits of a non-uniform poly(`(n) + n)-bit long advice.Guideline: Consider a PCP veri�er V as in the hypothesis, and denote its randomnesscomplexity by rV . We construct a non-uniform veri�er V 0 that, on input of length n,obtains as advice a set Rn � f0; 1grV (n) of cardinality O((`(n) + n)="2), and emulates Von a uniformly selected element of Rn. Show that for a random Rn of the said size, theveri�er V 0 satis�es the claims of the exercise.(Extra hint: Fixing any input x 62 S and any oracle � 2 f0; 1g`(jxj), upper-bound the probabilitythat a random set Rn (of the said size) is bad, where Rn is bad if V accept x with probability0:5 + " when selecting its coins in Rn and using the oracle �.)Exercise 9.17 (on the complexity of sets having certain PCPs) Suppose thata set S has a PCP of query-complexity q and randomness-complexity r. Show thatS can be decided by a non-deterministic machine48 that, on input of length n, makesat most 2r(n) � q(n) truly non-deterministic steps (i.e., choosing between di�erentalternatives) and halts within a total number of 2r(n) � poly(n) steps. Concludethat S 2 Ntime(2r � poly) \Dtime(22rq+r � poly).Guideline: For each input x 2 S and each possible value ! 2 f0; 1gr(jxj) of the veri�er'srandom-tape, we consider a sequence of q(jxj) bit values that represent a sequence oforacle answers that make the veri�er accept. Indeed, for �xed x and ! 2 f0; 1gr(jxj),each setting of the q(jxj) oracle answers determine the computation of the correspondingveri�er (including the queries it makes).Exercise 9.18 (The FGLSS-reduction [73]) For any S 2 PCP(r; q), considerthe following mapping of instances for S to instances of the Independent Setproblem. The instance x is mapped to a graph Gx = (Vx; Ex), where Vx �f0; 1gr(jxj)+q(jxj) consists of pairs (!; �) such that the PCP veri�er accepts the inputx, when using coins ! 2 f0; 1gr(jxj) and receiving the answers � = �1 � � ��q(jxj) (tothe oracle queries determined by x, r and the previous answers). Note that Vx con-tains only accepting \views" of the veri�er. The set Ex consists of edges that con-nect vertices that represents mutually inconsistent views of the said veri�er; thatis, the vertex v = (!; �1 � � ��q(jxj)) is connected to the vertex v0 = (!0; �01 � � ��0q(jxj))if there exists i and i0 such that �i 6= �0i0 and qxi (v) = qxi0(v0), where qxi (v) (resp.,48See x4.2.1.3 for de�nition of non-deterministic machines.

450 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSqxi0(v0)) denotes the i-th (resp., i0-th) query of the veri�er on input x, when us-ing coins ! (resp., !0) and receiving the answers �1 � � ��i�1 (resp., �01 � � ��0i0�1).In particular, for every ! 2 f0; 1gr(jxj) and � 6= �0, if (!; �); (!; �0) 2 Vx, thenf(!; �); (!; �0)g 2 Ex.1. Prove that the mapping x 7! Gx can be computed in time that is polynomialin 2r(jxj)+q(jxj) � jxj.(Note that the number of vertices in Gx is upper-bounded by 2r(jxj)+f(jxj),where f � q is the free-bit complexity of the PCP veri�er.)2. Prove that, for every x, the size of the maximum independent set in Gx is atmost 2r(jxj).3. Prove that if x 2 S then Gx has an independent set of size 2r(jxj).4. Prove that if x 62 S then the size of the maximum independent set in Gx isat most 2r(jxj)�1.In general, denoting the PCP veri�er by V , prove that the size of the maximumindependent set in Gx is exactly 2r(jxj) �max�fPr[V �(x) = 1]g. (Note the similarityto the proof of Proposition 2.26.)Show that the PCP Theorem implies that the size of the maximum independent set(resp., clique) in a graph is NP-hard to approximate to within any constant factor.Guideline: Note that an independent set in Gx corresponds to a set of coins R and apartial oracle �0 such that V accepts x when using coins in R and accessing any oraclethat is consistent with �0. The FGLSS-reduction creates a gap of a factor of 2 betweenyes- and no-instances of S (having a standard PCP). Larger factors can be obtained byconsidering a PCP that results from repeating the original PCP for a constant number oftimes. The result for Clique follows by considering the complement graph.Exercise 9.19 Using the ideas of Exercise 9.18, prove that, for any t(n) = o(logn),it holds that NP � PCP(t; t) implies that P = NP.Guideline: We only use the fact that the FGLSS-reduction maps instances of S 2PCP(t; t) to instances of the Clique problem (and ignore the fact that we actually get astronger reduction to a \gap-Clique" problem). Furthermore, when applies to problemsin NP � PCP(t; t), the FGLSS-reduction runs in polynomial-time. The key observationis that the FGLSS-reduction maps instances of the Clique problem (which is in NP �PCP(o(log); o(log))) to shorter instances of the same problem (because 2o(logn) � n).Thus, iteratively applying the FGLSS-reduction, we can reduce instances of Clique toinstances of constant size. This yields a reduction of Clique to a �nite set, and NP = Pfollows (by the NP-completeness of Clique).Exercise 9.20 (a simple but partial analysis of the BLR Linearity Test)For Abelian groups G and H , consider functions from G to H . For such a (generic)function f , consider the linearity (or rather homomorphism) test that selects uni-formly r; s 2 G and checks that f(r)+f(s) = f(r+s). Let �(f) denote the distance

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 451of f from the set of homomorphisms (of G to H); that is, �(f) is the minimumtaken over all homomorphisms h : G ! H of Prx2G[f(x) 6= h(x)]. Using the fol-lowing guidelines, prove that the probability that the test rejects f , denoted "(f),is at least 3�(f)� 6�(f)2.1. Suppose that h is the homomorphism closest to f (i.e., �(f) = Prx2G[f(x) 6=h(x)]). Prove that "(f) = Prx;y2G[f(x) + f(y) 6= f(x+ y)] is lower-boundedby 3 � Prx;y[f(x) 6=h(x) ^ f(y)=h(y) ^ f(x+ y)=h(x+ y)].(Hint: consider three out of four disjoint cases (regarding f(x) ?= h(x), f(y) ?= h(y), andf(x+ y) ?= h(x+ y)) that are possible when f(x)+ f(y) 6=f(x+ y), where these three casesrefer to the disagreement of h and f on exactly one out of the three relevant points.)2. Prove that Prx;y[f(x) 6=h(x)^f(y)=h(y)^f(x+y)=h(x+y)] � �(f)�2�(f)2.(Hint: lower-bound the said probability by Prx;y[f(x) 6= h(x)]�(Prx;y[f(x) 6= h(x)^f(y) 6=h(y)] + Prx;y [f(x) 6= h(x) ^ f(x+ y) 6= h(x+ y)]).)Note that the lower-bound "(f) � 3�(f) � 6�(f)2 increases with �(f) only in thecase that �(f) � 1=4. Furthermore, the lower-bound is useless in the case that�(f) � 1=2. Thus an alternative lower-bound is needed in case �(f) approaches1=2 (or is larger than it); see Exercise 9.21.Exercise 9.21 (a better analysis of the BLR Linearity Test (cf. [40])) In con-tinuation to Exercise 9.20, use the following guidelines in order to prove that"(f) � min(1=6; �(f)=2). Speci�cally, focusing on the case that "(f) < 1=6, showthat f is 2"(f)-close to some homomorphism (and thus "(f) � �(f)=2).1. De�ne the vote of y regarding the value of f at x as �y(x) def= f(x+y)�f(y), andde�ne �(x) as the corresponding plurality vote (i.e., �(x) def= argmaxv2Hfjfy2G : �y(x)=vgjg).Prove that, for every x 2 G, it holds that Pry[�y(x) = �(x)] � 1� 2"(f).Extra guideline: Fixing x, call a pair (y1; y2) good if f(y1) + f(y2 � y1) = f(y2)and f(x+y1)+f(y2�y1) = f(x+y2). Prove that, for any x, a random pair (y1; y2)is good with probability at least 1� 2"(f). On the other hand, for a good (y1; y2),it holds that �y1(x) = �y2(x). Show that the graph in which edges correspond togood pairs must have a connected component of size at least (1� 2"(f)) � jGj. Notethat �y(x) is identical for all vertices y in this connected component, which in turncontains a majority of all y's in G.2. Prove that � is a homomorphism; that is, prove that, for every x; y 2 G, itholds that �(x) + �(y) = �(x + y).Extra guideline: Prove that �(x) + �(y) = �(x + y) holds by considering thesomewhat �ctitious expression px;y def= Prr2G[�(x) + �(y) 6= �(x+ y)], and showingthat px;y < 1 (and hence �(x) + �(y) 6= �(x+ y) is false). Prove that px;y < 1, byshowing that px;y � Prr " �(x) 6=f(x+ r)� f(r)_ �(y) 6=f(r)� f(r � y)_ �(x+ y) 6=f(x+ r)� f(r � y) # (9.10)

452 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSand using Item 1 (and some variable substitutions) for upper-bounding by 2"(f) <1=3 the probability of each of the three events in Eq. (9.10).3. Prove that f is 2"(f)-close to �.Extra guideline: Denoting B = fx2G : Pry2G[f(x) 6= �y(x)] � 1=2g, prove that"(f) � (1=2) � (jBj=jGj). Note that if x 2 G nB then f(x) = �(x).We comment that better bounds on the behavior of "(f) as a function of �(f) areknown.Exercise 9.22 (testing matrix identity) Let M be a non-zero m-by-n matrixover GF(p). Prove that Prr;s[r>Ms 6= 0] � (1 � p�1)2, where r (resp., s) is arandom m-ary (resp., n-ary) vector.Guideline: Prove that if v 6= 0n then Prs[v>s = 0] = p�1, and that ifM has rank � thenPrr[r>M = 0n] = p��.Exercise 9.23 (3SAT and CSP with two variables) Show that 3SAT is reducibleto gapCSPf1;:::;7g� for �(m) = 1=m, where gapCSP is as in De�nition 9.18. Further-more, show that the size of the resulting gapCSP instance is linear in the length ofthe input formula.Guideline: Given an instance of 3SAT, consider the graph in which vertices correspondto clauses of , edges correspond to pairs of clauses that share a variable, and the con-straints represent the natural consistency condition regarding partial assignments thatsatisfy the clauses. See a similar construction in Exercise 9.18.Exercise 9.24 (CSP with two Boolean variables) In contrast to Exercise 9.23,prove that for every positive function � : N ! (0; 1] the problem gapCSPf0;1g� issolvable in polynomial-time.Guideline: Reduce gapCSPf0;1g� to 2SAT.Exercise 9.25 Show that, for any �xed �nite � and constant c > 0, the problemgapCSP�c is in PCP(log; O(1)).Guideline: Consider an oracle that, for some satisfying assignment for the CSP-instance(G;�), provides a trivial encoding of the assignment; that is, for a satisfying assignment � :V ! �, the oracle responds to the query (v; i) with the ith bit in the binary representationof �(v). Consider a veri�er that uniformly selects an edge (u; v) of G and checks theconstraint �(u;v) when applied to the values �(u) and �(v) obtained from the oracle. Thisveri�er makes log2 j�j queries and reject each no-instance with probability at least c.Exercise 9.26 For any constant � and d � 14, show that gapCSP� can be reducedto itself such that the instance at the target of the reduction is a d-regular expander,and the fraction of violated constraints is preserved up to a constant factor. Thatis, the instance (G;�) is reduced to (G1;�1) such that G1 is a d-regular expandergraph and vlt(G1;�1) = �(vlt(G;�)). Furthermore, make sure that jG1j =O(jGj) and that each vertex in G1 has at least d=2 self-loops.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 453Guideline: First, replace each vertex of degree d0 > 3 by a 3-regular expander of sized0, and connect each of the original d0 edges to a di�erent vertex of this expander, thusobtaining a graph of maximum degree 4. Maintain the constraints associated with theoriginal edges, and associate the equality constraint (i.e., �(�; �) = 1 if and only if � = �)to each new edge (residing in any of the added expanders). Next, augment the resultingN1-vertex graph by the edges of a 3-regular expander of size N1 (while associating withthese edges the trivially satis�ed constraint; i.e., �(�; �) = 1 for all �; � 2 �). Finally,add at least d=2 self-loops to each vertex (using again trivially satis�ed constraints), soto obtain a d-regular graph. Prove that this sequence of modi�cations may only decreasethe fraction of violated constraints, and that the decrease is only by a constant factor.The latter assertion relies on the equality constraints associated with the small expandersused in the �rst step.Exercise 9.27 (free-bit complexity zero) Note that only sets in coRP havePCPs of query complexity zero. Furthermore, Exercise 9.17 implies that only setsin P have PCP systems of logarithmic randomness and query complexity zero.1. Show that only sets in P have PCP systems of logarithmic randomness andfree-bit complexity zero.(Hint: Consider an application of the FGLSS-reduction to a set having a PCP of free-bitcomplexity zero.)2. In contrast, show that Graph Non-Isomorphism has a PCP system of free-bitcomplexity zero (and linear randomness-complexity).Exercise 9.28 (free-bit complexity one) In continuation to Exercise 9.27, provethat only sets in P have PCP systems of logarithmic randomness and free-bit com-plexity one.Guideline: Consider an application of the FGLSS-reduction to a set having a PCP offree-bit complexity one and randomness-complexity r. Note that the question of whetherthe resulting graph has an independent set of size 2r can be expressed as a 2CNF formulaof size poly(2r), and see Exercise 2.22.Exercise 9.29 (Proving Theorem 9.23) Using the following guidelines, pro-vide a proof of Theorem 9.23. Let S 2 NP and consider the 3CNF formulaethat are obtained by the standard reduction of S to 3SAT (i.e., the one providedby the proofs of Theorems 2.21 and 2.22). Decouple the resulting 3CNF formulaeinto pairs of formulae (x; �) such that x represents the \hard-wiring" of the in-put x and � represents the computation itself. Referring to the mapping of 3CNFformulae to low-degree extensions presented in x9.3.2.2, show that the low-degreeextension � that correspond to � can be evaluated in polynomial-time (i.e., poly-nomial in the length of the input to �, which is O(log j�j)). Conclude that thelow-degree extension that corresponds to x ^ � can be evaluated in time jxj2. Al-ternatively, note that it su�ces to show that the assignment-oracle A (consideredin x9.3.2.2) satis�es � and is consistent with x (and is a low-degree polynomial).

454 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSGuideline: Note that the circuit constructed in the proof of Theorem 2.21 is highlyuniform. In particular, the relation between wires and gates in this circuit can be repre-sented by constant-depth circuits of unbounded fan-in and polynomial-size (i.e., size thatis polynomial in the length of the indices of wires and gates).

Chapter 10Relaxing the RequirementsThe philosophers have only interpreted the world, invarious ways; the point is to change it.Karl Marx, Theses on FeuerbachIn light of the apparent infeasibility of solving numerous useful computational prob-lems, it is natural to ask whether these problems can be relaxed such that therelaxation is both useful and allows for feasible solving procedures. We stress twoaspects about the foregoing question: on one hand, the relaxation should be suf-�ciently good for the intended applications; but, on the other hand, it should besigni�cantly di�erent from the original formulation of the problem so to escape theinfeasibility of the latter. We note that whether a relaxation is adequate for anintended application depends on the application, and thus much of the materialin this chapter is less robust (or generic) than the treatment of the non-relaxedcomputational problems.Summary: We consider two types of relaxations. The �rst type ofrelaxation refers to the computational problems themselves; that is, foreach problem instance we extend the set of admissible solutions. Inthe context of search problems this means settling for solutions thathave a value that is \su�ciently close" to the value of the optimalsolution (with respect to some value function). Needless to say, thespeci�c meaning of `su�ciently close' is part of the de�nition of therelaxed problem. In the context of decision problems this means thatfor some instances both answers are considered valid; speci�cally, weshall consider promise problems in which the no-instances are \far"from the yes-instances in some adequate sense (which is part of thede�nition of the relaxed problem).The second type of relaxation deviates from the requirement that thesolver provides an adequate answer on each valid instance. Instead,the behavior of the solver is analyzed with respect to a predetermined455

456 CHAPTER 10. RELAXING THE REQUIREMENTSinput distribution (or a class of such distributions), and bad behaviormay occur with negligible probability where the probability is takenover this input distribution. That is, we replace worst-case analysis byaverage-case (or rather typical-case) analysis. Needless to say, a majorcomponent in this approach is limiting the class of distributions in a waythat, on one hand, allows for various types of natural distributions and,on the other hand, prevents the collapse of the corresponding notion ofaverage-case hardness to the standard notion of worst-case hardness.Organization. The �rst type of relaxation is treated in Section 10.1, where weconsider approximations of search (or rather optimization) problems as well asapproximate-decision problems (a.k.a property testing); see Section 10.1.1 and Sec-tion 10.1.2, respectively. The second type of relaxation, known as average/typical-case complexity, is treated in Section 10.2. The treatment of these two types isquite di�erent. Section 10.1 provides a short and high-level introduction to variousresearch areas, focusing on the main notions and illustrating them by reviewingsome results (while providing no proofs). In contrast, Section 10.2 provides a basictreatment of a theory (of average/typical-case complexity), focusing on some basicresults and providing a rather detailed exposition of the corresponding proofs.10.1 ApproximationThe notion of approximation is a very natural one, and has arisen also in otherdisciplines. Approximation is most commonly used in references to quantities (e.g.,\the length of one meter is approximately forty inches"), but it is also used whenreferring to qualities (e.g., \an approximately correct account of a historical event").In the context of computation, the notion of approximation modi�es computationaltasks such as search and decision problems. (In fact, we have already encounteredit as a modi�er of counting problems; see Section 6.2.2.)Two major questions regarding approximation are (1) what is a \good" approx-imation, and (2) can it be found easier than �nding an exact solution. The answerto the �rst question seems intimately related to the speci�c computational taskat hand and to its role in the wider context (i.e., the higher level application): agood approximation is one that su�ces for the intended application. Indeed, theimportance of certain approximation problems is much more subjective than theimportance of the corresponding optimization problems. This fact seems to standin the way of attempts at providing a comprehensive theory of natural approxi-mation problems (e.g., general classes of natural approximation problems that areshown to be computationally equivalent).Turning to the second question, we note that in numerous cases natural approx-imation problems seem to be signi�cantly easier than the corresponding original(\exact") problems. On the other hand, in numerous other cases, natural approx-imation problems are computationally equivalent to the original problems. Weshall exemplify both cases by reviewing some speci�c results, but will not provide

10.1. APPROXIMATION 457a general systematic classi�cation (because such a classi�cation is not known).1We shall distinguish between approximation problems that are of a \searchtype" and problems that have a clear \decisional" avor. In the �rst case we shallrefer to a function that assigns values to possible solutions (of a search problem);whereas in the second case we shall refer to the distance between instances (of adecision problem).2 We note that, sometimes the same computational problemmay be cast in both ways, but for most natural approximation problems one of thetwo frameworks is more appealing than the other. The common theme underlyingboth frameworks is that in each of them we extend the set of admissible solutions.In the case of search problems, we augment the set of optimal solutions by allowingalso almost-optimal solutions. In the case of decision problems, we extend the setof solutions by allowing an arbitrary answer (solution) to some instances, whichmay be viewed as a promise problem that disallows these instances. In this case wefocus on promise problems in which the yes- and no-instances are far apart (andthe instances that violate the promise are closed to yes-instances).Teaching note: Most of the results presented in this section refer to speci�c computa-tional problems and (with one exception) are presented without a proof. In view of thecomplexity of the corresponding proofs and the merely illustrative role of these resultsin the context of complexity theory, we recommend doing the same in class.10.1.1 Search or OptimizationAs noted in Section 2.2.2, many search problems involve a set of potential solutions(per each problem instance) such that di�erent solutions are assigned di�erent \val-ues" (resp., \costs") by some \value" (resp., \cost") function. In such a case, one isinterested in �nding a solution of maximum value (resp., minimum cost). A corre-sponding approximation problem may refer to �nding a solution of approximatelymaximum value (resp., approximately minimum cost), where the speci�cation ofthe desired level of approximation is part of the problem's de�nition. Let us elab-orate.For concreteness, we focus on the case of a value that we wish to maximize.For greater expressibility (or, actually, for greater exibility), we allow the valueof the solution to depend also on the instance itself.3 Thus, for a (polynomiallybounded) binary relation R and a value function f : f0; 1g� � f0; 1g� ! R, weconsider the problem of �nding solutions (with respect to R) that maximize the1In contrast, systematic classi�cations of restricted classes of approximation problems areknown. For example, see [55] for a classi�cation of (approximate versions of) Constraint Satis-faction Problems.2In some sense, this distinction is analogous to the distinction between the two aforementioneduses of the word approximation.3This convention is only a matter of convenience: without loss of generality, we can expressthe same optimization problem using a value function that only depends on the solution byaugmenting each solution with the corresponding instance (i.e., a solution y to an instance x canbe encoded as a pair (x; y), and the resulting set of valid solutions for x will consist of pairs of theform (x; �)). Hence, the foregoing convention merely allows avoiding this cumbersome encodingof solutions.

458 CHAPTER 10. RELAXING THE REQUIREMENTSvalue of f . That is, given x (such that R(x) 6= ;), the task is �nding y 2 R(x) suchthat f(x; y) = vx, where vx is the maximum value of f(x; y0) over all y0 2 R(x).Typically, R is in PC and f is polynomial-time computable. Indeed, without lossof generality, we may assume that for every x it holds that R(x) = f0; 1g`(jxj) forsome polynomial ` (see Exercise 2.8).4 Thus, the optimization problem is recastas the following search problem: given x, �nd y such that f(x; y) = vx, wherevx = maxy02f0;1g`(jxj)ff(x; y0)g.We shall focus on relative approximation problems, where for some gap functiong : f0; 1g� ! fr2R : r�1g the (maximization) task is �nding y such that f(x; y) �vx=g(x). Indeed, in some cases the approximation factor is stated as a function ofthe length of the input (i.e., g(x) = g0(jxj) for some g0 : N ! fr2R : r�1g), butoften the approximation factor is stated in terms of some more re�ned parameterof the input (e.g., as a function of the number of vertices in a graph). Typically, gis polynomial-time computable.De�nition 10.1 (g-factor approximation): Let f : f0; 1g� � f0; 1g� ! R, ` :N!N , and g : f0; 1g� ! fr2R : r�1g.Maximization version: The g-factor approximation of maximizing f (w.r.t `) is thesearch problem R such that R(x) = fy 2 f0; 1g`(jxj) : f(x; y) � vx=g(x)g,where vx = maxy02f0;1g`(jxj)ff(x; y0)g.Minimization version: The g-factor approximation of minimizing f (w.r.t `) is thesearch problem R such that R(x) = fy 2 f0; 1g`(jxj) : f(x; y) � g(x) � cxg,where cx = miny02f0;1g`(jxj)ff(x; y0)g.We note that for numerous NP-complete optimization problems, polynomial-timealgorithms provide meaningful approximations. A few examples will be mentionedin x10.1.1.1. In contrast, for numerous other NP-complete optimization problems,natural approximation problems are computationally equivalent to the correspond-ing optimization problem. A few examples will be mentioned in x10.1.1.2, wherewe also introduce the notion of a gap problem, which is a promise problem (ofthe decision type) intended to capture the di�culty of the (approximate) searchproblem.10.1.1.1 A few positive examplesLet us start with a trivial example. Considering a problem such as �nding themaximum clique in a graph, we note that �nding a linear factor approximation istrivial (i.e., given a graph G = (V;E), we may output any vertex in V as a jV j-factor approximation of the maximum clique in G). A famous non-trivial exampleis presented next.Proposition 10.2 (factor two approximation to minimum Vertex Cover): Thereexists a polynomial-time approximation algorithm that given a graph G = (V;E)4However, in this case (and in contrast to Footnote 3), the value function f must depend bothon the instance and on the solution (i.e., f(x; y) may no be oblivious of x).

10.1. APPROXIMATION 459outputs a vertex cover that is at most twice as large as the minimum vertex coverof G.We warn that an approximation algorithm for minimum Vertex Cover does notyield such an algorithm for the complementary search problem (of maximum IndependentSet). This phenomenon stands in contrast to the case of optimization, where anoptimal solution for one search problem (e.g., minimum Vertex Cover) yields anoptimal solution for the complementary search problem (maximum IndependentSet).Proof Sketch: The main observation is a connection between the set of maximalmatchings and the set of vertex covers in a graph. LetM be anymaximal matchingin the graph G = (V;E); that is, M � E is a matching but augmenting it by anysingle edge yields a set that is not a matching. Then, on one hand, the set of allvertices participating in M is a vertex cover of G, and, on the other hand, eachvertex cover of G must contain at least one vertex of each edge ofM . Thus, we can�nd the desired vertex cover by �nding a maximal matching, which in turn can befound by a greedy algorithm.Another example. An instance of the traveling salesman problem (TSP) consistsof a symmetric matrix of distances between pairs of points, and the task is �ndinga shortest tour that passes through all points. In general, no reasonable approx-imation is feasible for this problem (see Exercise 10.1), but here we consider twospecial cases in which the distances satisfy some natural constraints (and prettygood approximations are feasible).Theorem 10.3 (approximations to special cases of TSP): Polynomial-time algo-rithms exist for the following two computational problems.1. Providing a 1.5-factor approximation for the special case of TSP in which thedistances satisfy the triangle inequality.2. For every " > 1, providing a (1+ ")-factor approximation for the special caseof Euclidean TSP (i.e., for some constant k (e.g., k = 2), the points residein a k-dimensional Euclidean space, and the distances refer to the standardEuclidean norm).A weaker version of Part 1 is given in Exercise 10.2. A detailed survey of Part 2is provided in [12]. We note the di�erence exempli�ed by the two items of Theo-rem 10.3: Whereas Part 1 provides a polynomial-time approximation for a speci�cconstant factor, Part 2 provides such an algorithm for any constant factor. Such aresult is called a polynomial-time approximation scheme (abbreviated PTAS).10.1.1.2 A few negative examplesLet us start again with a trivial example. Considering a problem such as �ndingthe maximum clique in a graph, we note that given a graph G = (V;E) �nding

460 CHAPTER 10. RELAXING THE REQUIREMENTSa (1 + jV j�1)-factor approximation of the maximum clique in G is as hard as�nding a maximum clique in G. Indeed, this \result" is not really meaningful.In contrast, building on the PCP Theorem (Theorem 9.16), one may prove that�nding a jV j1�o(1)-factor approximation of the maximum clique in a general graphG = (V;E) is as hard as �nding a maximum clique in a general graph. This followsfrom the fact that the approximation problem is NP-hard (cf. Theorem 10.5).The statement of such inapproximability results is made stronger by referringto a promise problem that consists of distinguishing instances of su�ciently farapart values. Such promise problems are called gap problems, and are typicallystated with respect to two bounding functions g1; g2 : f0; 1g� ! R (which replacethe gap function g of De�nition 10.1). Typically, g1 and g2 are polynomial-timecomputable.De�nition 10.4 (gap problem for approximation of f): Let f be as in De�ni-tion 10.1 and g1; g2 : f0; 1g� ! R.Maximization version: For g1 � g2, the gapg1;g2 problem of maximizing f consistsof distinguishing between fx : vx � g1(x)g and fx : vx < g2(x)g, wherevx = maxy2f0;1g`(jxj)ff(x; y)g.Minimization version: For g1 � g2, the gapg1;g2 problem of minimizing f consistsof distinguishing between fx : cx � g1(x)g and fx : cx > g2(x)g, wherecx = miny2f0;1g`(jxj)ff(x; y)g.For example, the gapg1;g2 problem of maximizing the size of a clique in a graphconsists of distinguishing between graphs G that have a clique of size g1(G) andgraphs G that have no clique of size g2(G). In this case, we typically let gi(G) be afunction of the number of vertices in G=(V;E); that is, gi(G) = g0i(jV j). Indeed,letting !(G) denote the size of the largest clique in the graphG, we let gapCliqueL;sdenote the gap problem of distinguishing between fG= (V;E) : !(G) � L(jV j)gand fG=(V;E) : !(G) < s(jV j)g, where L � s. Using this terminology, we restate(and strengthen) the aforementioned jV j1�o(1)-factor inapproximability result ofthe maximum clique problem.Theorem 10.5 For some L(N) = N1�o(1) and s(N) = No(1), it holds that gapCliqueL;sis NP-hard.The proof of Theorem 10.5 is based on a major re�nement of Theorem 9.16 thatrefers to a PCP system of amortized free-bit complexity that tends to zero (cf.x9.3.4.1). A weaker result, which follows from Theorem 9.16 itself, is presented inExercise 10.3.As we shall show next, results of the type of Theorem 10.5 imply the hardnessof a corresponding approximation problem; that is, the hardness of deciding a gapproblem implies the hardness of a search problem that refers to an analogous factorof approximation.

10.1. APPROXIMATION 461Proposition 10.6 Let f; g1; g2 be as in De�nition 10.4 and suppose that thesefunctions are polynomial-time computable. Then the gapg1;g2 problem of maximiz-ing f (resp., minimizing f) is reducible to the g1=g2-factor (resp., g2=g1-factor)approximation of maximizing f (resp., minimizing f).Note that a reduction in the opposite direction does not necessarily exist (even inthe case that the underlying optimization problem is self-reducible in some naturalsense). Indeed, this is another di�erence between the current context (of approx-imation) and the context of optimization problems, where the search problem isreducible to a related decision problem.Proof Sketch: We focus on the maximization version. On input x, we solve thegapg1;g2 problem, by making the query x, obtaining the answer y, and ruling thatx has value at least g1(x) if and only if f(x; y) � g2(x). Recall that we need toanalyze this reduction only on inputs that satisfy the promise. Thus, if vx � g1(x)then the oracle must return a solution y that satis�es f(x; y) � vx=(g1(x)=g2(x)),which implies that f(x; y) � g2(x). On the other hand, if vx < g2(x) then f(x; y) �vx < g2(x) holds for any possible solution y.Additional examples. Let us consider gapVCs;L, the gapgs;gL problem of mini-mizing the vertex cover of a graph, where s and L are constants and gs(G) = s � jV j(resp., gL(G) = L � jV j) for any graph G=(V;E). Then, Proposition 10.2 implies(via Proposition 10.6) that, for every constant s, the problem gapVCs;2s is solvablein polynomial-time. In contrast, su�ciently narrowing the gap between the twothresholds yields an inapproximability result. In particular:Theorem 10.7 For some constants s > 0 and L < 1 such that L > 43 � s (e.g.,s = 0:62 and L = 0:84), the problem gapVCs;L is NP-hard.The proof of Theorem 10.7 is based on a complicated re�nement of Theorem 9.16.Again, a weaker result follows from Theorem 9.16 itself (see Exercise 10.4).As noted, re�nements of the PCP Theorem (Theorem 9.16) play a key role inestablishing inapproximability results such as Theorems 10.5 and 10.7. In thatrespect, it is adequate to recall that Theorem 9.21 establishes the equivalence ofthe PCP Theorem itself and the NP-hardness of a gap problem concerning themaximization of the number of clauses that are satis�es in a given 3-CNF for-mula. Speci�cally, gapSAT3" was de�ned (in De�nition 9.20) as the gap problemconsisting of distinguishing between satis�able 3-CNF formulae and 3-CNF formu-lae for which each truth assignment violates at least an " fraction of the clauses.Although Theorem 9.21 does not specify the quantitative relation that underliesits qualitative assertion, when (re�ned and) combined with the best known PCPconstruction, it does yield the best possible bound.Theorem 10.8 For every v < 1=8, the problem gapSAT3v is NP-hard.On the other hand, gapSAT31=8 is solvable in polynomial-time.

462 CHAPTER 10. RELAXING THE REQUIREMENTSSharp thresholds. The aforementioned opposite results (regarding gapSAT3v) ex-emplify a sharp threshold on the (factor of) approximation that can be obtainedby an e�cient algorithm. Another appealing example refers to the following maxi-mization problem in which the instances are systems of linear equations over GF(2)and the task is �nding an assignment that satis�es as many equations as possible.Note that by merely selecting an assignment at random, we expect to satisfy halfof the equations. Also note that it is easy to determine whether there exists anassignment that satis�es all equations. Let gapLinL;s denote the problem of dis-tinguishing between systems in which one can satisfy at least an L fraction ofthe equations and systems in which one cannot satisfy an s fraction (or more)of the equations. Then, as just noted, gapLinL;0:5 is trivial (for every L � 0:5)and gapLin1;s is feasible (for every s < 1). In contrast, moving both thresholds(slightly) away from the corresponding extremes, yields an NP-hard gap problem:Theorem 10.9 For every constant " > 0, the problem gapLin1�";0:5+" is NP-hard.The proof of Theorem 10.9 is based on a major re�nement of Theorem 9.16. In fact,the corresponding PCP system (for NP) is merely a reformulation of Theorem 10.9:the veri�er makes three queries and tests a linear condition regarding the answers,while using a logarithmic number of coin tosses. This veri�er accepts any yes-instance with probability at least 1 � " (when given oracle access to a suitableproof), and rejects any no-instance with probability at least 0:5 � " (regardlessof the oracle being accessed). A weaker result, which follows from Theorem 9.16itself, is presented in Exercise 10.5.Gap location. Theorems 10.8 and 10.9 illustrate two opposite situations withrespect to the \location" of the \gap" for which the corresponding promise prob-lem is hard. Recall that both gapSAT and gapLin are formulated with respectto two thresholds, where each threshold bounds the fraction of \local" conditions(i.e., clauses or equations) that are satis�able in the case of yes- and no-instances,respectively. In the case of gapSAT, the high threshold (referring to yes-instances)was set to 1, and thus only the low threshold (referring to no-instances) remaineda free parameter. Nevertheless, a hardness result was established for gapSAT, andfurthermore this was achieved for an optimal value of the low threshold (cf. theforegoing discussion of sharp thresholds). In contrast, in the case of gapLin, set-ting the high threshold to 1 makes the gap problem e�ciently solvable. Thus,the hardness of gapLin was established at a di�erent location of the high thresh-old. Speci�cally, hardness (for an optimal value of the ratio of thresholds) wasestablished when setting the high threshold to 1� ", for any " > 0.A �nal comment. All the aforementioned inapproximability results refer to ap-proximation (resp., gap) problems that are relaxations of optimization problemsin NP (i.e., the optimization problem is computationally equivalent to a decisionproblem in NP ; see Section 2.2.2). In these cases, the NP-hardness of the approx-imation (resp., gap) problem implies that the corresponding optimization problemis reducible to the approximation (resp., gap) problem. In other words, in these

10.1. APPROXIMATION 463cases nothing is gained by relaxing the original optimization problem, because therelaxed version remains just as hard.10.1.2 Decision or Property TestingA natural notion of relaxation for decision problems arises when considering thedistance between instances, where a natural notion of distance is the Hammingdistance (i.e., the fraction of bits on which two strings disagree). Loosely speaking,this relaxation (called property testing) refers to distinguishing inputs that residein a predetermined set S from inputs that are \relatively far" from any input thatresides in the set. Two natural types of promise problems emerge (with respect toany predetermined set S (and the Hamming distance between strings)):1. Relaxed decision w.r.t a �xed relative distance: Fixing a distance parameter�, we consider the problem of distinguishing inputs in S from inputs in ��(S),where ��(S) def= fx : 8z 2 S \ f0; 1gjxj �(x; z) > � � jxjg (10.1)and �(x1 � � �xm; z1 � � � zm) = jfi : xi 6= zigj denotes the number of bits onwhich x = x1 � � �xm and z = z1 � � � zm disagree. Thus, here we consider apromise problem that is a restriction (or a special case) of the problem ofdeciding membership in S.2. Relaxed decision w.r.t a variable distance: Here the instances are pairs (x; �),where x is as in Type 1 and � 2 [0; 1] is a (relative) distance parameter. Theyes-instances are pairs (x; �) such that x 2 S, whereas (x; �) is a no-instanceif x 2 ��(S).We shall focus on Type 1 formulation, which seems to capture the essential questionof whether or not these relaxations lower the complexity of the original decisionproblem. The study of Type 2 formulation refers to a relatively secondary question,which assumes a positive answer to the �rst question; that is, assuming that therelaxed form is easier than the original form, we ask how is the complexity of theproblem a�ected by making the distance parameter smaller (which means makingthe relaxed problem \tighter" and ultimately equivalent to the original problem).We note that for numerous NP-complete problems there exist natural (Type 1)relaxations that are solvable in polynomial-time. Actually, these algorithms runin sub-linear time (speci�cally, in polylogarithmic time), when given direct accessto the input. A few examples will be presented in x10.1.2.2 (but, as indicated inx10.1.2.2, this is not a generic phenomenon). Before turning to these examples, wediscuss several important de�nitional issues.10.1.2.1 De�nitional issuesProperty testing is concerned not only with solving relaxed versions of NP-hardproblems, but rather with solving these problems (as well as problems in P) insub-linear time. Needless to say, such results assume a model of computation in

464 CHAPTER 10. RELAXING THE REQUIREMENTSwhich algorithms have direct access to bits in the (representation of the) input (seeDe�nition 10.10).De�nition 10.10 (a direct access model { conventions): An algorithm with directaccess to its input is given its main input on a special input device that is accessedas an oracle (see x1.2.3.6). In addition, the algorithm is given the length of theinput and possibly other parameters on a secondary input device. The complexity ofsuch an algorithm is stated in terms of the length of its main input.Indeed, the description in x5.2.4.2 refers to such a model, but there the main inputis viewed as an oracle and the secondary input is viewed as the input. In thecurrent model, polylogarithmic time means time that is polylogarithmic in thelength of the main input, which means time that is polynomial in the length of thebinary representation of the length of the main input. Thus, polylogarithmic timeyields a robust notion of extremely e�cient computations. As we shall see, suchcomputations su�ce for solving various (property testing) problems.De�nition 10.11 (property testing for S): For any �xed � > 0, the promiseproblem of distinguishing S from ��(S) is called property testing for S (with respectto �).Recall that we say that a randomized algorithm solves a promise problem if itaccepts every yes-instance (resp., rejects every no-instance) with probability atleast 2=3. Thus, a (randomized) property testing for S accepts every input in S(resp., rejects every input in ��(S)) with probability at least 2=3.The question of representation. The speci�c representation of the input is ofmajor concern in the current context. This is due to (1) the e�ect of the represen-tation on the distance measure and to (2) the dependence of direct access machineson the speci�c representation of the input. Let us elaborate on both aspects.1. Recall that we de�ned the distance between objects in terms of the Hammingdistance between their representations. Clearly, in such a case, the choice ofrepresentation is crucial and di�erent representations may yield di�erent dis-tance measures. Furthermore, in this case, the distance between objects isnot preserved under various (natural) representations that are considered\equivalent" in standard studies of computational complexity. For example,in previous parts of this book, when referring to computational problemsconcerning graphs, we did not care whether the graph was represented by itsadjacency matrix or by its incidence-list. In contrast, these two representa-tions induce very di�erent distance measures and correspondingly di�erentproperty testing problems (see x10.1.2.2). Likewise, the use of padding (andother trivial syntactic conventions) becomes problematic (e.g., when using asigni�cant amount of padding, all objects are deemed close to one another(and property testing for any set becomes trivial)).

10.1. APPROXIMATION 4652. Since our focus is on sub-linear time algorithms, we may not a�ord trans-forming the input from one natural format to another. Thus, representationsthat are considered equivalent with respect to polynomial-time algorithms,may not be equivalent with respect to sub-linear time algorithms that havea direct access to the representation of the object. For example, adjacencyqueries and incidence queries cannot emulate one another in small time (i.e.,in time that is sub-linear in the number of vertices).Both aspects are further clari�ed by the examples provided in x10.1.2.2.The essential role of the promise. Recall that, for a �xed constant � > 0,we consider the promise problem of distinguishing S from ��(S). The promisemeans that all instances that are neither in S nor far from S (i.e., not in ��(S))are ignored, which is essential for sub-linear algorithms for natural problems. Thismakes the property testing task potentially easier than the corresponding stan-dard decision task (cf. x10.1.2.2). To demonstrate the point, consider the set Sconsisting of strings that have a majority of 1's. Then, deciding membership inS requires linear time, because random n-bit long strings with bn=2c ones cannotbe distinguished from random n-bit long strings with bn=2c + 1 ones by probinga sub-linear number of locations (even if randomization and error probability areallowed { see Exercise 10.8). On the other hand, the fraction of 1's in the input canbe approximated by a randomized polylogarithmic time algorithm (which yields aproperty tester for S; see Exercise 10.9). Thus, for some sets, deciding membershiprequires linear time, while property testing can be done in polylogarithmic time.The essential role of randomization. Referring to the foregoing example, wenote that randomization is essential for any sub-linear time algorithm that distin-guishes this set S from, say, �0:1(S). Speci�cally, a sub-linear time deterministicalgorithm cannot distinguish 1n from any input that has 1's in each position probedby that algorithm on input 1n. In general, on input x, a (sub-linear time) deter-ministic algorithm always reads the same bits of x and thus cannot distinguish xfrom any z that agrees with x on these bit locations.Note that, in both cases, we are able to prove lower-bounds on the time com-plexity of algorithms. This success is due to the fact that these lower-bounds areactually information theoretic in nature; that is, these lower-bounds actually referto the number of queries performed by these algorithms.10.1.2.2 Two models for testing graph propertiesIn this subsection we consider the complexity of property testing for sets of graphsthat are closed under graph isomorphism; such sets are called graph properties. Inview of the importance of representation in the context of property testing, weexplicitly consider two standard representations of graphs (cf. Appendix G.1),which indeed yield two di�erent models of testing graph properties.

466 CHAPTER 10. RELAXING THE REQUIREMENTS1. The adjacency matrix representation. Here a graph G = ([N]; E) is rep-resented (in a somewhat redundant form) by an N -by-N Boolean matrixMG = (mi;j)i;j2[N] such that mi;j = 1 if and only if fi; jg 2 E.2. Bounded incidence-lists representation. For a �xed parameter d, a graphG = ([N]; E) of degree at most d is represented (in a somewhat redundantform) by a mapping �G : [N]� [d]! [N][f?g such that �G(u; i) = v if v isthe ith neighbor of u and �G(u; i) = ? if v has less than i neighbors.We stress that the aforementioned representations determine both the notion ofdistance between graphs and the type of queries performed by the algorithm. Aswe shall see, the di�erence between these two representations yields a big di�erencein the complexity of corresponding property testing problems.Theorem 10.12 (property testing in the adjacency matrix representation): Forany �xed � > 0 and each of the following sets, there exists a polylogarithmic timerandomized algorithm that solves the corresponding property testing problem (withrespect to �).� For every �xed k � 2, the set of k-colorable graphs.� For every �xed � > 0, the set of graphs having a clique (resp., independentset) of density �.� For every �xed � > 0, the set of N-vertex graphs having a cut5 with at least� �N2 edges.� For every �xed � > 0, the set of N-vertex graphs having a bisection5with atmost � �N2 edges.In contrast, for some � > 0, there exists a graph property in NP for which propertytesting (with respect to �) requires linear time.The testing algorithms (asserted in Theorem 10.12) use a constant number ofqueries, where this constant is polynomial in the constant 1=�. In contrast, exactdecision procedures for the corresponding sets require a linear number of queries.The running time of the aforementioned algorithms hides a constant that is expo-nential in their query complexity (except for the case of 2-colorability where thehidden constant is polynomial in 1=�). Note that such dependencies seem essen-tial, since setting � = 1=N2 regains the original (non-relaxed) decision problems(which, with the exception of 2-colorability, are all NP-complete). Turning to thelower-bound (asserted in Theorem 10.12), we mention that the graph property forwhich this bound is proved is not a natural one. As in x10.1.2.1, the lower-boundon the time complexity follows from a lower-bound on the query complexity.Theorem 10.12 exhibits a dichotomy between graph properties for which prop-erty testing is possible by a constant number of queries and graph properties for5A cut in a graph G = ([N]; E) is a partition (S1; S2) of the set of vertices (i.e., S1 [S2 = [N]and S1 \ S2 = ;), and the edges of the cut are the edges with exactly one endpoint in S1. Abisection is a cut of the graph to two parts of equal cardinality.

10.1. APPROXIMATION 467which property testing requires a linear number of queries. A combinatorial charac-terization of the graph properties for which property testing is possible (in the ad-jacency matrix representation) when using a constant number of queries is known.6We note that the constant in this characterization may depend arbitrarily on � (andindeed, in some cases, it is a function growing faster than a tower of 1=� exponents).For example, property testing for the set of triangle-free graphs is possible by usinga number of queries that depends only on �, but it is known that this number mustgrow faster than any polynomial in 1=�.Turning back to Theorem 10.12, we note that the results regarding propertytesting for the sets corresponding to max-cut and min-bisection yield approximationalgorithms with an additive error term (of �N2). For dense graphs (i.e., N -vertexgraphs having
(N2) edges), this yields a constant factor approximation for thestandard approximation problem (as in De�nition 10.1). That is, for every constantc > 1, we obtain a c-factor approximation of the problem of maximizing the size of acut (resp., minimizing the size of a bisection) in dense graphs. On the other hand,the result regarding clique yields a so called dual-approximation for maximumclique; that is, we approximate the minimum number of missing edges in the densestinduced subgraph of a given size.Indeed, Theorem 10.12 is meaningful only for dense graphs. This holds, ingeneral, for any graph property in the adjacency matrix representation.7 Also notethat property testing is trivial, under the adjacency matrix representation, for anygraph property S satisfying �o(1)(S) = ; (e.g., the set of connected graphs, the setof Hamiltonian graphs, etc).We now turn to the bounded incidence-lists representation, which is relevantonly for bounded degree graphs. The problems of max-cut, min-bisection and clique(as in Theorem 10.12) are trivial under this representation, but graph connectivitybecomes non-trivial, and the complexity of property testing for the set of bipartitegraphs changes dramatically.Theorem 10.13 (property testing in the bounded incidence-lists representation):The following assertions refer to the representation of graphs by incidence-lists oflength d.� For any �xed d and � > 0, there exists a polylogarithmic time randomizedalgorithm that solves the property testing problem for the set of connectedgraphs of degree at most d.� For any �xed d and � > 0, there exists a sub-linear time randomized algorithmthat solves the property testing problem for the set of bipartite graphs of degree6Describing this fascinating result of Alon et. al. [8], which refers to the notion of regularpartitions (introduced by Szemer�edi), is beyond the scope of the current text.7In this model, as shown next, property testing of non-dense graphs is trivial. Speci�cally,�xing the distance parameter �, we call a N-vertex graph non-dense if it has less than (�=2) � �N2 �edges. The point is that, for non-dense graphs, the property testing problem for any set S istrivial, because we may just accept any non-dense (N-vertex) graph if and only if S containssome non-dense (N-vertex) graph. Clearly, the decision is correct in the case that S does notcontain non-dense graphs. However, the decision is admissible also in the case that S does containsome non-dense graph, because in this case every non-dense graph is \�-close" to S (i.e., it is notin ��(S)).

468 CHAPTER 10. RELAXING THE REQUIREMENTSat most d. Speci�cally, on input an N-vertex graph, the algorithm runs foreO(pN) time.� For any �xed d � 3 and some � > 0, property testing for the set of N-vertex(3-regular) bipartite graphs requires
(pN) queries.� For some �xed d and � > 0, property testing for the set of N-vertex 3-colorablegraphs of degree at most d requires
(N) queries.The running time of the algorithms (asserted in Theorem 10.13) hides a constantthat is polynomial in 1=�. Providing a characterization of graph properties accord-ing to the complexity of the corresponding tester (in the bounded incidence-listsrepresentation) is an interesting open problem.Decoupling the distance from the representation. So far, we have con�nedour attention to the Hamming distance between the representations of graphs.This made the choice of representation even more important than usual (i.e., morecrucial than is common in complexity theory). In contrast, it is natural to considera notion of distance between graphs that is independent of their representation.For example, the distance between G1=(V1; E1) and G2=(V2; E2) can be de�nedas the minimum of the size of symmetric di�erence between E1 and the set of edgesin a graph that is isomorphic to G2. The corresponding relative distance may bede�ned as the distance divided by jE1j+ jE2j (or by max(jE1j; jE2j)).10.1.2.3 Beyond graph propertiesProperty testing has been applied to a variety of computational problems beyondthe domain of graph theory. In fact, this type of computational problems �rstemerged in the algebraic domain, where the instances (to be viewed as inputs tothe testing algorithm) are functions and the relevant properties are sets of algebraicfunctions. The archetypical example is the set of low-degree polynomials; that is,m-variate polynomials of total (or individual) degree d over some �nite �eld GF(q),where m; d and q are parameters that may depend on the length of the input (orsatisfy some relationships; e.g., q = d3 = m6). Note that, in this case, the inputis the (\full" or \explicit") description of an m-variate function over GF(q), whichmeans that it has length qm � log2 q. Viewing the problem instance as a functionsuggests a natural measure of distance (i.e., the fraction of arguments on which thefunctions disagree) as well as a natural way of accessing the instance (i.e., queryingthe function for the value of selected arguments).Note that we have referred to these computational problems, under a di�erentterminology, in x9.3.2.2 and in x9.3.2.1. In particular, in x9.3.2.1 we refereed tothe special case of linear Boolean functions (i.e., individual degree 1 and q = 2),whereas in x9.3.2.2 we used the setting q = poly(d) and m = d= log d (where d is abound on the total degree).Other domains of computational problems in which property testing was stud-ied include geometry (e.g., clustering problems), formal languages (e.g., testing

10.2. AVERAGE CASE COMPLEXITY 469membership in regular sets), coding theory (cf. Appendix E.1.2), probability the-ory (e.g., testing equality of distributions), and combinatorics (e.g., monotone andjunta functions). As discuss at the end of x10.1.2.2, it is often natural to decou-ple the distance measure from the representation of the objects (i.e., the way ofaccessing the problem instance). This is done by introducing a representation-independent notion of distance between instances, which should be natural in thecontext of the problem at hand.10.2 Average Case ComplexityTeaching note: We view average-case complexity as referring to the performance on\average" (or rather typical) instances, and not as the average performance on randominstances. This choice is justi�ed in x10.2.1.1. Thus, it may be more justi�ed to refer tothe following theory by the name typical-case complexity. Still, the name average-casewas retained for historical reasons.Our approach so far (including in Section 10.1) is termed worst-case complex-ity, because it refers to the performance of potential algorithms on each legitimateinstance (and hence to the performance on the worst possible instance). That is,computational problems were de�ned as referring to a set of instances and perfor-mance guarantees were required to hold for each instance in this set. In contrast,average-case complexity allows ignoring a negligible measure of the possible in-stances, where the identity of the ignored instances is determined by the analysisof potential solvers and not by the problem's statement.A few comments are in place. Firstly, as just hinted, the standard statementof the worst-case complexity of a computational problem (especially one havinga promise) may also ignores some instances (i.e., those considered inadmissibleor violating the promise), but these instances are determined by the problem'sstatement. In contrast, the inputs ignored in average-case complexity are notinadmissible in any inherent sense (and are certainly not identi�ed as such by theproblem's statement). It is just that they are viewed as exceptional when claimingthat a speci�c algorithm solve the problem; that is, these exceptional instances aredetermined by the analysis of that algorithm. Needless to say, these exceptionalinstances ought to be rare (i.e., occur with negligible probability).The last sentence raises a couple of issues. Most importantly, a distributionon the set of admissible instances has to be speci�ed. In fact, we shall consider anew type of computational problems, each consisting of a standard computationalproblem coupled with a probability distribution on instances. Consequently, thequestion of which distributions should be considered in a theory of average-casecomplexity arises. This question and numerous other de�nitional issues will beaddressed in x10.2.1.1.Before proceeding, let us spell out the rather straightforward motivation to thestudy of the average-case complexity of computational problems: It is that, in real-life applications, one may be perfectly happy with an algorithm that solves theproblem fast on almost all instances that arise in the relevant application. That is,

470 CHAPTER 10. RELAXING THE REQUIREMENTSone may be willing to tolerate error provided that it occurs with negligible proba-bility, where the probability is taken over the distribution of instances encounteredin the application. The study of average-case complexity is aimed at exploring thepossible bene�t of such a relaxation, distinguishing cases in which a bene�t existsfrom cases in which it does not exist. A key aspect in such a study is a goodmodeling of the type of distributions (of instances) that are encountered in naturalalgorithmic applications.A preliminary question that arises is whether every natural computational prob-lem be solve e�ciently when restricting attention to typical instances? The conjec-ture that underlies this section is that, for a well-motivated choice of de�nitions, theanswer is negative; that is, our conjecture is that the \distributional version" of NPis not contained in the average-case (or typical-case) version of P. This means thatsome NP problems are not merely hard in the worst-case, but are rather \typicallyhard" (i.e., hard on typical instances drawn from some simple distribution). Specif-ically, hard instances may occur in natural algorithmic applications (and not onlyin cryptographic (or other \adversarial") applications that are design on purposeto produce hard instances).8The foregoing conjecture motivates the development of an average-case analogueof NP-completeness, which will be presented in this section. Indeed, the entiresection may be viewed as an average-case analogue of Chapter 2. In particular, this(average-case) theory identi�es distributional problems that are \typically hard"provided that distributional problems that are \typically hard" exist at all. If onebelieves the foregoing conjecture then, for such complete (distributional) problems,one should not seek algorithms that solve these problems e�ciently on typicalinstances.Organization. Amajor part of our exposition is devoted to the de�nitional issuesthat arise when developing a general theory of average-case complexity. Theseissues are discussed in x10.2.1.1. In x10.2.1.2 we prove the existence of distributionalproblems that are \NP-complete" in the corresponding average-case complexitysense. Furthermore, we show how to obtain such a distributional version for anynatural NP-complete decision problem. In x10.2.1.3 we extend the treatment torandomized algorithms. Additional rami�cations are presented in Section 10.2.2.10.2.1 The basic theoryIn this section we provide a basic treatment of the theory of average-case com-plexity, while postponing important rami�cations to Section 10.2.2. The basictreatment consists of the preferred de�nitional choices for the main concepts as8We highlight two di�erences between the current context (of natural algorithmic applications)and the context of cryptography. Firstly, in the current context and when referring to problemsthat are typically hard, the simplicity of the underlying input distribution is of great concern:the simpler this distribution, the more appealing the hardness assertion becomes. This concernis irrelevant in the context of cryptography. On the other hand (see discussion at the beginningof Section 7.1.1 and/or at end of x10.2.2.2), cryptographic applications require the ability toe�ciently generate hard instances together with corresponding solutions.

10.2. AVERAGE CASE COMPLEXITY 471well as the identi�cation of complete problems for a natural class of average-casecomputational problems.10.2.1.1 De�nitional issuesThe theory of average-case complexity is more subtle than may appear at �rstthought. In addition to the generic conceptual di�culty involved in de�ning relax-ations, di�culties arise from the \interface" between standard probabilistic analysisand the conventions of complexity theory. This is most striking in the de�ni-tion of the class of feasible average-case computations. Referring to the theory ofworst-case complexity as a guideline, we shall address the following aspects of theanalogous theory of average-case complexity.1. Setting the general framework. We shall consider distributional problems,which are standard computational problems (see Section 1.2.2) coupled withdistributions on the relevant instances.2. Identifying the class of feasible (distributional) problems. Seeking an average-case analogue of classes such as P , we shall reject the �rst de�nition thatcomes to mind (i.e., the naive notion of \average polynomial-time"), brieydiscuss several related alternatives, and adopt one of them for the main treat-ment.3. Identifying the class of interesting (distributional) problems. Seeking anaverage-case analogue of the class NP , we shall avoid both the extremeof allowing arbitrary distributions (which collapses average-case hardness toworst-case hardness) and the opposite extreme of con�ning the treatment toa single distribution such as the uniform distribution.4. Developing an adequate notion of reduction among (distributional) problems.As in the theory of worst-case complexity, this notion should preserve feasiblesolveability (in the current distributional context).We now turn to the actual treatment of each of the aforementioned aspects.Step 1: De�ning distributional problems. Focusing on decision problems,we de�ne distributional problems as pairs consisting of a decision problem and aprobability ensemble.9 For simplicity, here a probability ensemble fXngn2N is asequence of random variables such thatXn ranges over f0; 1gn. Thus, (S; fXngn2N)is the distributional problem consisting of the problem of deciding membership inthe set S with respect to the probability ensemble fXngn2N. (The treatment ofsearch problem is similar; see x10.2.2.1.) We denote the uniform probability ensembleby U = fUngn2N; that is, Un is uniform over f0; 1gn.9We mention that even this choice is not evident. Speci�cally, Levin [153] (see discussionin [88]) advocates the use of a single probability distribution de�ned over the set of all strings.His argument is that this makes the theory less representation-dependent. At the time we wereconvinced of his argument (see [88]), but currently we feel that the representation-dependente�ects discussed in [88] are legitimate. Furthermore, the alternative formulation of [153, 88]comes across as unnatural and tends to confuse some readers.

472 CHAPTER 10. RELAXING THE REQUIREMENTSStep 2: Identifying the class of feasible problems. The �rst idea thatcomes to mind is de�ning the problem (S; fXngn2N) as feasible (on the average)if there exists an algorithm A that solves S such that the average running timeof A on Xn is bounded by a polynomial in n (i.e., there exists a polynomial psuch that E[tA(Xn)] � p(n), where tA(x) denotes the running-time of A on inputx). The problem with this de�nition is that it very sensitive to the model ofcomputation and is not closed under algorithmic composition. Both de�cienciesare a consequence of the fact that tA may be polynomial on the average withrespect to fXngn2N but t2A may fail to be so (e.g., consider tA(x0x00) = 2jx0j ifx0 = x00 and tA(x0x00) = jx0x00j2 otherwise, coupled with the uniform distributionover f0; 1gn). We conclude that the average running-time of algorithms is not arobust notion. We also doubt the naive appeal of this notion, and view the typicalrunning time of algorithms (as de�ned next) as a more natural notion. Thus, weshall consider an algorithm as feasible if its running-time is typically polynomial.10We say that A is typically polynomial-time on X = fXngn2N if there exists apolynomial p such that the probability that A runs more that p(n) steps on Xnis negligible (i.e., for every polynomial q and all su�ciently large n it holds thatPr[tA(Xn) > p(n)] < 1=q(n)). The question is what is required in the \untypical"cases, and two possible de�nitions follow.1. The simpler option is saying that (S; fXngn2N) is (typically) feasible if thereexists an algorithm A that solves S such that A is typically polynomial-timeon X = fXngn2N. This e�ectively requires A to correctly solve S on eachinstance, which is more than was required in the motivational discussion.(Indeed, if the underlying motivation is ignoring rare cases, then we shouldignore them altogether rather than ignoring them in a partial manner (i.e.,only ignore their a�ect on the running-time).)2. The alternative, which �ts the motivational discussion, is saying that (S;X)is (typically) feasible if there exists an algorithm A such that A typicallysolves S on X in polynomial-time; that is, there exists a polynomial p suchthat the probability that on input Xn algorithm A either errs or runs morethat p(n) steps is negligible. This formulation totally ignores the untypicalinstances. Indeed, in this case we may assume, without loss of generality,that A always runs in polynomial-time (see Exercise 10.11), but we shall notdo so here (in order to facilitate viewing the �rst option as a special case ofthe current option).We stress that both alternatives actually de�ne typical feasibility and not average-case feasibility. To illustrate the di�erence between the two options, consider thedistributional problem of deciding whether a uniformly selected (n-vertex) graph10An alternative choice, taken by Levin [153] (see discussion in [88]), is considering as feasible(w.r.t X = fXngn2N) any algorithm that runs in time that is polynomial in a function that islinear on the average (w.r.t X); that is, requiring that there exists a polynomial p and a function` : f0; 1g� ! N such that t(x) � p(`(x)) for every x and E[`(Xn)] = O(n). This de�nition isrobust (i.e., it does not su�er from the aforementioned de�ciencies) and is arguably as \natural"as the naive de�nition (i.e., E[tA(Xn)] � poly(n)).

10.2. AVERAGE CASE COMPLEXITY 473is 3-colorable. Intuitively, this problem is \typically trivial" (with respect to theuniform distribution),11 because the algorithm may always say no and be wrongwith exponentially vanishing probability. Indeed, this trivial algorithm is admissi-ble by the second approach, but not by the �rst approach. In light of the foregoingdiscussions, we adopt the second approach.De�nition 10.14 (the class tpcP): We say that A typically solves (S; fXngn2N)in polynomial-time if there exists a polynomial p such that the probability that oninput Xn algorithm A either errs or runs more that p(n) steps is negligible.12 Wedenote by tpcP the class of distributional problems that are typically solvable inpolynomial-time.Clearly, for every S 2 P and every probability ensemble X , it holds that (S;X) 2tpcP. However, tpcP contains also distributional problems (S;X) with S 62 P(see Exercises 10.12 and 10.13). The big question, which underlies the theory ofaverage-case complexity, is whether all natural distributional versions of NP arein tpcP . Thus, we turn to identify such versions.Step 3: Identifying the class of interesting problems. Seeking to identifyreasonable distributional versions of NP , we note that two extreme choices shouldbe avoided. On one hand, we must limit the class of admissible distributions so toprevent the collapse of average-case hardness to worst-case hardness (by a selectionof a pathological distribution that resides on the \worst case" instances). On theother hand, we should allow for various types of natural distributions rather thancon�ning attention merely to the uniform distribution.13 Recall that our aim isaddressing all possible input distributions that may occur in applications, and thusthere is no justi�cation for con�ning attention to the uniform distribution. Still,arguably, the distributions occuring in applications are \relatively simple" and sowe seek to identify a class of simple distributions. One such notion (of simpledistributions) underlies the following de�nition, while a more liberal notion will bepresented in x10.2.2.2.De�nition 10.15 (the class distNP): We say that a probability ensemble X =fXngn2N is simple if there exists a polynomial time algorithm that, on any inputx 2 f0; 1g�, outputs Pr[Xjxj � x], where the inequality refers to the standard lexico-graphic order of strings. We denote by distNP the class of distributional problemsconsisting of decision problems in NP coupled with simple probability ensembles.11In contrast, testing whether a given graph is 3-colorable seems \typically hard" for other dis-tributions (see either Theorem 10.19 or Exercise 10.27). Needless to say, in the latter distributionsboth yes-instances and no-instances appear with noticeable probability.12Recall that a function � : N ! N is negligible if for every positive polynomial q and allsu�ciently large n it holds that �(n) < 1=q(n). We say that A errs on x if A(x) di�ers from theindicator value of the predicate x 2 S.13Con�ning attention to the uniform distribution seems misguided by the naive belief accordingto which this distribution is the only one relevant to applications. In contrast, we believe that,for most natural applications, the uniform distribution over instances is not relevant at all.

474 CHAPTER 10. RELAXING THE REQUIREMENTSNote that the uniform probability ensemble is simple, but so are many other \sim-ple" probability ensembles. Actually, it makes sense to relax the de�nition suchthat the algorithm is only required to output an approximation of Pr[Xjxj � x], say,to within a factor of 1� 2�2jxj. We note that De�nition 10.15 interprets simplicityin computational terms; speci�cally, as the feasibility of answering very basic ques-tions regarding the probability distribution (i.e., determining the probability massassigned to a single (n-bit long) string and even to an interval of such strings). Thissimplicity condition is closely related to being polynomial-time sampleable via amonotone mapping (see Exercise 10.14).Teaching note: The following two paragraphs attempt to address some doubts re-garding De�nition 10.15. One may postpone such discussions to a later stage.We admit that the identi�cation of simple distributions as the class of inter-esting distribution is signi�cantly more questionable than any other identi�cationadvocated in this book. Nevertheless, we believe that we were fully justi�ed in re-jecting both the aforementioned extremes (i.e., of either allowing all distributionsor allowing only the uniform distribution). Yet, the reader may wonder whetheror not we have struck the right balance between \generality" and \simplicity" (inthe intuitive sense). One speci�c concern is that we might have restricted the classof distributions too much. We briey address this concern next.A more intuitive and very robust class of distributions, which seems to containall distributions that may occur in applications, is the class of polynomial-timesampleable probability ensembles (treated in x10.2.2.2). Fortunately, the combi-nation of the results presented in x10.2.1.2 and x10.2.2.2 seems to retrospectivelyendorse the choice underlying De�nition 10.15. Speci�cally, we note that enlargingthe class of distributions weakens the conjecture that the corresponding class ofdistributional NP problems contains infeasible problems. On the other hand, theconclusion that a speci�c distributional problem is not feasible becomes more ap-pealing when the problem belongs to a smaller class that corresponds to a restrictedde�nition of admissible distributions. Now, the combined results of x10.2.1.2 andx10.2.2.2 assert that a conjecture that refers to the larger class of polynomial-timesampleable ensembles implies a conclusion that refers to a (very) simple probabilityensemble (which resides in the smaller class). Thus, the current setting in whichboth the conjecture and the conclusion refer to simple probability ensembles maybe viewed as just an intermediate step.Indeed, the big question in the current context is whether distNP is containedin tpcP. A positive answer (especially if extended to sampleable ensembles) woulddeem the P-vs-NP Question to be of little practical signi�cant. However, our dailyexperience as well as much research e�ort indicate that some NP problems arenot merely hard in the worst-case, but rather \typically hard". This leads to theconjecture that distNP is not contained in tpcP .Needless to say, the latter conjecture implies P 6= NP , and thus we shouldnot expect to see a proof of it. In particular, we should not expect to see a proofthat some speci�c problem in distNP is not in tpcP . What we may hope to seeis \distNP-complete" problems; that is, problems in distNP that are not in tpcP

10.2. AVERAGE CASE COMPLEXITY 475unless the entire class distNP is contained in tpcP . An adequate notion of areduction is used towards formulating this possibility.Step 4: De�ning reductions among (distributional) problems. Intuitively,such reductions must preserve average-case feasibility. Thus, in addition to thestandard conditions (i.e., that the reduction be e�ciently computable and yield acorrect result), we require that the reduction \respects" the probability distribu-tion of the corresponding distributional problems. Speci�cally, the reduction shouldnot map very likely instances of the �rst (\starting") problem to rare instances ofthe second (\target") problem. Otherwise, having a typically polynomial-time al-gorithm for the second distributional problem does not necessarily yield such analgorithm for the �rst distributional problem. Following is the adequate analogueof a Cook reduction (i.e., general polynomial-time reduction), where the analogueof a Karp-reduction (many-to-one reduction) can be easily derived as a special case.Teaching note: One may prefer presenting in class only the special case of many-to-one reductions, which su�ces for Theorem 10.17. See Footnote 15.De�nition 10.16 (reductions among distributional problems): We say that theoracle machine M reduces the distributional problem (S;X) to the distributionalproblem (T; Y) if the following three conditions hold.1. E�ciency: The machine M runs in polynomial-time.142. Validity: For every x 2 f0; 1g�, it holds that MT (x) = 1 if an only if x 2 S,where MT (x) denotes the output of the oracle machine M on input x andaccess to an oracle for T .3. Domination:15 The probability that, on input Xn and oracle access to T ,machine M makes the query y is upper-bounded by poly(jyj) � Pr[Yjyj = y].That is, there exists a polynomial p such that, for every y 2 f0; 1g� and everyn 2 N , it holds thatPr[Q(Xn) 3 y] � p(jyj) � Pr[Yjyj = y]; (10.2)where Q(x) denotes the set of queries made byM on input x and oracle accessto T .In addition, we require that the reduction does not make too short queries;that is, there exists a polynomial p0 such that if y 2 Q(x) then p0(jyj) � jxj.14In fact, one may relax the requirement and only require that M is typically polynomial-timewith respect to X. The validity condition may also be relaxed similarly.15Let us spell out the meaning of Eq. (10.2) in the special case of many-to-one reductions(i.e., MT (x) = 1 if and only if f(x) 2 T , where f is a polynomial-time computable function):in this case Pr[Q(Xn) 3 y] is replaced by Pr[f(Xn) = y]. That is, Eq. (10.2) simpli�es toPr[f(Xn) = y] � p(jyj) � Pr[Yjyj = y]. Indeed, this condition holds vacuously for any y that is notin the image of f .

476 CHAPTER 10. RELAXING THE REQUIREMENTSThe l.h.s. of Eq. (10.2) refers to the probability that, on input distributed as Xn,the reduction makes the query y. This probability is required not to exceed theprobability that y occurs in the distribution Yjyj by more than a polynomial factorin jyj. In this case we say that the l.h.s. of Eq. (10.2) is dominated by Pr[Yjyj = y].Indeed, the domination condition is the only aspect of De�nition 10.16 that ex-tends beyond the worst-case treatment of reductions and refers to the distributionalsetting. The domination condition does not insist that the distribution induced byQ(X) equals Y , but rather allows some slackness that, in turn, is bounded so toguarantee preservation of typical feasibility (see Exercise 10.15).16We note that the reducibility arguments extensively used in Chapters 7 and 8(see discussion in Section 7.1.2) are actually reductions in the spirit of De�ni-tion 10.16 (except that they refer to di�erent types of computational tasks).10.2.1.2 Complete problemsRecall that our conjecture is that distNP is not contained in tpcP , which in turnstrengthens the conjecture P 6= NP (making infeasibility a typical phenomenonrather than a worst-case one). Having no hope of proving that distNP is notcontained in tpcP , we turn to the study of complete problems with respect to thatconjecture. Speci�cally, we say that a distributional problem (S;X) is distNP-complete if (S;X) 2 distNP and every (S0; X 0) 2 distNP is reducible to (S;X)(under De�nition 10.16).Recall that it is quite easy to prove the mere existence of NP-complete problemsand that many natural problems are NP-complete. In contrast, in the current con-text, establishing completeness results is quite hard. This should not be surprisingin light of the restricted type of reductions allowed in the current context. The re-striction (captured by the domination condition) requires that \typical" instancesof one problem should not be mapped to \untypical" instances of the other prob-lem. However, it is fair to say that standard Karp-reductions (used in establishingNP-completeness results) map \typical" instances of one problem to somewhat\bizarre" instances of the second problem. Thus, the current subsection may beviewed as a study of reductions that do not commit this sin.17Theorem 10.17 (distNP-completeness): distNP contains a distributional prob-lem (T; Y) such that each distributional problem in distNP is reducible (per De�ni-tion 10.16) to (T; Y). Furthermore, the reductions are via many-to-one mappings.Proof: We start by introducing such a (distributional) problem, which is anatural distributional version of the decision problem Su (used in the proof of16We stress that the notion of domination is incomparable to the notion of statistical (resp.,computational) indistinguishability. On one hand, domination is a local requirement (i.e., itcompares the two distribution on a point-by-point basis), whereas indistinguishability is a globalrequirement (which allows rare exceptions). On the other hand, domination does not requireapproximately equal values, but rather a ratio that is bounded in one direction. Indeed, domina-tion is not symmetric. We comment that a more relaxed notion of domination that allows rareviolations (as in Footnote 14) su�ces for the preservation of typical feasibility.17The latter assertion is somewhat controversial. While it seems totally justi�ed with respectto the proof of Theorem 10.17, opinions regarding the proof of Theorem 10.19 may di�er.

10.2. AVERAGE CASE COMPLEXITY 477Theorem 2.19). Recall that Su contains the instance hM;x; 1ti if there existsy 2 [i�tf0; 1gi such that machine M accepts the input pair (x; y) within t steps.We couple Su with the \quasi-uniform" probability ensemble U 0 that assigns tothe instance hM;x; 1ti a probability mass proportional to 2�(jM j+jxj). Speci�cally,for every hM;x; 1ti it holds thatPr[U 0n = hM;x; 1ti] = 2�(jM j+jxj)�n2� (10.3)where n def= jhM;x; 1tij def= jM j + jxj + t. Note that, under a suitable naturalencoding, the ensemble U 0 is indeed simple.18The reader can easily verify that the generic reduction used when reducingany set in NP to Su (see the proof of Theorem 2.19), fails to reduce distNPto (Su; U 0). Speci�cally, in some cases (see next paragraph), these reductions donot satisfy the domination condition. Indeed, the di�culty is that we have toreduce all distNP problems (i.e., pairs consisting of decision problems and simpledistributions) to one single distributional problem (i.e., (Su; U 0)). In contrast,considering the distributions induced by the aforementioned reductions, we endup with many distributional versions of Su, and furthermore the correspondingdistributions are very di�erent (and are not necessarily dominated by a singledistribution).Let us take a closer look at the aforementioned generic reduction (of S to Su),when applied to an arbitrary (S;X) 2 distNP . This reduction maps an instancex to a triple (MS ; x; 1pS(jxj)), where MS is a machine verifying membership inS (while using adequate NP-witnesses) and pS is an adequate polynomial. Theproblem is that x may have relatively large probability mass (i.e., it may be thatPr[Xjxj= x] � 2�jxj) while (MS ; x; 1pS(jxj)) has \uniform" probability mass (i.e.,hMS ; x; 1pS(jxj)i has probability mass smaller than 2�jxj in U 0). This violates thedomination condition (see Exercise 10.18), and thus an alternative reduction isrequired.The key to the alternative reduction is an (e�ciently computable) encoding ofstrings taken from an arbitrary simple distribution by strings that have a similarprobability mass under the uniform distribution. This means that the encodingshould shrink strings that have relatively large probability mass under the origi-nal distribution. Speci�cally, this encoding will map x (taken from the ensemblefXngn2N) to a codeword x0 of length that is upper-bounded by the logarithm of1=Pr[Xjxj=x], ensuring that Pr[Xjxj=x] = O(2�jx0j). Accordingly, the reductionwill map x to a triple (MS;X ; x0; 1p0(jxj)), where jx0j < O(1) + log2(1=Pr[Xjxj=x])and MS;X is an algorithm that (given x0 and x) �rst veri�es that x0 is a properencoding of x and next applies the standard veri�cation (i.e., MS) of the problemS. Such a reduction will be shown to satisfy all three conditions (i.e., e�ciency,18For example, we may encode hM;x; 1ti, where M = �1 � � ��k 2 f0; 1gk and x = �1 � � � �` 2f0; 1g`, by the string �1�1 � � ��k�k01�1�1 � � � �`�`01t. Then �n2� � Pr[U 0n � hM;x; 1ti] equals(ijMj;jxj;t � 1) + 2�jMj � jfM 0 2 f0; 1gjMj : M 0 < Mgj + 2�(jMj+jxj) � jfx0 2 f0; 1gjxj : x0 � xgj,where ik;`;t is the ranking of fk; k + `g among all 2-subsets of [k + `+ t].

478 CHAPTER 10. RELAXING THE REQUIREMENTSvalidity, and domination). Thus, instead of forcing the structure of the originaldistribution X on the target distribution U 0, the reduction will incorporate thestructure of X in the reduced instance. A key ingredient in making this possible isthe fact that X is simple (as per De�nition 10.15).With the foregoing motivation in mind, we now turn to the actual proof; thatis, proving that any (S;X) 2 distNP is reducible to (Su; U 0). The followingtechnical lemma is the basis of the reduction. In this lemma as well as in thesequel, it will be convenient to consider the (accumulative) distribution functionof the probability ensemble X . That is, we consider �(x) def= Pr[Xjxj � x], andnote that � : f0; 1g� ! [0; 1] is polynomial-time computable (because X satis�esDe�nition 10.15).Coding Lemma:19 Let � : f0; 1g� ! [0; 1] be a polynomial-time computable functionthat is monotonically non-decreasing over f0; 1gn for every n (i.e., �(x0) � �(x00)for any x0 < x00 2 f0; 1gjx0j). For x 2 f0; 1gn n f0ng, let x � 1 denote the stringpreceding x in the lexicographic order of n-bit long strings. Then there exist anencoding function C� that satis�es the following three conditions.1. Compression: For every x it holds that jC�(x)j � 1+minfjxj; log2(1=�0(x))g,where �0(x) def= �(x) � �(x� 1) if x 62 f0g� and �0(0n) def= �(0n) otherwise.2. E�cient Encoding: The function C� is computable in polynomial-time.3. Unique Decoding: For every n 2 N , when restricted to f0; 1gn, the functionC� is one-to-one (i.e., if C�(x) = C�(x0) and jxj = jx0j then x = x0).Proof: The function C� is de�ned as follows. If �0(x) � 2�jxj then C�(x) = 0x(i.e., in this case x serves as its own encoding). Otherwise (i.e., �0(x) > 2�jxj)then C�(x) = 1z, where z is chosen such that jzj � log2(1=�0(x)) and the mappingof n-bit strings to their encoding is one-to-one. Loosely speaking, z is selected toequal the shortest binary expansion of a number in the interval (�(x)��0(x); �(x)].Bearing in mind that this interval has length �0(x) and that the di�erent intervalsare disjoint, we obtain the desired encoding. Details follows.We focus on the case that �0(x) > 2�jxj, and detail the way that z is selected(for the encoding C�(x) = 1z). If x > 0jxj and �(x) < 1, then we let z be thelongest common pre�x of the binary expansions of �(x� 1) and �(x); for example,if �(1010) = 0:10010 and �(1011) = 0:10101111 then C�(1011) = 1z with z = 10.Thus, in this case 0:z1 is in the interval (�(x�1); �(x)] (i.e., �(x�1) < 0:z1 � �(x)).For x = 0jxj, we let z be the longest common pre�x of the binary expansions of 0and �(x) and again 0:z1 is in the relevant interval (i.e., (0; �(x)]). Finally, for x suchthat �(x) = 1 and �(x�1) < 1, we let z be the longest common pre�x of the binaryexpansions of �(x�1) and 1�2�jxj�1, and again 0:z1 is in (�(x�1); �(x)] (because19The lemma actually refers to f0; 1gn, for any �xed value of n, but the e�ciency conditionis stated more easily when allowing n to vary (and using the standard asymptotic analysis ofalgorithms). Actually, the lemma is somewhat easier to state and establish for polynomial-time computable functions that are monotonically non-decreasing over f0; 1g� (rather than overf0; 1gn). See further discussion in Exercise 10.19.

10.2. AVERAGE CASE COMPLEXITY 479�0(x) > 2�jxj and �(x � 1) < �(x) = 1 imply that �(x � 1) < 1 � 2�jxj < �(x)).Note that if �(x) = �(x � 1) = 1 then �0(x) = 0 < 2�jxj.We now verify that the foregoing C� satis�es the conditions of the lemma. Westart with the compression condition. Clearly, if �0(x) � 2�jxj then jC�(x)j =1 + jxj � 1 + log2(1=�0(x)). On the other hand, suppose that �0(x) > 2�jxj andlet us focus on the sub-case that x > 0jxj and �(x) < 1. Let z = z1 � � � z` bethe longest common pre�x of the binary expansions of �(x � 1) and �(x). Then,�(x� 1) = 0:z0u and �(x) = 0:z1v, where u; v 2 f0; 1g�. We infer that�0(x) = �(x)� �(x � 1) � 0@X̀i=1 2�izi + poly(jxj)Xi=`+1 2�i1A�X̀i=1 2�izi < 2�jzj;and jzj < log2(1=�0(x)) � jxj follows. Thus, jC�(x)j � 1 + min(jxj; log2(1=�0(x)))holds in both cases. Clearly, C� can be computed in polynomial-time by computing�(x�1) and �(x). Finally, note that C� satis�es the unique decoding condition, byseparately considering the two aforementioned cases (i.e., C�(x) = 0x and C�(x) =1z). Speci�cally, in the second case (i.e., C�(x) = 1z), use the fact that �(x� 1) <0:z1 � �(x).In order to obtain an encoding that is one-to-one when applied to strings ofdi�erent lengths, we augment C� in the obvious manner; that is, we considerC 0�(x) def= (jxj; C�(x)), which may be implemented as C 0�(x) = �1�1 � � ��`�`01C�(x)where �1 � � ��` is the binary expansion of jxj. Note that jC 0�(x)j = O(log jxj) +jC�(x)j and that C 0� is one-to-one (over f0; 1g�).The machine associated with (S;X). Let � be the accumulative probability func-tion associated with the probability ensemble X , and MS be the polynomial-timemachine that veri�es membership in S while using adequate NP-witnesses (i.e.,x 2 S if and only if there exists y 2 f0; 1gpoly(jxj) such that M(x; y) = 1). Usingthe encoding function C 0�, we introduce an algorithm MS;� with the intension ofreducing the distributional problem (S;X) to (Su; U 0) such that all instances (ofS) are mapped to triples in which the �rst element equals MS;�. Machine MS;�is given an alleged encoding (under C 0�) of an instance to S along with an allegedproof that the corresponding instance is in S, and veri�es these claims in the ob-vious manner. That is, on input x0 and hx; yi, machine MS;� �rst veri�es thatx0 = C 0�(x), and next veri�ers that x 2 S by runningMS(x; y). Thus,MS;� veri�esmembership in the set S0 = fC 0�(x) : x 2 Sg, while using proofs of the form hx; yisuch that MS(x; y) = 1 (for the instance C 0�(x)).20The reduction. We maps an instance x (of S) to the triple (MS;�; C 0�(x); 1p(jxj)),where p(n) def= pS(n)+pC(n) such that pS is a polynomial representing the running-time of MS and pC is a polynomial representing the running-time of the encodingalgorithm.20Note that jyj = poly(jxj), but jxj = poly(jC0�(x)j) does not necessarily hold (and so S0 is notnecessarily in NP). As we shall see, the latter point is immaterial.

480 CHAPTER 10. RELAXING THE REQUIREMENTSAnalyzing the reduction. Our goal is proving that the foregoing mapping constitutesa reduction of (S;X) to (Su; U 0). We verify the corresponding three requirements(of De�nition 10.16).1. Using the fact that C 0� is polynomial-time computable (and noting that pis a polynomial), it follows that the foregoing mapping can be computed inpolynomial-time.2. Recall that, on input (x0; hx; yi), machine MS;� accepts if and only if x0 =C 0�(x) and MS accepts (x; y) within pS(jxj) steps. Using the fact that C 0�(x)uniquely determines x, it follows that x 2 S if and only if C 0�(x) 2 S0,which in turn holds if and only if there exists a string y such that MS;�accepts (C 0�(x); hx; yi) in at most p(jxj) steps. Thus, x 2 S if and only if(MS;�; C 0�(x); 1p(jxj)) 2 Su, and the validity condition follows.3. In order to verify the domination condition, we �rst note that the foregoingmapping is one-to-one (because the transformation x ! C 0�(x) is one-to-one). Next, we note that it su�ces to consider instances of Su that havea preimage under the foregoing mapping (since instances with no preimagetrivially satisfy the domination condition). Each of these instances (i.e., eachimage of this mapping) is a triple with the �rst element equal to MS;� andthe second element being an encoding under C 0�. By the de�nition of U 0, forevery such image hMS;�; C 0�(x); 1p(jxj)i 2 f0; 1gn, it holds thatPr[U 0n = hMS;�; C 0�(x); 1p(jxj)i] = �n2��1 � 2�(jMS;�j+jC0�(x)j)> c � n�2 � 2�(jC�(x)j+O(log jxj));where c = 2�jMS;�j�1 is a constant depending only on S and � (i.e., on thedistributional problem (S;X)). Thus, for some positive polynomial q, wehave Pr[U 0n = hMS;�; C 0�(x); 1p(jxj)i] > 2�jC�(x)j=q(n): (10.4)By virtue of the compression condition (of the Coding Lemma), we have2�jC�(x)j � 2�1�min(jxj;log2(1=�0(x))). It follows that2�jC�(x)j � Pr[Xjxj = x]=2: (10.5)Recalling that x is the only preimage that is mapped to hMS;�; C 0�(x); 1p(jxj)iand combining Eq. (10.4)& (10.5), we establish the domination condition.The theorem follows.Reections: The proof of Theorem 10.17 highlights the fact that the reductionused in the proof of Theorem 2.19 does not introduce much structure in the reducedinstances (i.e., does not reduce the original problem to a \highly structured special

10.2. AVERAGE CASE COMPLEXITY 481case" of the target problem). Put in other words, unlike more advanced worst-casereductions, this reduction does not map \random" (i.e., uniformly distributed)instances to highly structured instances (which occur with negligible probabilityunder the uniform distribution). Thus, the reduction used in the proof of The-orem 2.19 su�ces for reducing any distributional problem in distNP to a distri-butional problem consisting of Su coupled with some simple probability ensemble(see Exercise 10.20).21However, Theorem 10.17 states more than the latter assertion. That is, it statesthat any distributional problem in distNP is reducible to the same distributionalversion of Su. Indeed, the e�ort involved in proving Theorem 10.17 was due tothe need for mapping instances taken from any simple probability ensemble (whichmay not be the uniform ensemble) to instances distributed in a manner that isdominated by a single probability ensemble (i.e., the quasi-uniform ensemble U 0).Once we have established the existence of one distNP-complete problem, wemay establish the distNP-completeness of other problems (in distNP) by reduc-ing some distNP-complete problem to them (and relying on the transitivity ofreductions (see Exercise 10.17)). Thus, the di�culties encountered in the proof ofTheorem 10.17 are no longer relevant. Unfortunately, a seemingly more severe dif-�culty arises: almost all known reductions in the theory of NP-completeness workby introducing much structure in the reduced instances (i.e., they actually reduceto highly structured special cases). Furthermore, this structure is too complex inthe sense that the distribution of reduced instances does not seem simple (in thesense of De�nition 10.15). Actually, as demonstrated next, the problem is notthe existence of a structure in the reduced instances but rather the complexity ofthis structure. In particular, if the aforementioned reduction is \monotone" and\length regular" then the distribution of the reduced instances is simple enough(i.e., is simple in the sense of De�nition 10.15):Proposition 10.18 (su�cient condition for distNP-completeness): Suppose thatf is a Karp-reduction of the set S to the set T such that, for every x0; x00 2 f0; 1g�,the following two conditions hold:1. (f is monotone): If x0 < x00 then f(x0) < f(x00), where the inequalities referto the standard lexicographic order of strings.222. (f is length-regular): jx0j = jx00j if and only if jf(x0)j = jf(x00)j.Then if there exists an ensemble X such that (S;X) is distNP-complete then thereexists an ensemble Y such that (T; Y) is distNP-complete.Proof Sketch: Note that the monotonicity of f implies that f is one-to-oneand that for every x it holds that f(x) � x. Furthermore, as shown next, fis polynomial-time invertible. Intuitively, the fact that f is both monotone and21Note that this cannot be said of most known Karp-reductions, which do map random instancesto highly structured ones. Furthermore, the same (structure creating property) holds for thereductions obtained by Exercise 2.31.22In particular, if jz0j < jz00j then z0 < z00. Recall that for jz0j = jz00j it holds that z0 < z00 ifand only if there exists w;u0; u00 2 f0; 1g� such that z0 = w0u0 and z00 = w1u00.

482 CHAPTER 10. RELAXING THE REQUIREMENTSpolynomial-time computable implies that a preimage can be found by a binarysearch. Speci�cally, given y = f(x), we search for x by iteratively halving theinterval of potential solutions, which is initialized to [0; y] (since x � f(x)). Notethat if this search is invoked on a string y that is not in the image of f , then itterminates while detecting this fact.Relying on the fact that f is one-to-one (and length-regular), we de�ne theprobability ensemble Y = fYngn such that for every x it holds that Pr[Yjf(x)j =f(x)] = Pr[Xjxj = x]. Speci�cally, letting `(m) = jf(1m)j and noting that ` isone-to-one and monotonically non-decreasing, we de�nePr[Yjyj=y] =8<: Pr[Xjxj=x] if x = f�1(y)0 if 9m s.t. y 2 f0; 1g`(m) n ff(x) : x2f0; 1gmg2�jyj otherwise (i.e., if jyj 62 f`(m) : m2Ng)23 .Clearly, (S;X) is reducible to (T; Y) (via the Karp-reduction f , which, due toour construction of Y , also satis�es the domination condition). Thus, using thehypothesis that distNP is reducible to (S;X) and the transitivity of reductions (seeExercise 10.17), it follows that every problem in distNP is reducible to (T; Y). Thekey observation, to be established next, is that Y is a simple probability ensemble,and it follows that (T; Y) is in distNP .Loosely speaking, the simplicity of Y follows by combining the simplicity ofX and the properties of f (i.e., the fact that f is monotone, length-regular, andpolynomial-time invertible). The monotonicity and length-regularity of f impliesthat Pr[Yjf(x)j�f(x)] = Pr[Xjxj�x]. More generally, for any y 2 f0; 1g`(m), it holdsthat Pr[Y`(m)�y] = Pr[Xm�x], where x is the lexicographicly largest string suchthat f(x) � y (and, indeed, if jxj < m then Pr[Y`(m)�y] = Pr[Xm�x] = 0).24 Notethat this x can be found in polynomial-time by the inverting algorithm sketched inthe �rst paragraph of the proof. Thus, we may compute Pr[Yjyj�y] by �nding theadequate x and computing Pr[Xjxj�x]. Using the hypothesis that X is simple, itfollows that Y is simple (and the proposition follows).On the existence of adequate Karp-reductions. Proposition 10.18 impliesthat a su�cient condition for the distNP-completeness of a distributional versionof a (NP-complete) set T is the existence of an adequate Karp-reduction from theset Su to the set T ; that is, this Karp-reduction should be monotone and length-regular. While the length-regularity condition seems easy to impose (by usingadequate padding), the monotonicity condition seems more problematic. Fortu-nately, it turns out that the monotonicity condition can also be imposed by usingadequate padding (or rather an adequate \marking" { see Exercises 2.30 and 10.21).We highlight the fact that the existence of an adequate padding (or \marking") isa property of the set T itself. In Exercise 10.21 we review a method for modifyingany Karp-reduction to a \monotonically markable" set T into a Karp-reduction (to23Having Yn be uniform in this case is a rather arbitrary choice, which is merely aimed atguaranteeing a \simple" distribution on n-bit strings (also in this case).24We also note that the case in which jyj is not in the image of ` can be easily detected andtaken care o� accordingly.

10.2. AVERAGE CASE COMPLEXITY 483T) that is monotone and length-regular. In Exercise 10.23 we provide evidence tothe thesis that all natural NP-complete sets are monotonically markable. Combin-ing all these facts, we conclude that any natural NP-complete decision problem canbe coupled with a simple probability ensemble such that the resulting distributionalproblem is distNP-complete. As a concrete illustration of this thesis, we state thecorresponding (formal) result for the twenty-one NP-complete problems treated inKarp's paper on NP-completeness [136].Theorem 10.19 (a modest version of a general thesis): For each of the twenty-one NP-complete problems treated in [136] there exists a simple probability ensemblesuch that the combined distributional problem is distNP-complete.The said list of problems includes SAT, Clique, and 3-Colorability.10.2.1.3 Probabilistic versionsThe de�nitions in x10.2.1.1 can be extended so that to account also for randomizedcomputations. For example, extending De�nition 10.14, we have:De�nition 10.20 (the class tpcBPP): For a probabilistic algorithm A, a Booleanfunction f , and a time-bound function t :N!N , we say that the string x is t-bad forA with respect to f if with probability exceeding 1=3, on input x, either A(x) 6= f(x)or A runs more that t(jxj) steps. We say that A typically solves (S; fXngn2N) inprobabilistic polynomial-time if there exists a polynomial p such that the probabilitythat Xn is p-bad for A with respect to the characteristic function of S is negligible.We denote by tpcBPP the class of distributional problems that are typically solvablein probabilistic polynomial-time.The de�nition of reductions can be similarly extended. This means that in De�ni-tion 10.16, both MT (x) and Q(x) (mentioned in Items 2 and 3, respectively) arerandom variables rather than �xed objects. Furthermore, validity is required tohold (for every input) only with probability 2=3, where the probability space refersonly to the internal coin tosses of the reduction. Randomized reductions are closedunder composition and preserve typical feasibility (see Exercise 10.24).Randomized reductions allow the presentation of a distNP-complete problemthat refers to the (perfectly) uniform ensemble. Recall that Theorem 10.17 estab-lishes the distNP-completeness of (Su; U 0), where U 0 is a quasi-uniform ensemble(i.e., Pr[U 0n = hM;x; 1ti] = 2�(jM j+jxj)=�n2�, where n = jhM;x; 1tij). We �rstnote that (Su; U 0) can be randomly reduced to (S0u; U 00), where S0u = fhM;x; zi :hM;x; 1jzji 2 Sug and Pr[U 00n = hM;x; zi] = 2�(jM j+jxj+jzj)=�n2� for every hM;x; zi 2f0; 1gn. The randomized reduction consists of mapping hM;x; 1ti to hM;x; zi,where z is uniformly selected in f0; 1gt. Recalling that U = fUngn2N denotes theuniform probability ensemble (i.e., Un is uniformly distributed on strings of lengthn) and using a suitable encoding we get.Proposition 10.21 There exists S 2 NP such that every (S0; X 0) 2 distNP israndomly reducible to (S;U).

484 CHAPTER 10. RELAXING THE REQUIREMENTSProof Sketch: By the forgoing discussion, every (S0; X 0) 2 distNP is randomlyreducible to (S0u; U 00), where the reduction goes through (Su; U 0). Thus, we focuson reducing (S0u; U 00) to (S00u; U), where S00u 2 NP is de�ned as follows. The stringbin`(juj)�bin`(jvj)�u�v�w is in S00u if and only if hu; v; wi 2 S0u and ` = dlog2 juvwje+1,where bin`(i) denotes the `-bit long binary encoding of the integer i 2 [2`�1] (i.e.,the encoding is padded with zeros to a total length of `). The reduction mapshM;x; zi to the string bin`(jxj)�bin`(jM j)�M�x�z, where ` = dlog2(jM j+ jxj+ jzj)e+1.Noting that this reduction satis�es all conditions of De�nition 10.16, the proposi-tion follows.10.2.2 Rami�cationsIn our opinion, the most problematic aspect of the theory described in Section 10.2.1is the choice to focus on simple probability ensembles, which in turn restricts \dis-tributional versions of NP" to the class distNP (De�nition 10.15). As indicatedx10.2.1.1, this restriction raises two opposite concerns (i.e., that distNP is eithertoo wide or too narrow).25 Here we address the concern that the class of sim-ple probability ensembles is too restricted, and consequently that the conjecturedistNP 6� tpcBPP is too strong (which would mean that distNP-completeness isa weak evidence for typical-case hardness). An appealing extension of the class ofsimple probability ensembles is presented in x10.2.2.2, yielding an correspondingextension of distNP, and it is shown that if this extension of distNP is not con-tained in tpcBPP then distNP itself is not contained in tpcBPP. Consequently,distNP-complete problems enjoy the bene�t of both being in the more restrictedclass (i.e., distNP) and being hard as long as some problems in the extended classis hard.Another extension appears in x10.2.2.1, where we extend the treatment fromdecision problems to search problems. This extension is motivated by the realiza-tion that search problem are actually of greater importance to real-life applications(cf. Section 2.1.1), and hence a theory motivated by real-life applications mustaddress such problems, as we do next.Prerequisites: For the technical development of x10.2.2.1, we assume familiar-ity with the notion of unique solution and results regarding it as presented inSection 6.2.3. For the technical development of x10.2.2.2, we assume familiaritywith hashing functions as presented in Appendix D.2. In addition, the technicaldevelopment of x10.2.2.2 relies on x10.2.2.1.10.2.2.1 Search versus DecisionIndeed, as in the case of worst-case complexity, search problems are at least as im-portant as decision problems. Thus, an average-case treatment of search problems25On one hand, if the de�nition of distNP were too liberal then membership in distNP wouldmean less than one may desire. On the other hand, if distNP were too restricted then theconjecture that distNP contains hard problems would have been very questionable.

10.2. AVERAGE CASE COMPLEXITY 485is indeed called for. We �rst present distributional versions of PF and PC (cf.Section 2.1.1), following the underlying principles of the de�nitions of tpcP anddistNP .De�nition 10.22 (the classes tpcPF and distPC): As in Section 2.1.1, we con-sider only polynomially bounded search problems; that is, binary relations R �f0; 1g� � f0; 1g� such that for some polynomial q it holds that (x; y) 2 R impliesjyj � q(jxj). Recall that R(x) def= fy : (x; y)2Rg and SR def= fx : R(x) 6= ;g.� A distributional search problem consists of a polynomially bounded search prob-lem coupled with a probability ensemble.� The class tpcPF consists of all distributional search problems that are typ-ically solvable in polynomial-time. That is, (R; fXngn2N) 2 tpcPF if thereexists an algorithm A and a polynomial p such that the probability that oninput Xn algorithm A either errs or runs more that p(n) steps is negligible,where A errs on x 2 SR if A(x) 62 R(x) and errs on x 62 SR if A(x) 6= ?.� A distributional search problem (R;X) is in distPC if R 2 PC and X issimple (as in De�nition 10.15).Likewise, the class tpcBPPF consists of all distributional search problems thatare typically solvable in probabilistic polynomial-time (cf., De�nition 10.20). Thede�nitions of reductions among distributional problems, presented in the context ofdecision problem, extend to search problems.Fortunately, as in the context of worst-case complexity, the study of distribu-tional search problems \reduces" to the study of distributional decision problems.Theorem 10.23 (reducing search to decision): distPC � tpcBPPF if and only ifdistNP � tpcBPP. Furthermore, every problem in distNP is reducible to someproblem in distPC, and every problem in distPC is randomly reducible to someproblem in distNP.Proof Sketch: The furthermore part is analogous to the actual contents of theproof of Theorem 2.6 (see also Step 1 in the proof of Theorem 2.16). Indeed thereduction ofNP to PC presented in the proof of Theorem 2.6 extends to the currentcontext. Speci�cally, for any S 2 NP, we consider a relation R 2 PC such thatS = fx : R(x) 6= ;g, and note that, for any probability ensemble X , the identitytransformation reduces (S;X) to (R;X).A di�culty arises in the opposite direction. Recall that in the proof of The-orem 2.6 we reduced the search problem of R 2 PC to deciding membership inS0R def= fhx; y0i : 9y00 s.t. (x; y0y00)2Rg 2 NP . The di�culty encountered here isthat, on input x, this reduction makes queries of the form hx; y0i, where y0 is apre�x of some string in R(x). These queries may induce a distribution that is notdominated by any simple distribution. Thus, we seek an alternative reduction.As a warm-up, let us assume for a moment that R has unique solutions (in thesense of De�nition 6.28); that is, for every x it holds that jR(x)j � 1. In this case

486 CHAPTER 10. RELAXING THE REQUIREMENTSwe may easily reduce the search problem of R 2 PC to deciding membership inS00R 2 NP , where hx; i; �i 2 S00R if and only if R(x) contains a string in which theith bit equals �. Speci�cally, on input x, the reduction issues the queries hx; i; �i,where i 2 [`] (with ` = poly(jxj)) and � 2 f0; 1g, which allows for determining thesingle string in the set R(x) � f0; 1g` (whenever jR(x)j = 1). The point is that thisreduction can be used to reduce any (R;X) 2 distPC (having unique solutions) to(S00R; X 00) 2 distNP , where X 00 equally distributes the probability mass of x (underX) to all the tuples hx; i; �i; that is, for every i 2 [`] and � 2 f0; 1g, it holds thatPr[X 00jhx;i;�ij = hx; i; �i] equals Pr[Xjxj = x]=2`.Unfortunately, in the general case, R may not have unique solutions. Nev-ertheless, applying the main idea that underlies the proof of Theorem 6.29, thisdi�culty can be overcome. We �rst note that the foregoing mapping of instancesof the distributional problem (R;X) 2 distPC to instances of (S00R; X 00) 2 distNPsatis�es the e�ciency and domination conditions even in the case that R does nothave unique solutions. What may possibly fail (in the general case) is the validitycondition (i.e., if jR(x)j > 1 then we may fail to recover any element of R(x)).Recall that the main part of the proof of Theorem 6.29 is a randomized reductionthat maps instances of R to triples of the form (x;m; h) such that m is uniformlydistributed in [`] and h is uniformly distributed in a family of hashing functionHm̀, where ` = poly(jxj) and Hm̀ is as in Appendix D.2. Furthermore, if R(x) 6= ;then, with probability
(1=`) over the choices of m 2 [`] and h 2 Hm̀, there existsa unique y 2 R(x) such that h(y) = 0m. De�ning R0(x;m; h) def= fy 2 R(x) :h(y)= 0mg, this yields a randomized reduction of the search problem of R to thesearch problem of R0 such that with noticeable probability26 the reduction mapsinstances that have solutions to instances having a unique solution. Furthermore,this reduction can be used to reduce any (R;X) 2 distPC to (R0; X 0) 2 distPC,where X 0 distributes the probability mass of x (under X) to all the triples (x;m; h)such that for every m 2 [`] and h 2 Hm̀ it holds that Pr[X 0j(x;m;h)j = (x;m; h)]equals Pr[Xjxj = x]=(` � jHm̀j). (Note that with a suitable encoding, X 0 is indeedsimple.)The theorem follows by combining the two aforementioned reductions. That is,we �rst apply the randomized reduction of (R;X) to (R0; X 0), and next reduce theresulting instance to an instance of the corresponding decision problem (S00R0 ; X 00),where X 00 is obtained by modifying X 0 (rather than X). The combined randomizedmapping satis�es the e�ciency and domination conditions, and is valid with notice-able probability. The error probability can be made negligible by straightforwardampli�cation (see Exercise 10.24).10.2.2.2 Simple versus sampleable distributionsRecall that the de�nition of simple probability ensembles (underlying De�nition 10.15)requires that the accumulating distribution function is polynomial-time computable.26Recall that the probability of an event is said to be noticeable (in a relevant parameter) if it isgreater than the reciprocal of some positive polynomial. In the context of randomized reductions,the relevant parameter is the length of the input to the reduction.

10.2. AVERAGE CASE COMPLEXITY 487Recall that � : f0; 1g� ! [0; 1] is called the accumulating distribution function ofX = fXngn2N if for every n 2 N and x 2 f0; 1gn it holds that �(x) def= Pr[Xn � x],where the inequality refers to the standard lexicographic order of n-bit strings.As argued in x10.2.1.1, the requirement that the accumulating distribution func-tion is polynomial-time computable imposes severe restrictions on the set of ad-missible ensembles. Furthermore, it seems that these simple ensembles are indeed\simple" in some intuitive sense, and that they represent a reasonable (alas dis-putable) model of distributions that may occur in practice. Still, in light of the fearthat this model is too restrictive (and consequently that distNP-hardness is weakevidence for typical-case hardness), we seek a maximalistic model of distributionsthat may occur in practice. Such a model is provided by the notion of polynomial-time sampleable ensembles (underlying De�nition 10.24). Our maximality thesisis based on the belief that the real world should be modeled as a feasible ran-domized process (rather than as an arbitrary process). This belief implies that allobjects encountered in the world may be viewed as samples generated by a feasiblerandomized process.De�nition 10.24 (sampleable ensembles and the class sampNP): We say that aprobability ensemble X = fXngn2N is (polynomial-time) sampleable if there existsa probabilistic polynomial-time algorithm A such that for every x 2 f0; 1g� it holdsthat Pr[A(1jxj) = x] = Pr[Xjxj = x]. We denote by sampNP the class of distri-butional problems consisting of decision problems in NP coupled with sampleableprobability ensembles.We �rst note that all simple probability ensembles are indeed sampleable (seeExercise 10.25), and thus distNP � sampNP . On the other hand, there existsampleable probability ensembles that do not seem simple (see Exercise 10.26).Extending the scope of distributional problems (from distNP to sampNP) fa-cilitates the presentation of complete distributional problems. We �rst note thatit is easy to prove that every natural NP-complete problem has a distributionalversion in sampNP that is distNP-hard (see Exercise 10.27). Furthermore, it ispossible to prove that all natural NP-complete problem have distributional versionsthat are sampNP-complete. (In both cases, \natural" means that the correspond-ing Karp-reductions do not shrink the input, which is a weaker condition than theone in Proposition 10.18.)Theorem 10.25 (sampNP-completeness): Suppose that S 2 NP and that everyset in NP is reducible to S by a Karp-reduction that does not shrink the input.Then there exists a polynomial-time sampleable ensemble X such that any problemin sampNP is reducible to (S;X)The proof of Theorem 10.25 is based on the observation that there exists a polynomial-time sampleable ensemble that dominates all polynomial-time sampleable ensembles.The existence of this ensemble is based on the notion of a universal (sampling) ma-chine. For further details see Exercise 10.28.Theorem 10.25 establishes a rich theory of sampNP-completeness, but does notrelate this theory to the previously presented theory of distNP-completeness (see

488 CHAPTER 10. RELAXING THE REQUIREMENTS
distNP

sampNP

tpcBPP

distNP-complete [Thm 10.17 and 10.19]

sampNP-complete [Thm 10.25]

Figure 10.1: Two types of average-case completenessFigure 10.1). This is essentially done in the next theorem, which asserts that theexistence of typically hard problems in sampNP implies their existence in distNP .Theorem 10.26 (sampNP-completeness versus distNP-completeness): If sampNPis not contained in tpcBPP then distNP is not contained in tpcBPP.Thus, the two \typical-case complexity" versions of the P-vs-NP Question areequivalent. That is, if some \sampleable distribution" versions of NP are nottypically feasible then some \simple distribution" versions of NP are not typicallyfeasible. In particular, if sampNP-complete problems are not in tpcBPP thendistNP-complete problems are not in tpcBPP.The foregoing assertions would all follow if sampNP were (randomly) reducibleto distNP (i.e., if every problem in sampNP were reducible (under a randomizedversion of De�nition 10.16) to some problem in distNP); but, unfortunately, wedo not know whether such reductions exist. Yet, underlying the proof of Theo-rem 10.26 is a more liberal notion of a reduction among distributional problems.Proof Sketch: We shall prove that if distNP is contained in tpcBPP then thesame holds for sampNP (i.e., sampNP is contained in tpcBPP). Relying onTheorem 10.23 and Exercise 10.29, it su�ces to show that if distPC is contained intpcBPPF then the sampleable version of distPC, denoted sampPC, is containedin tpcBPPF. This will be shown by showing that, under a relaxed notion of arandomized reduction, every problem in sampPC is reduced to some problem indistPC. Loosely speaking, this relaxed notion (of a randomized reduction) onlyrequires that the validity and domination conditions (of De�nition 10.16 (whenadapted to randomized reductions)) hold with respect to a noticeable fraction ofthe probability space of the reduction.27 We start by formulating this notion, whenreferring to distributional search problems.27We warn that the existence of such a relaxed reduction between two speci�c distributionalproblems does not necessarily imply the existence of a corresponding (standard average-case)reduction. Speci�cally, although standard validity can be guaranteed (for problems in PC) by

10.2. AVERAGE CASE COMPLEXITY 489Teaching note: The following proof is quite involved and is better left for advancedreading. Its main idea is related to one of the central ideas underlying the currentlyknown proof of Theorem 8.11. This fact as well as numerous other applications of thisidea, provide additional motivation for reading the following proof.De�nition: A relaxed reduction of the distributional problem (R;X) to the distri-butional problem (T; Y) is a probabilistic polynomial-time oracle machine M thatsatis�es the following conditions with respect to a family of sets f
x � f0; 1gm(jxj) :x2 f0; 1g�g, where m(jxj) = poly(jxj) denotes an upper-bound on the number ofthe internal coin tosses of M on input x:Density (of
x): There exists a noticeable function � : N ! [0; 1] (i.e., �(n) >1=poly(n)) such that, for every x 2 f0; 1g�, it holds that j
xj � �(jxj)�2m(jxj).Validity (with respect to
x): For every r 2
x the reduction yields a correct an-swer; that is, MT (x; r) 2 R(x) if R(x) 6= ; and MT (x; r) = ? otherwise,whereMT (x; r) denotes the execution of M on input x, internal coins r, andoracle access to T .Domination (with respect to
x): There exists a positive polynomial p such that,for every y 2 f0; 1g� and every n 2 N , it holds thatPr[Q0(Xn) 3 y] � p(jyj) � Pr[Yjyj = y]; (10.6)where Q0(x) is a random variable, de�ned over the set
x, representing theset of queries made by M on input x, coins in
x, and oracle access to T .That is, Q0(x) is de�ned by uniformly selecting r 2
x and considering theset of queries made byM on input x, internal coins r, and oracle access to T .(In addition, as in De�nition 10.16, we also require that the reduction doesnot make too short queries.)The reader may verify that this relaxed notion of a reduction preserves typicalfeasibility; that is, for R 2 PC, if there exists a relaxed reduction of (R;X) to(T; Y) and (T; Y) is in tpcBPPF then (R;X) is in tpcBPPF. The key observationis that the analysis may discard the case that, on input x, the reduction selectscoins not in
x. Indeed, the queries made in that case may be untypical and theanswers received may be wrong, but this is immaterial. What matter is that, oninput x, with noticeable probability the reduction selects coins in
x, and produces\typical with respect to Y " queries (by virtue of the relaxed domination condition).Such typical queries are answered correctly by the algorithm that typically solves(T; Y), and if x has a solution then these answers yield a correct solution to x(by virtue of the relaxed validity condition). Thus, if x has a solution then withnoticeable probability the reduction outputs a correct solution. On the other hand,the reduction never outputs a wrong solution (even when using coins not in
x),because incorrect solutions are detected by relying on R 2 PC.repeated invocations of the reduction, such a process will not redeem the violation of the standarddomination condition.

490 CHAPTER 10. RELAXING THE REQUIREMENTSOur goal is presenting, for every (R;X) 2 sampPC, a relaxed reduction of(R;X) to a related problem (R0; X 0) 2 distPC. (We use the standard notationX = fXngn2N and X 0 = fX 0ngn2N.)An oversimpli�ed case: For starters, suppose that Xn is uniformly distributed onsome set Sn � f0; 1gn and that there is a polynomial-time computable and invert-ible mapping � of Sn to f0; 1g`(n), where `(n) = log2 jSnj. Then, mapping x to1jxj�`(jxj)0�(x), we obtain a reduction of (R;X) to (R0; X 0), where X 0n+1 is uniformover f1n�`(n)0v : v 2 f0; 1g`(n)g and R0(1n�`(n)0v) = R(��1(v)) (or, equivalently,R(x) = R0(1jxj�`(jxj)0�(x))). Note that X 0 is a simple ensemble and R0 2 PC;hence, (R0; X 0) 2 distPC. Also note that the foregoing mapping is indeed a validreduction (i.e., it satis�es the e�ciency, validity, and domination conditions). Thus,(R;X) is reduced to a problem in distPC (and indeed the relaxation was not usedhere).A simple but more instructive case: Next, we drop the assumption that there isa polynomial-time computable and invertible mapping � of Sn to f0; 1g`(n), butmaintain the assumption that Xn is uniform on some set Sn � f0; 1gn and as-sume that jSnj = 2`(n) is easily computable (from n). In this case, we may mapx 2 f0; 1gn to its image under a suitable randomly chosen hashing function h, whichin particular maps n-bit strings to `(n)-bit strings. That is, we randomly map x to(h; 1n�`(n)0h(x)), where h is uniformly selected in a set H`(n)n of suitable hash func-tions (see Appendix D.2). This calls for rede�ning R0 such that R0(h; 1n�`(n)0v)corresponds to the preimages of v under h that are in Sn. Assuming that h is a 1-1mapping of Sn to f0; 1g`(n), we may de�ne R0(h; 1n�`(n)0v) = R(x) such that x isthe unique string satisfying x 2 Sn and h(x) = v, where the condition x 2 Sn maybe veri�ed by providing the internal coins of the sampling procedure that generatex. Denoting the sampling procedure of X by S, and letting S(1n; r) denote theoutput of S on input 1n and internal coins r, we actually rede�ne R0 asR0(h; 1n�`(n)0v) = fhr; yi : h(S(1n; r))=v ^ y2R(S(1n; r))g: (10.7)We note that hr; yi 2 R0(h; 1jxj�`(jxj)0h(x)) yields a desired solution y 2 R(x)if S(1jxj; r) = x, but otherwise \all bets are o�" (since y will be a solution forS(1jxj; r) 6= x). Now, although typically h will not be a 1-1 mapping of Sn tof0; 1g`(n), it is the case that for each x 2 Sn, with constant probability over thechoice of h, it holds that h(x) has a unique preimage in Sn under h. (See the proofof Theorem 6.29.) In this case hr; yi 2 R0(h; 1jxj�`(jxj)0h(x)) implies S(1jxj; r) = x(which, in turn, implies y 2 R(x)). We claim that the randomized mapping ofx to (h; 1n�`(n)0h(x)), where h is uniformly selected in H`(jxj)jxj , yields a relaxedreduction of (R;X) to (R0; X 0), where X 0n0 is uniform over H`(n)n � f1n�`(n)0v :v 2 f0; 1g`(n)g. Needless to say, the claim refers to the reduction that (on input x,makes the query (h; 1n�`(n)0h(x)), and) returns y if the oracle answer equals hr; yiand y 2 R(x).The claim is proved by considering the set
x of choices of h 2 H`(jxj)jxj forwhich x 2 Sn is the only preimage of h(x) under h that resides in Sn (i.e.,

10.2. AVERAGE CASE COMPLEXITY 491jfx0 2 Sn : h(x0) = h(x)gj = 1). In this case (i.e., h 2
x) it holds that hr; yi 2R0(h; 1jxj�`(jxj)0h(x)) implies that S(1jxj; r) = x and y 2 R(x), and the (relaxed)validity condition follows. The (relaxed) domination condition follows by notingthat Pr[Xn = x] � 2�`(jxj), that x is mapped to (h; 1jxj�`(jxj)0h(x)) with proba-bility 1=jH`(jxj)jxj j, and that x is the only preimage of (h; 1jxj�`(jxj)0h(x)) under themapping (among x0 2 Sn such that
x0 3 h).Before going any further, let us highlight the importance of hashing Xn to `(n)-bit strings. On one hand, this mapping is \su�ciently" one-to-one, and thus (withconstant probability) the solution provided for the hashed instance (i.e., h(x)) yielda solution for the original instance (i.e., x). This guarantees the validity of the re-duction. On the other hand, for a typical h, the mapping of Xn to h(Xn) covers therelevant range almost uniformly. This guarantees that the reduction satis�es thedomination condition. Note that these two phenomena impose conicting require-ments that are both met at the correct value of `; that is, the one-to-one conditionrequires `(n) � log2 jSnj, whereas an almost uniform cover requires `(n) � log2 jSnj.Also note that `(n) = log2(1=Pr[Xn = x]) for every x in the support of Xn; thelatter quantity will be in our focus in the general case.The general case: Finally, we get rid of the assumption that Xn is uniformly dis-tributed over some subset of f0; 1gn. All that we know is that there exists a prob-abilistic polynomial-time (\sampling") algorithm S such that S(1n) is distributedidentically to Xn. In this (general) case, we map instances of (R;X) according totheir probability mass such that x is mapped to an instance (of R0) that consists of(h; h(x)) and additional information, where h is a random hash function mappingn-bit long strings to `x-bit long strings such that`x def= dlog2(1=Pr[Xjxj=x])e: (10.8)Since (in the general case) there may be more than 2`x strings in the support ofXn, we need to augment the reduced instance in order to ensure that it is uniquelyassociated with x. The basic idea is augmenting the mapping of x to (h; h(x)) withadditional information that restricts Xn to strings that occur with probability atleast 2�`x . Indeed, when Xn is restricted in this way, the value of h(Xn) uniquelydetermines Xn.Let q(n) denote the randomness complexity of S and S(1n; r) denote the out-put of S on input 1n and internal coin tosses r 2 f0; 1gq(n). Then, we randomlymap x to (h; h(x); h0; v0), where h : f0; 1gjxj ! f0; 1g`x and h0 : f0; 1gq(jxj) !f0; 1gq(jxj)�`x are random hash functions and v0 2 f0; 1gq(jxj)�`x is uniformly dis-tributed. The instance (h; v; h0; v0) of the rede�ned search problem R0 has solutionsthat consists of pairs hr; yi such that h(S(1n; r))=v^h0(r) = v0 and y2R(S(1n; r)).As we shall see, this augmentation guarantees that, with constant probability (overthe choice of h; h0; v0), the solutions to the reduced instance (h; h(x); h0; v0) corre-spond to the solutions to the original instance x.The foregoing description assumes that, on input x, we can e�ciently deter-mine `x, which is an assumption that cannot be justi�ed. Instead, we select `uniformly in f0; 1; :::; q(jxj)g, and so with noticeable probability we do select the

492 CHAPTER 10. RELAXING THE REQUIREMENTScorrect value (i.e., Pr[` = `x] = 1=(q(jxj) + 1) = 1=poly(jxj)). For clarity, we maken and ` explicit in the reduced instance. Thus, we randomly map x 2 f0; 1gn to(1n; 1`; h; h(x); h0; v0) 2 f0; 1gn0 , where ` 2 f0; 1; :::; q(n)g, h 2 Hǹ, h0 2 Hq(n)�`q(n) ,and v0 2 f0; 1gq(n)�` are uniformly distributed in the corresponding sets.28 Thismapping will be used to reduce (R;X) to (R0; X 0), where R0 and X 0 = fX 0n0gn02Nare rede�ned (yet again). Speci�cally, we letR0(1n; 1`; h; v; h0; v0) = fhr; yi : h(S(1n; r))=v^h0(r)=v0^y2R(S(1n; r))g (10.9)and X 0n0 assigns equal probability to each Xn0;` (for ` 2 f0; 1; :::; ng), where eachXn0;` is isomorphic to the uniform distribution over Hǹ � f0; 1g` � Hq(n)�`q(n) �f0; 1gq(n)�`. Note that indeed (R0; X 0) 2 distPC.The foregoing randomized mapping is analyzed by considering the correct choicefor `; that is, on input x, we focus on the choice ` = `x. Under this conditioning (aswe shall show), with constant probability over the choice of h; h0 and v0, the instancex is the only value in the support of Xn that is mapped to (1n; 1`x ; h; h(x); h0; v0)and satis�es fr : h(S(1n; r)) = h(x) ^ h0(r) = v0g 6= ;. It follows that (for suchh; h0 and v0) any solution hr; yi 2 R0(1n; 1`x ; h; h(x); h0; v0) satis�es S(1n; r) = xand thus y 2 R(x), which means that the (relaxed) validity condition is satis�ed.The (relaxed) domination condition is satis�ed too, because (conditioned on ` = `xand for such h; h0; v0) the probability that Xn is mapped to (1n; 1`x ; h; h(x); h0; v0)approximately equals Pr[X 0n0;`x=(1n; 1`x ; h; h(x); h0; v0)].We now turn to analyze the probability, over the choice of h; h0 and v0, that theinstance x is the only value in the support ofXn that is mapped to (1n; 1`x ; h; h(x); h0; v0)and satis�es fr : h(S(1n; r)) = h(x) ^ h0(r) = v0g 6= ;. Firstly, we note thatjfr : S(1n; r)=xgj � 2q(n)�`x , and thus, with constant probability over the choiceof h0 2 Hq(n)�`xq(n) and v0 2 f0; 1gq(n)�`x, there exists r that satis�es S(1n; r) = x andh0(r) = v0. Furthermore, with constant probability over the choice of h0 2 Hq(n)�`xq(n)and v0 2 f0; 1gq(n)�`x , it also holds that there are at most O(2`x) strings r suchthat h0(r) = v0. Fixing such h0 and v0, we let Sh0;v0 = fS(1n; r) : h0(r) = v0gand we note that, with constant probability over the choice of h 2 H`xn , it holdsthat x is the only string in Sh0;v0 that is mapped to h(x) under h. Thus, withconstant probability over the choice of h; h0 and v0, the instance x is the onlyvalue in the support of Xn that is mapped to (1n; 1`x ; h; h(x); h0; v0) and satis�esfr : h(S(1n; r)) = h(x) ^ h0(r) = v0g 6= ;. The theorem follows.Reection: Theorem 10.26 implies that if sampNP is not contained in tpcBPPthen every distNP-complete problem is not in tpcBPP. This means that thehardness of some distributional problems that refer to sampleable distributions im-plies the hardness of some distributional problems that refer to simple distributions.28As in other places, a suitable encoding will be used such that the reduction maps strings of thesame length to strings of the same length (i.e., n-bit string are mapped to n0-bit strings, for n0 =poly(n)). For example, we may encode h1n; 1`; h; h(x); h0; v0i as 1n01`01q(n)�`0hhihh(x)ihh0ihv0i,where each hwi denotes an encoding of w by a string of length (n0 � (n+ q(n) + 3))=4.

10.2. AVERAGE CASE COMPLEXITY 493Furthermore, by Proposition 10.21, this implies the hardness of distributional prob-lems that refer to the uniform distribution. Thus, hardness with respect to somedistribution in an utmost wide class (which arguably captures all distributions thatmay occur in practice) implies hardness with respect to a single simple distribution(which arguably is the simplest one).Relation to one-way functions. We note that the existence of one-way func-tions (see Section 7.1) implies the existence of problems in sampPC that are not intpcBPPF (which in turn implies the existence of such problems in distPC). Specif-ically, for a length-preserving one-way function f , consider the distributional searchproblem (Rf ; ff(Un)gn2N), where Rf = f(f(r); r) : r 2 f0; 1g�g.29 On the otherhand, it is not known whether the existence of a problem in sampPC n tpcBPPFimplies the existence of one-way functions. In particular, the existence of a prob-lem (R;X) in sampPC n tpcBPPF represents the feasibility of generating hardinstances for the search problem R, whereas the existence of one-way function rep-resents the feasibility of generating instance-solution pairs such that the instancesare hard to solve (see Section 7.1.1). Indeed, the gap refers to whether or not hardinstances can be e�ciently generated together with corresponding solutions. Ourworld view is thus depicted in Figure 10.2, where lower levels indicate seeminglyweaker assumptions.
P is different than NP

one-way functions exist

distNP is not in tpcBPP
(equiv., sampNP is not in tpcBPP)

Figure 10.2: Worst-case vs average-case assumptionsChapter NotesIn this chapter, we presented two di�erent approaches to the relaxation of com-putational problems. The �rst approach refers to the concept of approximation,while the second approach refers to average-case analysis. We demonstrated thatvarious natural notions of approximation can be cast within the standard frame-works, where the framework of promise problems (presented in Section 2.4.1) isthe least-standard framework we used (and it su�ces for casting gap problems and29Note that the distribution f(Un) is uniform in the special case that f is a permutation overf0; 1gn.

494 CHAPTER 10. RELAXING THE REQUIREMENTSproperty testing). In contrast, the study of average-case complexity requires theintroduction of a new conceptual framework and addressing various de�nitionalissues.A natural question at this point is what have we gained by relaxing the require-ments. In the context of approximation, the answer is mixed: in some natural caseswe gain a lot (i.e., we obtained feasible relaxations of hard problems), while in othernatural cases we gain nothing (i.e., even extreme relaxations remain as intractableas the original versions). In the context of average-case complexity, the negativeside seems more prevailing (at least in the sense of being more systematic). In par-ticular, assuming the existence of one-way functions, every natural NP-completeproblem has a distributional version that is (typical-case) hard, where this versionrefers to a sampleable ensemble (and, in fact, even to a simple ensemble). Fur-thermore, in this case, some problems in NP have hard distributional versions thatrefer to the uniform distribution.ApproximationThe following bibliographic comments are quite laconic and neglect mentioningvarious important works (including credits for some of the results mentioned in ourtext). As usual, the interested reader is referred to corresponding surveys.Search or Optimization. The interest in approximation algorithms increasedconsiderably following the demonstration of the NP-completeness of many nat-ural optimization problems. But, with some exceptions (most notably [178]),the systematic study of the complexity of such problems stalled till the discov-ery of the \PCP connection" (see Section 9.3.3) by Feige, Goldwasser, Lov�asz, andSafra [72]. Indeed the relatively \tight" inapproximation results for max-Clique,max-SAT, and the maximization of linear equations, due to H�astad [115, 116],build on previous work regarding PCP and their connection to approximation (cf.,e.g., [73, 15, 14, 28, 184]). Speci�cally, Theorem 10.5 is due to [115]30, while The-orems 10.8 and 10.9 are due to [116]. The best known inapproximation result forminimum Vertex Cover (see Theorem 10.7) is due to [68], but we doubt it is tight(see, e.g., [142]). Reductions among approximation problems were de�ned andpresented in [178]; see Exercise 10.7, which presents a major technique introducedin [178]. For general texts on approximation algorithms and problems (as discussedin Section 10.1.1), the interested reader is referred to the surveys collected in [121].A compendium of NP optimization problems is available at [63].Recall that a di�erent type of approximation problems, which are naturallyassociated with search problems, refer to approximately counting the number ofsolutions. These approximation problems were treated in Section 6.2.2 in a ratherad hoc manner. We note that a more systematic treatment of approximate countingproblems can be obtained by using the de�nitional framework of Section 10.1.1 (e.g.,the notions of gap problems, polynomial-time approximation schemes, etc).30See also [242].

10.2. AVERAGE CASE COMPLEXITY 495Property testing. The study of property testing was initiated by Rubinfeld andSudan [194] and re-initiated by Goldreich, Goldwasser, and Ron [96]. While thefocus of [194] was on algebraic properties such as low-degree polynomials, the focusof [96] was on graph properties (and Theorem 10.12 is taken from [96]). The modelof bounded-degree graphs was introduced in [102] and Theorem 10.13 combinesresults from [102, 103, 41]. For surveys of the area, the interested reader is referredto [76, 193].Average-case complexityThe theory of average-case complexity was initiated by Levin [153], who in partic-ular proved Theorem 10.17. In light of the laconic nature of the original text [153],we refer the interested reader to a survey [88], which provides a more detailedexposition of the de�nitions suggested by Levin as well as a discussion of the con-siderations underlying these suggestions. (This survey [88] provides also a briefaccount of further developments.)As noted in x10.2.1.1, the current text uses a variant of the original de�nitions.In particular, our de�nition of \typical-case feasibility" di�ers from the originalde�nition of \average-case feasibility" in totally discarding exceptional instancesand in even allowing the algorithm to fail on them (and not merely run for anexcessive amount of time). The alternative de�nition was suggested by severalresearchers, and appears as a special case of the general treatment provided in [43].Turning to x10.2.1.2, we note that while the existence of distNP-complete prob-lems (cf. Theorem 10.17) was established in Levin's original paper [153], the ex-istence of distNP-complete versions of all natural NP-complete decision problems(cf. Theorem 10.19) was established more than two decades later in [157].Section 10.2.2 is based on [29, 126]. Speci�cally, Theorem 10.23 (or rather thereduction of search to decision) is due to [29] and so is the introduction of the classsampNP. A version of Theorem 10.26 was proven in [126], and our proof followstheir ideas, which in turn are closely related to the ideas underlying the proof ofTheorem 8.11 (proved in [117]).Recall that we know of the existence of problems in distNP that are hard pro-vided sampNP contains hard problems. However, these distributional problems donot seem very natural (i.e., they either refer to somewhat generic decision problemssuch as Su or to somewhat contrived probability ensembles (cf. Theorem 10.19)).The presentation of distNP-complete problems that combine a more natural deci-sion problem (like SAT or Clique) with a more natural probability ensemble is anopen problem.ExercisesExercise 10.1 (general TSP) For any adequate function g, prove that the fol-lowing approximation problem is NP-Hard. Given a general TSP instance I , rep-resented by a symmetric matrix of pairwise distances, the task is �nding a tour oflength that is at most a factor g(I) of the minimum. Speci�cally, show that the

496 CHAPTER 10. RELAXING THE REQUIREMENTSresult holds with g(I) = exp(jI j0:99) and for instances in which all distances arepositive integers.Guideline: Use a reduction from Hamiltonian cycle problem. Speci�cally, reduce theinstance G = ([n]; E) to an n-by-n distance matrix D = (di;j)i;j2[n] such that di;j =exp(poly(n)) if fi; jg 2 E and di;j = 1.Exercise 10.2 (TSP with triangle inequalities) Provide a polynomial-time 2-factor approximation for the special case of TSP in which the distances satisfy thetriangle inequality.Guideline: First note that the length of any tour is lower-bounded by the weight ofa minimum spanning tree in the corresponding weighted graph. Next note that such atree yields a tour (of length twice the weight of this tree) that may visit some pointsseveral times. The triangle inequality guarantees that the tour does not become longerby \shortcuts" that eliminate multiple visits at the same point.Exercise 10.3 (a weak version of Theorem 10.5) Using Theorem 9.16 provethat, for some constants 0 < a < b < 1 when setting L(N) = N b and s(N) = Na,it holds that gapCliqueL;s is NP-hard.Guideline: Starting with Theorem 9.16, apply the Expander Random Walk Generator(of Proposition 8.29) in order to derive a PCP system with logarithmic randomness andquery complexities that accepts no-instances of length n with probability at most 1=n.The claim follows by applying the FGLSS-reduction (of Exercise 9.18), while noting thatx is reduced to a graph of size poly(jxj) such that the gap between yes- and no-instancesis at least a factor of jxj.Exercise 10.4 (a weak version of Theorem 10.7) Using Theorem 9.16 provethat, for some constants 0 < s < L < 1, the problem gapVCs;L is NP-hard.Guideline: Note that combining Theorem 9.16 and Exercise 9.18 implies that for someconstants b < 1 it holds that gapCliqueL;s is NP-hard, where L(N) = b �N and s(N) =(b=2) � N . The claim follows using the relations between cliques, independent sets, andvertex covers.Exercise 10.5 (a weak version of Theorem 10.9) Using Theorem 9.16 provethat, for some constants 0:5 < s < L < 1, the problem gapLinL;s is NP-hard.Guideline: Recall that by Theorems 9.16 and 9.21, the gap problem gapSAT3" is NP-Hard. Note that the result holds even if we restrict the instances to have exactly three(not necessarily di�erent) literals in each clause. Applying the reduction of Exercise 2.24,note that, for any assignment � , a clause that is satis�ed by � is mapped to seven equationsof which exactly three are violated by � , whereas a clause that is not satis�ed by � ismapped to seven equations that are all violated by � .Exercise 10.6 (natural inapproximability without the PCP Theorem) Incontrast to the inapproximability results reviewed in x10.1.1.2, the NP-completenessof the following gap problem can be established (rather easily) without referring

10.2. AVERAGE CASE COMPLEXITY 497to the PCP Theorem. The instances of this problem are systems of quadraticequations over GF(2) (as in Exercise 2.25), yes-instances are systems that have asolution, and no-instances are systems for which any assignment violates at leastone third of the equations.Guideline: By Exercise 2.25, when given such a quadratic system, it is NP-hard todetermine whether or not there exists an assignment that satis�es all the equations. Usingan adequate small-bias generator (cf. Section 8.5.2), present an amplifying reduction (cf.Section 9.3.3) of the foregoing problem to itself. Speci�cally, if the input system has mequations then we use a generator that de�nes a sample space of poly(m) many m-bitstrings, and consider the corresponding linear combinations of the input equations. Notethat it su�ces to bound the bias of the generator by 1=6, whereas using an "-biasedgenerator yields an analogous result with 1=3 replaced by 0:5� ".Exercise 10.7 (enforcing multi-way equalities via expanders) The aim ofthis exercise is presenting a technique (of Papadimitriou and Yannakakis [178]) thatis useful for designing reductions among approximation problems. Recalling thatgapSAT30:1 is NP-hard, our goal is proving NP-hard of the following gap problem,denoted gapSAT3;c" , which is a special case of gapSAT3" . Speci�cally, the instancesare restricted to 3CNF formulae with each variable appearing in at most c clauses,where c (as ") is a �xed constant. Note that the standard reduction of 3SAT tothe corresponding special case (see proof of Proposition 2.23) does not preserve anapproximation gap.31 The idea is enforcing equality of the values assigned to theauxiliary variables (i.e., the copies of each original variable) by introducing equalityconstraints only for pairs of variables that correspond to edges of an expandergraph (see Appendix E.2). For example, we enforce equality among the values ofz(1); :::; z(m) by adding the clauses z(i) _ :z(j) for every fi; jg 2 E, where E is theset of edges of an m-vertex expander graph. Prove that, for some constants c and" > 0, the corresponding mapping reduces gapSAT30:1 to gapSAT3;c" .Guideline: Using d-regular expanders in the foregoing reduction, we map general 3CNFformulae to 3CNF formulae in which each variable appears in at most 2d + 1 clauses.Note that the number of added clauses is linearly related to the number of original clauses.Clearly, if the original formula is satis�able then so is the reduced one. On the other hand,consider an arbitrary assignment � 0 to the reduced formula �0 (i.e., the formula obtainedby mapping �). For each original variable z, if � 0 assigns the same value to almost allcopies of z then we consider the corresponding assignment in �. Otherwise, by virtue ofthe added clauses, � 0 does not satisfy a constant fraction of the clauses containing a copyof z.31Recall that in this reduction each occurrence of each Boolean variable is replaced by a newcopy of this variable, and clauses are added for enforcing the assignment of the same value to allthese copies. Speci�cally, them occurrence of variable z are replaced by the variables z(1); :::; z(m),while adding the clauses z(i) _ :z(i+1) and z(i+1) _ :z(i) (for i = 1; :::;m � 1). The problem isthat almost all clauses of the reduced formula may be satis�ed by an assignment in which halfof the copies of each variable are assigned one value and the rest are assigned an opposite value.That is, an assignment in which z(1) = � � � = z(i) 6= z(i+1) = � � � = z(m) violates only one of theauxiliary clauses introduced for enforcing equality among the copies of z. Using an alternativereduction that adds the clauses z(i) _ :z(j) for every i; j 2 [m] will not do either, because thenumber of added clauses may be quadratic in the number of original clauses.

498 CHAPTER 10. RELAXING THE REQUIREMENTSExercise 10.8 (deciding majority requires linear time) Prove that decidingmajority requires linear-time even in a direct access model and when using a ran-domized algorithm that may err with probability at most 1=3.Guideline: Consider the problem of distinguishing Xn from Yn, where Xn (resp., Yn) isuniformly distributed over the set of n-bit strings having exactly bn=2c (resp., bn=2c+1)zeros. For any �xed set I � [n], denote the projection of Xn (resp., Yn) on I by X 0n (resp.,Y 0n). Prove that the statistical di�erence between X 0n and Y 0n is bounded by O(jIj=n).Note that the argument needs to be extended to the case that the examined locations areselected adaptively.Exercise 10.9 (testing majority in polylogarithmic time) Show that test-ing majority (in the sense of De�nition 10.11) can be done in polylogarithmictime by probing the input at a constant number of randomly selected locations.Exercise 10.10 (on the triviality of some testing problems) Show that thefollowing sets are trivially testable in the adjacency matrix representation (i.e., forevery � > 0 and any such set S, there exists a trivial algorithm that distinguishesS from ��(S)).1. The set of connected graphs.2. The set of Hamiltonian graphs.3. The set of Eulerian graphs.Indeed, show that in each case ��(S) = ;.Guideline (for Item 3): Note that, in general, the fact that the sets S0 and S00 aretestable within some complexity does not imply the same for the set S0 \ S00.Exercise 10.11 (an equivalent de�nition of tpcP) Prove that (S;X) 2 tpcPif and only if there exists a polynomial-time algorithm A such that the probabilitythat A(Xn) errs (in determining membership in S) is a negligible function in n.Exercise 10.12 (tpcP versus P { Part 1) Prove that tpcP contains a problem(S;X) such that S is not even recursive. Furthermore, use X = U .Guideline: Let S = f0jxjx : x 2 S0g, where S0 is an arbitrary (non-recursive) set.Exercise 10.13 (tpcP versus P { Part 2) Prove that there exists a distribu-tional problem (S;X) such that S 62 P and yet there exists an algorithm solvingS (correctly on all inputs) in time that is typically polynomial with respect to X .Furthermore, use X = U .Guideline: For any time-constructible function t : N!N that is super-polynomial andsub-exponential, use S = f0jxjx : x 2 S0g for any S0 2 Dtime(t) n P.Exercise 10.14 (simple distributions and monotone sampling) We say thata probability ensemble X = fXngn2N is polynomial-time sampleable via a monotonemapping if there exists a polynomial p and a polynomial-time computable functionf such that the following two conditions hold:

10.2. AVERAGE CASE COMPLEXITY 4991. For every n, the random variables f(Up(n)) andXn are identically distributed.2. For every n and every r0 < r00 2 f0; 1gp(n) it holds that f(r0) � f(r00), wherethe inequalities refers to the standard lexicographic order of strings.Prove that X is simple if and only if it is polynomial-time sampleable via a mono-tone mapping.Guideline: Suppose that X is simple, and let p be a polynomial bounding the running-time of the algorithm that on input x outputs Pr[Xjxj�x]. (Thus, the binary representa-tion of Pr[Xjxj�x] has length at most p(jxj).) The desired function f : f0; 1gp(n) ! f0; 1gnis obtained by de�ning f(r) = x if the number (represented by) 0:r resides in the interval[Pr[Xn <x];Pr[Xn �x]). Note that f can be computed by binary search, using the factthat X is simple. Turning to the opposite direction, we note that any e�ciently com-putable and monotone mapping f : f0; 1gp(n) ! f0; 1gn can be e�ciently inverted by abinary search. Furthermore, similar methods allow for e�ciently determining the intervalof p(n)-bit long strings that are mapped to any given n-bit long string.Exercise 10.15 (reductions preserve typical polynomial-time solveability)Prove that if the distributional problem (S;X) is reducible to the distributionalproblem (S0; X 0) and (S0; X 0) 2 tpcP , then (S;X) is in tpcP .Guideline: Let B0 denote the set of exceptional instances for the distributional problem(S0; X 0); that is, B0 is the set of instances on which the solver in the hypothesis eithererrs or exceeds the typical running-time. Prove that Pr[Q(Xn) \ B0 6= ;] is a negligiblefunction (in n), using both Pr[y 2 Q(Xn)] � p(jyj) �Pr[X 0jyj = y] and jxj � p0(jyj) for everyy 2 Q(x). Speci�cally, use the latter condition for inferring that Py2B0 Pr[y 2 Q(Xn)]equalsPy2fy02B0:p0(jy0j)�ng Pr[y 2 Q(Xn)], which is upper-bounded byPm:p0(m)�n p(m) �Pr[X 0m2B0] (which in turn is negligible in terms of n).Exercise 10.16 (reductions preserve error-less solveability) In continuationto Exercise 10.15, prove that reductions preserve error-less solveability (i.e., solve-ability by algorithms that never err and typically run in polynomial-time).Exercise 10.17 (transitivity of reductions) Prove that reductions among dis-tributional problems (as in De�nition 10.16) are transitive.Guideline: The point is establishing the domination property of the composed reduction.The hypothesis that reductions do not make too short queries is instrumental here.Exercise 10.18 For any S 2 NP present a simple probability ensemble X suchthat the generic reduction used in the proof of Theorem 2.19, when applied to(S;X), violates the domination condition with respect to (Su; U 0).Guideline: Consider X = fXngn2N such that Xn is uniform over f0n=2x0 : x0 2f0; 1gn=2g.Exercise 10.19 (variants of the Coding Lemma) Prove the following two vari-ants of the Coding Lemma (which is stated in the proof of Theorem 10.17).

500 CHAPTER 10. RELAXING THE REQUIREMENTS1. A variant that refers to any e�ciently computable function � : f0; 1g� ! [0; 1]that is monotonically non-decreasing over f0; 1g� (i.e., �(x0) � �(x00) for anyx0 < x00 2 f0; 1g�). That is, unlike in the proof of Theorem 10.17, here itholds that �(0n+1) � �(1n) for every n.2. As in Part 1, except that in this variant the function � is strictly increasingand the compression condition requires that jC�(x)j � log2(1=�0(x)) ratherthan jC�(x)j � 1 +minfjxj; log2(1=�0(x))g, where �0(x) def= �(x)� �(x � 1).In both cases, the proof is less cumbersome than the one presented in the maintext.Exercise 10.20 Prove that for any problem (S;X) in distNP there exists a simpleprobability ensemble Y such that the reduction used in the proof of Theorem 2.19su�ces for reducing (S;X) to (Su; Y).Guideline: Consider Y = fYngn2N such that Yn assigns to the instance hM;x; 1ti aprobability mass proportional to �x def= Pr[Xjxj = x]. Speci�cally, for every hM;x; 1ti itholds that Pr[Yn = hM;x; 1ti] = 2�jMj � �x=�n2�, where n def= jhM; x; 1tij def= jM j + jxj + t.Alternatively, we may set Pr[Yn = hM;x; 1ti] = �x if M = MS and t = pS(jxj) andPr[Yn = hM;x; 1ti] = 0 otherwise, where MS and PS are as in the proof of Theorem 2.19.Exercise 10.21 (monotone markability and monotone reductions) In con-tinuation to Exercise 2.30, we say that a set T is monotonically markable if thereexists a polynomial-time (marking) algorithm M such that1. For every z; � 2 f0; 1g�, it holds that M(z; �) 2 T if and only if z 2 T .2. Monotonicity: for every jz0j = jz00j and �0 < �00, it holds that M(z0; �0) <M(z00; �00), where the inequalities refer to the standard lexicographic orderof strings.3. Auxiliary length requirements:(a) If jz0j = jz00j and j�0j = j�00j, then jM(z0; �0)j = jM(z00; �00)j.(b) If jz0j � jz00j and j�0j < j�00j, then jM(z0; �0)j < jM(z00; �00)j.(c) There exists a 1-1 polynomial p : N!N such that for every ` and everyz 2 [ì=1f0; 1gi there exists t 2 [p(`)] such that jM(z; 1t)j = p(`).The �rst two requirements imply that jM(z; �)j is a function of jzj and j�j,which increases with j�j. The third requirement implies that, for every `,each string of length at most ` can be mapped to a string of length p(`).Note that Condition 1 is reproduced from Exercise 2.30, whereas Conditions 2 and 3are new. Prove that if the set S is Karp-reducible to the set T and T is monotoni-cally markable then S is Karp-reducible to T by a reduction that is monotone andlength-regular (i.e., the reduction satis�es the conditions of Proposition 10.18).

10.2. AVERAGE CASE COMPLEXITY 501Guideline: Given a Karp-reduction f from S to T , �rst obtain a length-regular reductionf 0 from S to T (by applying the marking algorithm to f(x), while using Conditions 1and 3c). In particular, one can guarantee that if jx0j > jx00j then jf 0(x0)j > jf 0(x00)j. Next,obtain a reduction f 00 that is also monotone (e.g., by letting f 00(x) = M(f 0(x); x), whileusing Conditions 1 and 2).32Exercise 10.22 (monotone markability and markability) Prove that if a setis monotonically markable (as per Exercise 10.21) then it is markable (as per Ex-ercise 2.30).Guideline: Let M denote the guaranteed monotone-marking algorithm. For starters,assume that M is 1-1, and de�ne M 0(z; �) = M(z; hz; �i). Note that the preimage(z; �) can be found by conducting a binary search (for each of the possible values of jzj).In the general case, we modify the construction so that to guarantee that M 0 is 1-1.Speci�cally, let idx(n;m) = n +Pn+mi=2 (i � 1) be the index of (n;m) in an enumerationof all pairs of positive integers, and p be as in Condition 3c. Then, let M 0(z; �) =M(z; Ct(jzj;j�j)(hz; �i)), where t(n;m) = !(n+m) satis�es jM(1n; 1t(n;m))j = p(idx(n;m))and Ct(y) is a monotone encoding of y using a t-bit long string.Exercise 10.23 (some monotonically markable sets) Referring to Exercise 10.21,verify that each of the twenty-one NP-complete problems treated in in Karp's �rstpaper on NP-completeness [136] is monotonically markable. For starters, considerthe sets SAT, Clique, and 3-Colorability.Guideline: For SAT consider the following marking algorithmM . This algorithm uses two(�xed) satis�able formulae of the same length, denoted 0 and 1, such that 0 < 1. Forany formula � and any binary string �1 � � ��m 2 f0; 1gm, it holds that M(�; �1 � � ��m) = �1 ^ � � � ^ �m ^ �, where 0 and 1 use variables that do not appear in �. Note thatthe multiple occurrences of � can be easily avoided (by using \variations" of �).Exercise 10.24 (randomized reductions) Following the outline in x10.2.1.3,provide a de�nition of randomized reductions among distributional problems.1. In analogy to Exercise 10.15, prove that randomized reductions preserve fea-sible solveability (i.e., typical solveability in probabilistic polynomial-time).That is, if the distributional problem (S;X) is randomly reducible to thedistributional problem (S0; X 0) and (S0; X 0) 2 tpcBPP, then (S;X) is intpcBPP.2. In analogy to Exercise 10.16, prove that randomized reductions preservesolveability by probabilistic algorithms that err with probability at most 1=3on each input and typically run in polynomial-time.3. Prove that randomized reductions are transitive (cf. Exercise 10.17).32Actually, Condition 2 (combined with the length regularity of f 0) only takes care of mono-tonicity with respect to strings of equal length. To guarantee monotonicity with respect to stringsof di�erent length, we also use Condition 3b (and jf 0(x0)j > jf 0(x00)j for jx0j > jx00j).

502 CHAPTER 10. RELAXING THE REQUIREMENTS4. Show that the error probability of randomized reductions can be reduced(while preserving the domination condition).Extend the foregoing to reductions that involve distributional search problems.Exercise 10.25 (simple vs sampleable ensembles { Part 1) Prove that anysimple probability ensemble is polynomial-time sampleable.Guideline: See Exercise 10.14.Exercise 10.26 (simple vs sampleable ensembles { Part 2) Assuming that#P contains functions that are not computable in polynomial-time, prove thatthere exists polynomial-time sampleable ensembles that are not simple.Guideline: Consider any R 2 PC and suppose that p is a polynomial such that (x; y) 2 Rimplies jyj = p(jxj). Then consider the sampling algorithm A that, on input 1n, uniformlyselects (x; y) 2 f0; 1gn�1 � f0; 1gp(n�1) and outputs x1 if (x; y) 2 R and x0 otherwise.Note that #R(x) = 2jxj+p(jxj) � Pr[A(1jxj+1)=x1].Exercise 10.27 (distributional versions of NPC problems { Part 1 [29])Prove that if Su is Karp-reducible to S by a mapping that does not shrink the inputthen there exists a polynomial-time sampleable ensemble X such that any problemin distNP is reducible to (S;X).Guideline: Prove that the guaranteed reduction of Su to S also reduces (Su; U 0) to(S;X), for some sampleable probability ensemble X. Consider �rst the case that thestandard reduction of Su to S is length preserving, and prove that, when applied to asampleable probability ensemble, it induces a sampleable distribution on the instancesof S. (Note that U 0 is sampleable (by Exercise 10.25).) Next extend the treatment tothe general case, where applying the standard reduction to U 0n induces a distribution on[poly(n)m=n f0; 1gm (rather than a distribution on f0; 1gn).Exercise 10.28 (distributional versions of NPC problems { Part 2 [29])Prove Theorem 10.25 (i.e., if Su is Karp-reducible to S by a mapping that doesnot shrink the input then there exists a polynomial-time sampleable ensemble Xsuch that any problem in sampNP is reducible to (S;X)).Guideline: We establish the claim for S = Su, and the general claim follows by usingthe reduction of Su to S (as in Exercise 10.27). Thus, we focus on showing that, forsome (suitably chosen) sampleable ensemble X, any (S0; X 0) 2 sampNP is reducible to(Su; X). Loosely speaking, X will be an adequate convex combination of all sampleabledistributions (and thusX will neither equal U 0 nor be simple). Speci�cally, X = fXngn2Nis de�ned such that the sampler for Xn uniformly selects i 2 [n], emulates the execution ofthe ith algorithm (in lexicographic order) on input 1n for n3 steps,33 and outputs whatever33Needless to say, the choice to consider n algorithms (in the de�nition of Xn) is quite arbitrary.Any other unbounded function of n that is at most a polynomial (and is computable in polynomial-time) will do. (More generally, we may select the ith algorithm with pi, as long as pi is a noticeablefunction of n.) Likewise, the choice to emulate each algorithm for a cubic number of steps (rathersome other �xed polynomial number of steps) is quite arbitrary.

10.2. AVERAGE CASE COMPLEXITY 503the latter has output (or 0n in case the said algorithm has not halted within n3 steps).Prove that, for any (S00; X 00) 2 sampNP such that X 00 is sampleable in cubic time, thestandard reduction of S00 to Su reduces (S00; X 00) to (Su; X) (as per De�nition 10.15; i.e.,in particular, it satis�es the domination condition).34 Finally, using adequate padding,reduce any (S0; X 0) 2 sampNP to some (S00; X 00) 2 sampNP such that X 00 is sampleablein cubic time.Exercise 10.29 (search vs decision in the context of sampleable ensembles)Prove that every problem in sampNP is reducible to some problem in sampPC,and every problem in sampPC is randomly reducible to some problem in sampNP .Guideline: See proof of Theorem 10.23.

34Note that applying this reduction to X00 yields an ensemble that is also sampleable in cubictime. This claim uses the fact that the standard reduction runs in time that is less than cubic(and in fact almost linear) in its output, and the fact that the output is longer than the input.

504 CHAPTER 10. RELAXING THE REQUIREMENTS

EpilogueFarewell, Hans { whether you live or end where you are! Yourchances are not good. The wicked dance in which you are caughtup will last a few more sinful years, and we would not wagermuch that you will come out whole. To be honest, we are notreally bothered about leaving the question open. Adventures inthe esh and spirit, which enhanced and heightened your ordi-nariness, allowed you to survive in the spirit what you probablywill not survive in the esh. There were majestic moments whenyou saw the intimation of a dream of love rising up out of deathand the carnal body. Will love someday rise up out of this world-wide festival of death, this ugly rutting fever that inames therainy evening sky all round?Thomas Mann, The Magic Mountain, The Thunderbolt.We hope that this work has succeeded in conveying the fascinating avor of theconcepts, results and open problems that dominate the �eld of computational com-plexity. We believe that the new century will witness even more exciting develop-ments in this �eld, and urge the reader to try to contribute to them. But beforebidding goodbye, we wish to express a few more thoughts.As noted in Section 1.1.1, so far complexity theory has been far more success-ful in relating fundamental computational phenomena than in providing de�niteanswers regarding fundamental questions. Consider, for example, the theory of NP-completeness versus the P-versus-NP Question, or the theory of pseudorandomnessversus establishing the existence of one-way function (even under P 6= NP). Thefailure to resolve questions of the \absolute" type is the source of common frustra-tion and one often wonders about the reasons for this failure.Our feeling is that many of these failures are really due to the di�culty ofthe questions asked, and that one tends to underestimate their hardness becausethey are so appealing and natural. Indeed, the underlying sentiment is that ifa question is appealing and natural then answering it should not be hard. Wedoubt this sentiment. Our own feeling is that the more intuitive a question is,the harder it may be to answer. Our view is that intuitive questions arise froman encounter with the raw and chaotic reality of life, rather than from an arti�cialconstruct which is typically endowed with a rich internal structure. Indeed, natural505

506 CHAPTER 10. RELAXING THE REQUIREMENTScomplexity classes and natural questions regarding computation arise from lookingat the reality of computation from the outside and thus lack any internal structure.Speci�cally, complexity classes are de�ned in terms of the \external behavior" ofpotential algorithms (i.e., the resources such algorithms require) rather than interms of the \internal structure" (of the problem). In our opinion, this \externalnature" of the de�nitions of complexity theoretic questions makes them hard toresolve.Another hard aspect regarding the \absolute" (or \lower-bound") type of ques-tions is the fact that they call for impossibility results. That is, the natural formu-lation of these questions calls for proving the non-existence of something (i.e., thenon-existence of e�cient procedures for solving the problem in question). Needlessto say, proving the non-existence of certain objects is typically harder than provingexistence of related objects (indeed, see Section 9.1). Still, proofs of non-existenceof certain objects are known in various �elds and in particular in complexity theory,but such proofs tend to either be trivial (see, e.g., Section 4.1) or are derived byexhibiting a sophisticated process that transforms the original question to a trivialone. Indeed, the latter case is the one that underlies many of the impressive suc-cesses of circuit complexity, and all relative results of the \high-level" direction havea similar nature (i.e., of relating one computational question to another). Thus,we are not suggesting that the \absolute" questions of complexity theory cannotbe resolved, but are rather suggesting an intuitive explanation to the di�culties ofresolving them.The obvious fact that di�cult questions can be resolved is demonstrated byseveral recent results, which are mentioned in this book and \forced" us to modifyearlier drafts of it. Examples include the log-space graph exploration algorithmpresented in Section 5.2.4 and the alternative proof of the PCP Theorem presentedin x9.3.2.3 as well as Theorem 10.19 and the brief mention of the results of [171, 240].

Appendix AGlossary of ComplexityClassesSummary: This glossary includes self-contained de�nitions of mostcomplexity classes mentioned in the book. Needless to say, the glossaryo�ers a very minimal discussion of these classes and the reader is re-ferred to the main text for further discussion. The items are organizedby topics rather than by alphabetic order. Speci�cally, the glossary ispartitioned into two parts, dealing separately with complexity classesthat are de�ned in terms of algorithms and their resources (i.e., timeand space complexity of Turing machines) and complexity classes de-�ned in terms of non-uniform circuits (and referring to their size anddepth). The algorithmic classes include time-complexity based classes(such as P , NP , coNP , BPP, RP , coRP , PH, E , EXP and NEXP)and the space complexity classes L, NL, RL and PSPACE . The non-uniform classes include the circuit classes P=poly as well as NCk andACk.De�nitions (and basic results) regarding many other complexity classes are availableat the constantly evolving Complexity Zoo [1].A.1 PreliminariesComplexity classes are sets of computational problems, where each class containsproblems that can be solved with speci�c computational resources. To de�ne acomplexity class one speci�es a model of computation, a complexity measure (liketime or space), which is always measured as a function of the input length, and abound on the complexity (of problems in the class).We follow the tradition of focusing on decision problems, but refer to theseproblems using the terminology of promise problems (see Section 2.4.1). That is,we will refer to the problem of distinguishing inputs in �yes from inputs in �no,509

510 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSESand denote the corresponding decision problem by � = (�yes;�no). Standarddecision problems are viewed as a special case in which �yes [�no = f0; 1g�, andthe standard formulation of complexity classes is obtained by postulating that thisis the case. We refer to this case as the case of a trivial promise.The prevailing model of computation is that of Turing machines. This modelcaptures the notion of (uniform) algorithms (see Section 1.2.3). Another importantmodel is the one of non-uniform circuits (see Section 1.2.4). The term uniformityrefers to whether the algorithm is the same one for every input length or whethera di�erent \algorithm" (or rather a \circuit") is considered for each input length.We focus on natural complexity classes, obtained by considering natural com-plexity measures and bounds. Typically, these classes contain natural computa-tional problems (which are de�ned in Appendix G). Furthermore, almost all ofthese classes can be \characterized" by natural problems, which capture everyproblem in the class. Such problems are called complete for the class, which meansthat they are in the class and every problem in the class can be \easily" reduced tothem, where \easily" means that the reduction takes less resources than whateverseems to be requires for solving each individual problem in the class. Thus, anye�cient algorithm for a complete problem implies an algorithm of similar e�ciencyfor all problems in the class.Organization: The glossary is organized by topics (rather than by alphabetic or-der of the various items). Speci�cally, we partition the glossary to classes de�ned interms of algorithmic resources (i.e., time and space complexity of Turing machines)and classes de�ned in terms of circuit (size and depth). The former (algorithm-based) classes are reviewed in Section A.2, while the latter (circuit-based) classesare reviewed in Section A.3.A.2 Algorithm-based classesThe two main complexity measures considered in the context of (uniform) algo-rithms are the number of steps taken by the algorithm (i.e., its time complexity)and the amount of "memory" or \work-space" consumed by the computation (i.e.,its space complexity). We review the time complexity based classes P , NP , coNP ,BPP, RP , coRP , ZPP, PH, E , EXP and NEXP as well as the space complexityclasses L, NL, RL and PSPACE .By prepending the name of a complexity class (of decision problems) withthe pre�x \co" we mean the class of complement problems; that is, the problem� = (�yes;�no) is in coC if and only if (�no;�yes) is in C. Speci�cally, decidingmembership in the set S is in the class coC if and only if deciding membership inthe set f0; 1g� n S is in the class C. Thus, the de�nition of coNP and coRP canbe easily derived from the de�nitions of NP and RP , respectively. Complexityclasses de�ned in terms of symmetric acceptance criteria (e.g., deterministic andtwo-sided error randomized classes) are trivially closed under complementation(e.g., coP = P and coBPP = BPP) and so we do not present their \co"-classes.

A.2. ALGORITHM-BASED CLASSES 511In other cases (most notably NL), the closure property is highly non-trivial andwe comment about it.A.2.1 Time complexity classesWe start with classes that are closely related to polynomial-time computations (i.e.,P , NP , BPP, RP and ZPP), and latter consider the classes PH, E , EXP andNEXP .A.2.1.1 Classes closely related to polynomial timeThe most prominent complexity classes are P and NP, which are extensivelydiscussed in Section 2.1. We also consider classes related to randomized polynomial-time, which are discussed in Section 6.1.P and NP. The class P consists of all decision problem that can be solved in(deterministic) polynomial-time. A decision problem � = (�yes;�no) is in NPif there exists a polynomial p and a (deterministic) polynomial-time algorithm Vsuch that the following two conditions hold1. For every x 2 �yes there exists y 2 f0; 1gp(jxj) such that V (x; y) = 1.2. For every x 2 �no and every y 2 f0; 1g� it holds that V (x; y) = 0.A string y satisfying Condition 1 is called an NP-witness (for x). Clearly, P � NP .Reductions and NP-completeness (NPC). A problem is NP-complete ifit is in NP and every problem in NP is polynomial-time reducible to it, wherepolynomial-time reducibility is de�ned and discussed in Section 2.2. Loosely speak-ing, a polynomial-time reduction of problem � to problem �0 is a polynomial-timealgorithm that solves � by making queries to a subroutine that solves problem �0,where the running-time of the subroutine is not counted in the algorithm's timecomplexity. Typically, NP-completeness is de�ned while restricting the reductionto make a single query and output its answer. Such a reduction, called a Karp-reduction, is represented by a polynomial-time computable mapping that mapsyes-instances of � to yes-instances of �0 (and no-instances of � to no-instances of�0). Hundreds of NP-complete problems are listed in [85].Probabilistic polynomial-time (BPP, RP and ZPP). A decision problem� = (�yes;�no) is in BPP if there exists a probabilistic polynomial-time algorithmA such that the following two conditions hold1. For every x 2 �yes it holds that Pr[A(x)=1] � 2=3.2. For every x 2 �no it holds that Pr[A(x)=0] � 2=3.

512 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSESThat is, the algorithm has two-sided error probability (of 1=3), which can be furtherreduced by repetitions. We stress that due to the two-sided error probability ofBPP, it is not known whether or not BPP is contained in NP . In addition tothe two-sided error class BPP, we consider one-sided error and zero-error classes,denoted RP and ZPP, respectively. A problem � = (�yes;�no) is in RP if thereexists a probabilistic polynomial-time algorithm A such that the following twoconditions hold1. For every x 2 �yes it holds that Pr[A(x)=1] � 1=2.2. For every x 2 �no it holds that Pr[A(x)=0] = 1.Again, the error probability can be reduced by repetitions, and thus RP � BPP \NP . A problem� = (�yes;�no) is in ZPP if there exists a probabilistic polynomial-time algorithm A, which may output a special (\don't know") symbol ?, such thatthe following two conditions hold1. For every x 2 �yes it holds that Pr[A(x)2f1;?g] = 1 and Pr[A(x)=1] � 1=2.2. For every x 2 �no it holds that Pr[A(x)2f0;?g] = 1 and Pr[A(x)=0] � 1=2.Note that P � ZPP = RP \ coRP . When de�ned in terms of promise problems,all the aforementioned randomized classes have complete problems (w.r.t Karp-reductions), but the same is not known when considering only standard decisionproblems (with trivial promise).The counting class #P. Functions in #P count the number of solutions toan NP-type search problem (or, equivalently, the number of NP-witnesses for ayes-instance of a decision problem in NP). Formally, a function f is in #P if thereexists a polynomial p and a (deterministic) polynomial-time algorithm V such thatf(x) = jfy 2 f0; 1gp(jxj) : V (x; y) = 1gj. Indeed, p and V are as in the de�nitionof NP , and it follows that deciding membership in the set fx : f(x) � 1g is inNP . Clearly, #P problems are solvable in polynomial space. Surprisingly, thepermanent of positive integer matrices is #P-complete (i.e., it is in #P and anyfunction in #P is polynomial-time reducible to it).Interactive proofs. A decision problem � = (�yes;�no) has an interactive proofsystem if there exists a polynomial-time strategy V such that the following twoconditions hold:1. For every x 2 �yes there exists a prover strategy P such that the veri�er Valways accepts after interacting with the prover P on common input x.2. For every x 62 �no and every strategy P �, the veri�er V rejects with proba-bility at least 12 after interacting with P � on common input x.The corresponding class is denoted IP , and turns out to equal PSPACE. (Forfurther details see Section 9.1.)

A.2. ALGORITHM-BASED CLASSES 513A.2.1.2 Other time complexity classesThe classes E and EXP corresponding to problems that can be solved (by a deter-ministic algorithm) in time 2O(n) and 2poly(n), respectively, for n-bit long inputs.Clearly, NP � EXP . We also mention NEXP , the class of problems that can besolved by a non-deterministic machine in 2poly(n) steps.1In general, one may de�ne a complexity class for every time bound and ev-ery type of machine (i.e., deterministic, probabilistic and non-deterministic), butpolynomial and exponential bounds seem most natural and very robust. Anotherrobust type of time bounds that is sometimes used is quasi-polynomial time (i.e., ePdenotes the class of problems solvable by deterministic machines of time complexityexp(poly(logn))).The Polynomial-time hierarchy, PH. For any natural number k, the kth levelof the polynomial-time hierarchy consists of problems � = (�yes;�no) such thatthere a polynomial p and a polynomial-time algorithm V that satis�es the followingtwo requirements:1. For every x 2 �yes there exists y1 2 f0; 1gp(jxj) such that for every y2 2f0; 1gp(jxj) there exists y3 2 f0; 1gp(jxj) such that for every y4 2 f0; 1gp(jxj) ...it holds that V (x; y1; y2; y3; y4; :::; yk)=1. That is, the condition regarding xconsists of k alternating quanti�ers.2. For every x 2 �no the foregoing (k-alternating) condition does not hold.That is, for every y1 2 f0; 1gp(jxj) there exists y2 2 f0; 1gp(jxj) such thatfor every y3 2 f0; 1gp(jxj) there exists y4 2 f0; 1gp(jxj) ... it holds thatV (x; y1; y2; y3; y4; :::; yk)=0.Such a problem � is said to be in �k (and �k def= co�k). Indeed, NP = �1corresponds to the special case where k = 1. Interestingly, PH is polynomial-timereducible to #P .A.2.2 Space complexityWhen de�ning space-complexity classes, one counts only the space consumed bythe actual computation, and not the space occupied by the input and output. Thisis formalized by postulating that the input is read from a read-only device (resp.,the output is written on a write-only device). Four important classes of decisionproblems are de�ned next.1Alternatively, analogously to the de�nition of NP , a problem � = (�yes ;�no) is in NEXPif there exists a polynomial p and a polynomial-time algorithm V such that the two conditionshold1. For every x 2 �yes there exists y 2 f0; 1g2p(jxj) such that V (x; y) = 1.2. For every x 2 �no and every y 2 f0; 1g� it holds that V (x; y) = 0.

514 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSES� The class L consists of problems solvable in logarithmic space. That is, aproblem � is in L if there exists a standard (i.e., deterministic) algorithm oflogarithmic space-complexity for solving �. This class contains some simplecomputational problems (e.g., matrix multiplication), and arguably capturesthe most space-e�cient computations. Interestingly, L contains the problemof deciding connectivity of (undirected) graphs.� Classes of problems solvable by randomized algorithms of logarithmic space-complexity include RL and BPL, which are de�ned analogously to RP andBPP. That is, RL corresponds to algorithms with one-sided error probabil-ity, whereas BPL allows two-sided error.� The class NL is the non-deterministic analogue of L, and is traditionally de-�ned in terms of non-deterministic machines of logarithmic space-complexity.2The classNL contains the problem of deciding whether there exists a directedpath between two given vertexes in a given directed graph. In fact, the lat-ter problem is complete for the class (under logarithmic-space reductions).Interestingly, coNL equals NL.� The class PSPACE consists of problems solvable in polynomial space. Thisclass contains very di�cult problems, including the computation of winningstrategies for any \e�cient 2-party games" (see Section 5.4).Clearly, L � RL � NL � P and NP � PSPACE � EXP .A.3 Circuit-based classesWe refer the reader to Section 1.2.4 for a de�nition of Boolean circuits as computingdevices. The two main complexity measures considered in the context of (non-uniform) circuits are the number of gates (or wires) in the circuit (i.e., the circuit'ssize) and the length of the longest directed path from an input to an output (i.e.,the circuit's depth).Throughout this section, when we talk of circuits, we actually refer to families ofcircuits containing a circuit for each instance length, where the n-bit long instancesof the computational problem are handled by the nth circuit in the family. Similarly,when we talk of the size and depth of a circuit, we actually mean the (dependenceon n of the) size and depth of the nth circuit in the family.General polynomial-size circuits (P/poly). The main motivation for the in-troduction of complexity classes based on (non-uniform) circuits is the developmentof lower-bounds. For example, the class of problems solvable by polynomial-sizecircuits, denoted P=poly, is a (strict)3 super-set of P . Thus, showing that NPis not contained in P=poly would imply P 6= NP. For further discussion see2See further discussion of this de�nition in Section 5.3.3In particular, P=poly contains some decision problems that are not solvable by any uniformalgorithm.

A.3. CIRCUIT-BASED CLASSES 515Appendix B.2. An alternative de�nition of P=poly in terms of \machines thattake advice" is provided in Section 3.1.2. We mention that if NP � P=poly thenPH = �2.The subclasses AC0 and TC0. The class AC0, discussed in Appendix B.2.3,consists of problems solvable by constant-depth polynomial-size circuits of un-bounded fan-in. The analogue class that allows also (unbounded fan-in) majority-gates (or, equivalently, threshold-gates) is denoted T C0.The subclasses AC and NC. Turning back to the standard basis (of :, _and ^ gates), for any non-negative integer k, we denote by NCk (resp., ACk)the class of problems solvable by polynomial-size circuits of bounded fan-in (resp.,unbounded fan-in) having depth O(logk n), where n is the input length. Clearly,NCk � ACk � NCk+1. A commonly referred class is NC def= [k2NNCk.We mention that the class NC2 � NL is the habitat of most natural compu-tational problems of Linear Algebra: solving a linear system of equations as wellas computing the rank, inverse and determinant of a matrix. The class NC1 con-tains all symmetric functions, regular languages as well as word problems for �nitegroups and monoids. The class AC0 contains all properties (of �nite objects) thatare expressible by �rst-order logic.Uniformity. The foregoing classes make no reference to the complexity of con-structing the adequate circuits, and it is plausible that there is no e�ective way ofconstructing these circuits (e.g., as in case of circuits that trivially solve undecid-able problem regarding unary instances). A minimal notion of constructibility ofsuch (polynomial-size) circuits is the existence of a polynomial time algorithm thatgiven 1n produces the nth relevant circuit (i.e., the circuit that solves the problemon instances of length n). Such a notion of constructibility means that the familyof circuits is \uniform" in some sense (rather than consisting of circuits that haveno relation between one another). Stronger notions of uniformity (e.g., log-spaceconstructibility) are more adequate for subclasses such as AC and NC. We men-tion that log-space uniform NC circuits correspond to parallel algorithms that usepolynomially many processors and run in polylogarithmic time.

516 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSES

Appendix BOn the Quest for LowerBoundsAlas, Philosophy, Medicine, Law, and unfortunately also Theol-ogy, have I studied in detail, and still remained a fool, not a bitwiser than before. Magister and even Doctor am I called, andfor a decade am I sick and tired of pulling my pupils by the noseand understanding that we can know nothing.1J.W. Goethe, Faust, Lines 354{364Summary: This appendix briey surveys some attempts at provinglower bounds on the complexity of natural computational problems. Inthe �rst part, devoted to Circuit Complexity, we describe lower boundson the size of (restricted) circuits that solve natural computationalproblems. This can be viewed as a program whose long-term goal isproving that P 6= NP . In the second part, devoted to Proof Complex-ity, we describe lower bounds on the length of (restricted) propositionalproofs of natural tautologies. This can be viewed as a program whoselong-term goal is proving that NP 6= coNP .We comment that while the activity in these areas is aimed towardsdeveloping proof techniques that may be applied to the resolution ofthe \big problems" (such as P versus NP), the current achievements(though very impressive) seem very far from reaching this goal. Cur-rent crown-jewel achievements in these areas take the form of tight (orstrong) lower bounds on the complexity of computing (resp., proving)\relatively simple" functions (resp., claims) in restricted models of com-putation (resp., proof systems).1This quote reects a common sentiment, not shared by the author of the current book.517

518 APPENDIX B. ON THE QUEST FOR LOWER BOUNDSB.1 PreliminariesCircuit complexity refers to a non-uniformmodel of computation (see Section 1.2.4),focusing on the size of such circuits, while ignoring the complexity of constructingadequate circuits. Similarly, proof complexity refers to proofs of tautologies, focus-ing on the length of such proofs, while ignoring the complexity of generating suchproofs.Both circuits and proofs are �nite objects that are de�ned on top of the notionof a directed acyclic graph (dag), reviewed in Appendix G.1. In such a dag, verticeswith no incoming edges are called inputs, vertices with no outgoing edges are calledoutputs, and the remaining vertices are called internal vertices. The size of a dagis de�ned as the number of its edges. We will be mostly interested in dags of\bounded fan-in" (i.e., for each vertex, the number of incoming edges is at mosttwo).In order to convert a dag into a computational device (resp., a proof), eachinternal vertex is labeled by a rule, which transforms values assigned to its prede-cessors to values at that vertex. Combined with any possible assignment of valuesto the inputs, these �xed rules induce an assignment of values to all the vertices ofthe dag (by a process that starts at the inputs, and assigns a value to each vertexbased on the values of its predecessors (and according to the corresponding rule)).� In the case of computation devices, the internal vertices are labeled by (binaryor unary) functions over some �xed domain (e.g., a �nite or in�nite �eld).These functions are called gates, and the labeled dag is called a circuit. Sucha circuit (with n inputs and m outputs) computes a �nite function over thecorresponding domain (mapping sequences of length n to sequences of lengthm).� In the case of proofs, the internal vertices are labeled by sound deduction(or inference) rules of some �xed proof system. Any assignment of axioms(of the said system) to the inputs of this labeled dag yields a sequence oftautologies (at all vertices). Typically the dag is assumed to have a singleoutput vertex, and the corresponding sequence of tautologies is viewed as aproof of the tautology assigned to the output.We note that both models partially adhere to the paradigm of simplicity thatunderlies the de�nitions of (uniform) computational models (as discussed in Sec-tion 1.2.3): the aforementioned rules are simple by de�nition { they are applied toat most two values. However, unlike in the case of (uniform) computational mod-els, the current models do not mandate a \uniform" consideration of all possible\inputs" (but rather allow a seperate consideration of each �nite \input" length).For example, each circuit can compute only a �nite function; that is, a functionde�ned over a �xed number of values (i.e., �xed input length). Likewise, a dagthat corresponds to a proof system, yields only proofs of tautologies that refer toa �xed number of axioms.22N.B., we refer to a �xed number of axioms, and not merely to a �xed number of axiom forms.

B.2. BOOLEAN CIRCUIT COMPLEXITY 519Focusing on circuits, we note that in order to allow the computation of func-tions that are de�ned for all input lengths, one must consider in�nite sequencesof dags, one for each length. This yields a model of computation in which each\machine" has an in�nite description (when referring to all input lengths). Indeed,this signi�cantly extends the power of the computation model beyond that of thenotion of algorithm (discussed in Section 1.2.3). However, since we are interestedin lower bounds here, this extension is certainly legitimate and hopefully fruitful:For example, one may hope that the �niteness of the individual circuits will facili-tate the application of combinatorial techniques towards the analysis of the model'spower and limitations. Furthermore, as we shall see, these models open the doorto the introduction (and study) of meaningful restricted classes of computations.Organization: The rest of this appendix is partitioned to three parts. In Sec-tion B.2 we consider Boolean circuits, which are the archetypical model of non-uniform computing devices. In Section B.3 we generalize the treatment by con-sidering arithmetic circuits, which may be de�ned for every algebraic structure(where Boolean circuits are viewed as a special case referring to the two-element�eld, GF(2)). Lastly, in Section B.4, we consider proof complexity.B.2 Boolean Circuit ComplexityIn Boolean circuits the values assigned to all inputs as well as the values induced(by the computation) at all intermediate vertices and outputs are bits. The set ofallowed gates is taken to be any complete basis (i.e., one that allows to compute allBoolean functions). The most popular choice of a complete basis is the set f^;_;:gcorresponding to (two-bit) conjunction, (two-bit) disjunction and negation (of asingle bit), respectively. (The speci�c choice of a complete basis hardly e�ects thestudy of circuit complexity.)For a �nite Boolean function f , we denote by S(f) the size of the smallestBoolean circuit computing f . We will be interested in sequences of functions ffng,where fn is a function on n input bits, and will study their size complexity (i.e.,S(fn)) asymptotically (as a function of n). With some abuse of notation, forf(x) def= fjxj(x), we let S(f) denote the integer function that assigns to n the valueS(fn). Thus, we refer to the following de�nition.De�nition B.1 (circuit complexity): Let f : f0; 1g�! f0; 1g� and ffng be suchthat f(x) = fjxj(x) for every x. The complexity of f (resp., ffng), denoted S(f)(resp., denoted n 7! S(fn)), is a function of n that represents the size of thesmallest Boolean circuit computing fn.We stress that di�erent circuits (e.g., having a di�erent number of inputs) are usedfor di�erent fn's. Still there may be a simple description of this sequence of circuits,say, an algorithm that on input n produces a circuit computing fn. In case suchRecall that an axiom form like � _ :� yields an in�nite number of axioms, each obtained bysubstituting the generic formula (or symbol) � with a �xed propositional formula.

520 APPENDIX B. ON THE QUEST FOR LOWER BOUNDSan algorithm exists and works in time polynomial in the size of its output, we saythat the corresponding sequence of circuits is uniform. Note that if f has a uniformsequence of polynomial-size circuits then f 2 P . On the other hand, any f 2 P has(a uniform sequence of) polynomial-size circuits. Consequently, a super-polynomialsize lower-bound on any function in NP would imply that P 6= NP .De�nition B.1 makes no reference to the uniformity condition (and indeed thesequence of smallest circuits computing ffng may be \highly nonuniform"). Ac-tually, non-uniformity makes the circuit model stronger than Turing machines (or,equivalently, stronger than the model of uniform circuits): there exist functions fthat cannot be computed by Turing machines (regardless of their running time),but do have linear-size circuits.3 This raises the possibility that proving circuitlower-bounds is even harder than resolving the P vs. NP Question.The common belief is that the extra power provided by non-uniformity is irrel-evant to the P vs. NP Question; in particular, it is conjectured that NP-completesets do not have polynomial-size circuits. This conjecture is supported by the factthat its failure will yield an unexpected collapse in the world of uniform compu-tational complexity (see Section 3.2). Furthermore, the hope is that abstractingaway the (supposedly irrelevant) uniformity condition will allow for combinatorialtechniques to analyze the power and limitations of polynomial-size circuits (w.r.tNP-sets). This hope has materialized in the study of restricted classes of circuits(see Sections B.2.2 and B.2.3). Indeed, another advantage of the circuit model isthat it o�ers a framework for describing naturally restricted models of computation.We also mention that Boolean circuits are a natural computational model, cor-responding to \hardware complexity" (which was indeed the original motivationfor their introduction by Shannon [202]), and so their study is of independent in-terest. Moreover, some of the techniques for analyzing Boolean functions foundapplications elsewhere (e.g., in computational learning theory, combinatorics andgame theory).B.2.1 Basic Results and QuestionsWe have already mentioned several basic facts about Boolean circuits. Anotherbasic fact is that most Boolean functions require exponential size circuits, which isdue to the gap between the number of functions and the number of small circuits.Thus, hard functions (i.e., functions that require large circuits and thus have noe�cient algorithms) do exist, to say the least. However, the aforementioned hard-ness result is proved via a counting argument, which provides no way of pointingto any speci�c hard function. The situation is even worse: super-linear circuit-sizelower-bounds are not known for any explicit function f , even when explicitnessis de�ned in a very mild sense that only requires f 2 EXP .4 One major openproblem of circuit complexity is establishing such lower-bounds.3See either Theorem 1.13 or Theorem 3.7.4Indeed, a more natural (and still mild) notion of explicitness requires that f 2 E . This notionimplies that the function's description (restricted to n-bit long inputs) can be constructed in timethat is polynomial in the length of the description.

B.2. BOOLEAN CIRCUIT COMPLEXITY 521Open Problem B.2 Find an explicit function f : f0; 1g� ! f0; 1g (or even f :f0; 1g�!f0; 1g� such that jf(x)j = O(jxj)) for which S(f) is not O(n).A particularly basic special case of this open problem is the question of whetheraddition is easier to perform than multiplication. Let ADDn : f0; 1gn�f0; 1gn !f0; 1gn+1 and MULTn :f0; 1gn�f0; 1gn!f0; 1g2n, denote the addition and multipli-cation functions, respectively, applied to a pair of integers (presented in binary).For addition we have an optimal upper bound; that is, S(ADDn) = O(n). Formultiplication, the standard (elementary school) quadratic-time algorithm can begreatly improved (via Discrete Fourier Transforms) to almost-linear time, yield-ing S(MULTn) = eO(n). Now, the question is whether or not there exist linear-sizecircuits for multiplication (i.e., is S(MULTn) = O(n))?Unable to report on any super-linear lower-bound (for an explicit function),we turn to restricted types of Boolean circuits. There has been some remarkablesuccesses in developing techniques for proving strong lower-bounds for natural re-stricted classes of circuits. We describe the most important ones, and refer thereader to [46, 235] for further detail.Recall that general Boolean circuits can compute every function. In contrast,restricted types of circuits (e.g., monotone circuits) may only be able to computea subclass of all functions (e.g., monotone functions), and in such a case we shallseek lower-bounds on the size of such restricted circuits that compute a function inthe corresponding subclass. Such a restriction is appealing provided that the cor-responding class of functions and the computations represented by the restrictedcircuits are natural (from a conceptual or practical viewpoint). The models dis-cussed below satisfy this condition.B.2.2 Monotone CircuitsOne very natural restriction on circuits arises by forbidding negation (in the setof gates), namely allowing only ^ and _ gates. The resulting circuits are calledmonotone and they can compute a function f : f0; 1gn!f0; 1g if and only if f ismonotone with respect to the standard partial order on n-bit strings (i.e., x � yi� for every bit position i we have xi � yi). An extremely natural question inthis context is whether or not non-monotone operations (in the circuit) help incomputing monotone functions?Before turning to this question, we note that most monotone functions re-quire exponential size circuits (let alone monotone ones).5 Still, proving a super-polynomial lower-bound on the monotone circuit complexity of an explicit mono-tone function was open for several decades, till the invention of the so-called ap-proximation method (by Razborov [187]).Let CLIQUEn be the function that, given a graph on n vertices (by its adjacencymatrix), outputs 1 if and only if the graph contains a complete subgraph of size5A key observation is that it su�ces to consider the set of n-bit monotone functions thatevaluate to 1 (resp., to 0) on each string x = x1 � � �xn satisfying Pni=1 xi > bn=2c (resp.,Pni=1 xi < bn=2c). Note that each such function is speci�ed by � nbn=2c� bits.

522 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS(say) pn. This function is clearly monotone, and CLIQUE = fCLIQUEng is knownto be NP-complete.Theorem B.3 ([187], improved in [7]): There are no polynomial-size monotonecircuits for CLIQUE.We note that the lower-bounds are sub-exponential in the number of vertices (i.e.,S(CLIQUEn) = exp(
(n1=8))), and that similar lower-bounds are known for func-tions in P . Thus, there exists an exponential separation between monotone circuitcomplexity and non-monotone circuit complexity, where this separation refers (ofcourse) to the computation of monotone functions.B.2.3 Bounded-Depth CircuitsThe next restriction refers to the structure of the circuit (or rather to its underlinggraph): we allow all gates, but limit the depth of the circuit. The depth of a dagis simply the length of the longest directed path in it. So in a sense, depth cap-tures the parallel time to compute the function: if a circuit has depth d, then thefunction can be evaluated by enough processors in d phases (where in each phasemany gates are evaluated in parallel). Indeed, parallel time is a natural and im-portant computational resource, referring to the following basic question: can onespeed up computation by using several computers in parallel? Determining whichcomputational tasks can be \parallelized" when many processors are available andwhich are \inherently sequential" is clearly a fundamental question.We will restrict d to be a constant, which still is interesting not only as a measureof parallel time but also due to the relation of this model to expressibility in �rstorder logic as well as to the Polynomial-time Hierarchy (de�ned in Section 3.2). Inthe current setting (of constant-depth circuits), we allow unbounded fan-in (i.e., ^-gates and _-gates taking any number of incoming edges), as otherwise each outputbit can depend only on a constant number of input bits.Let PAR (for parity) denote the sum modulo two of the input bits, and MAJ (formajority) be 1 if and only if there are more 1's than 0's among the input bits. Theinvention of the random restriction method (by Furst, Saxe, and Sipser [83]) led tothe following basic result.Theorem B.4 ([83], improved in [239, 115]): For all constant d, the functions PARand MAJ have no polynomial size circuit of depth d.The aforementioned improvement (of H�astad [115], following Yao [115]) gives arelatively tight lower-bound of exp(
(n1=(d�1))) on the size of n-input PAR circuitsof depth d.Interestingly, MAJ remains hard (for constant-depth polynomial-size circuits)even if the circuits are also allowed (unbounded fan-in) PAR-gates (this result isbased on yet another proof technique: approximation by polynomials [209, 188]).However, the \converse" does not hold (i.e., constant-depth polynomial-size cir-cuits with MAJ-gates can compute PAR), and in general the class of constant-depthpolynomial-size circuits with MAJ-gates (denoted T C0) seems quite powerful. In

B.2. BOOLEAN CIRCUIT COMPLEXITY 523particular, nobody has managed to prove that there are functions in NP that can-not be computed by such circuits, even if their depth is restricted to 3.B.2.4 Formula SizeThe �nal restriction is again structural { we require the underlying dag to be atree (i.e., a dag in which each vertex has at most one outgoing edge). Intuitively,this forbids the computation from reusing a previously computed intermediate value(and if this value is needed again then it has to be recomputed). Thus, the resultingBoolean circuits are simply Boolean formulae. (Indeed, we are back to the basicmodel allowing negation (:), and ^;_ gates of fan-in 2.)Formulae are natural not only for their prevalent mathematical use, but alsobecause their size can be related to the depth of general circuits and to the memoryrequirements of Turing machines (i.e., their space complexity). One of the oldestresults on Circuit Complexity, is that PAR and MAJ have nontrivial lower-boundsin this model. The proof follows a simple combinatorial (or information theoretic)argument.Theorem B.5 [144]: Boolean formulae for n-bit PAR and MAJ require
(n2) size.This should be contrasted with the linear-size circuits that exist for both functions.6Encouraged by Theorem B.5, one may hope to see super-polynomial lower-boundson the formula-size of explicit functions. This is indeed a famous open problem.Open Problem B.6 Find an explicit Boolean function f that requires super-polynomialsize formulae.An equivalent formulation of this open problem calls for proving a super-logarithmiclower-bound on the depth of formulae (or circuits) computing f .One appealing method for addressing such challenges is the communicationcomplexity method (of Karchmer and Wigderson [141]). This method asserts thatthe depth of a formula for a Boolean function f equals the communication com-plexity in the following two party game, Gf . In the game, the �rst party is givenx 2 f�1(1) \ f0; 1gn, the second party is given y 2 f�1(0) \ f0; 1gn, and theirgoal is to �nd a bit location on which x and y disagree (i.e., i such that xi 6= yi,which clearly exists). To that end, the party exchange messages, according to apredetermined protocol, and the question is what is the communication complexity(in terms of total number of bits exchanged on the worst-case input pair) of thebest such protocol. We stress that no computational restrictions are placed on theparties in the game/protocol.Note that proving a super-logarithmic lower-bound on the communication com-plexity of the game Gf will establish a super-logarithmic lower-bound on the depthof formulae (or circuits) computing f (and thus a super-polynomial lower-boundon the size of formulae computing f). We stress the fact that a lower-bound of apurely information theoretic nature implies a computational lower-bound!6We comment that S(PAR) = O(n) is trivial, but S(MAJ) = O(n) is not.

524 APPENDIX B. ON THE QUEST FOR LOWER BOUNDSWe mention that the communication complexity method has a monotone ver-sion such that the depth of monotone circuits is related to the communicationcomplexity of protocols that are required to �nd an i such that xi > yi (ratherthan any i such that xi 6= yi).7 In fact, the monotone version is better knownthan the general one, due to its success in leading to linear lower-bounds on themonotone depth of natural problems such as perfect matching (established by Razand Wigderson [186]).B.3 Arithmetic CircuitsWe now leave the Boolean rind, and discuss circuits over general �elds. Fixing any�eld F , the gates of the dag will now be the standard + and � operations of the�eld, yielding a so-called arithmetic circuit. The inputs of the dag will be assignedelements of the �eld F , and these values induce an assignment of values (in F) to allother vertices. Thus, an arithmetic circuit with n inputs and m outputs computesa polynomial map p : Fn ! Fm, and every such polynomial map is computedby some circuit (modulo the convention of allowing some inputs to be set to someconstants, most importantly the constant �1).8Arithmetic circuits provide a natural description of methods for computingpolynomial maps, and consequently their size is a natural measure of the complexityof such maps. We denote by SF (p) the size of a smallest circuit computing thepolynomial map p (and when no subscript is speci�ed, we mean that F = Q(the �eld of rational numbers)). As usual, we shall be interested in sequences offunctions, one per each input size, and will study the corresponding circuit-sizeasymptotically.We note that, for any �xed �nite �eld, arithmetic circuits can simulate Booleancircuits (on Boolean inputs) with only constant factor loss in size. Thus, the studyof arithmetic circuits focuses more on in�nite �elds, where lower bounds may beeasier to obtain.As in the Boolean case, the existence of hard functions is easy to establish (viadimension considerations, rather than counting argument), and we will be inter-ested in explicit (families of) polynomials. Roughly speaking, a polynomial is calledexplicit if there exists an e�cient algorithm that, when given a degree sequence(which speci�es a monomial), outputs the (�nite description of the) correspondingcoe�cient.An important parameter, which is absent in the Boolean model, is the degree ofthe polynomial(s) computed. It is obvious, for example, that a degree d polynomial(even in one variable, i.e., n = 1) requires size at least log d. We briey considerthe univariate case (where d is the only measure of \problem size"), which alreadycontains striking and important open problems. Then we move to the general7Note that since f is monotone, f(x) = 1 and f(y) = 0 implies the existence of an i such thatxi = 1 and yi = 0.8This allows the emulation of adding a constant, multiplication by a constant, and subtraction.We mention that, for the purpose of computing polynomials (over in�nite �elds), division can bee�ciently emulated by the other operations.

B.3. ARITHMETIC CIRCUITS 525multivariate case, in which (as usual) the number of variables (i.e., n) will be themain parameter (and we shall assume that d � n). We refer the reader to [86, 215]for further detail.B.3.1 Univariate PolynomialsHow tight is the log d lower-bounds for the size of an arithmetic circuit computinga degree d polynomial? A simple dimension argument shows that for most degreed polynomials p, it holds that S(p) =
(d). However, we know of no explicit one:Open Problem B.7 Find an explicit polynomial p of degree d, such that S(p) isnot O(log d).To illustrate this open problem, we consider the following two concrete polynomialspd(x) = xd and qd(x) = (x + 1)(x + 2) � � � (x + d). Clearly, S(pd) � 2 log d (viarepeated squaring), so the trivial lower-bound is essentially tight. On the otherhand, it is a major open problem to determine S(qd), and the common conjectureis that S(qd) is not polynomial in log d. To realize the importance of this conjecture,we state the following proposition:Proposition B.8 If S(qd) = poly(log d), then the integer factorization problemcan be solved by polynomial-size circuits.Recall that it is widely believed that the integer factorization problem is intractable(and, in particular, does not have polynomial-size circuits).Proof Sketch: Proposition B.8 follows by observing that qd(t) = ((t + d)!)=(t!)and that a small circuit for computing qd yields an e�cient way of obtaining thevalue ((t + d)!)=(t!) mod N (by emulating the computation of the former circuitmodulo N). Observing that (Pì=1Ki)! = Qì=1 qKi(Pj̀=i+1Kj), it follows thatthe value of (K!) mod N can be obtained by using circuits for the polynomialshq2i : i = 1; ::; blog2Kci. Next, observe that (K!) mod N and N are relativelyprime if and only if all prime factors of N are bigger than K. Thus, given acomposite N (and circuits for hq2i : i = 1; ::; blog2Nci), we can �nd a factor of Nby performing a binary search for a suitable K.B.3.2 Multivariate PolynomialsWe are now back to polynomials with n variables. To make n our only \problemsize" parameter, it is convenient to restrict ourselves to polynomials whose totaldegree is at most n.Once again, almost every polynomial p in n variables requires size S(p) �exp(
(n)), and we seek explicit polynomial (families) that are hard. Unlike inthe Boolean world, here there are slightly nontrivial lower-bounds (via elementarytools from algebraic geometry).Theorem B.9 [26]: S(xn1 + xn2 + � � �+ xnn) =
(n logn).

526 APPENDIX B. ON THE QUEST FOR LOWER BOUNDSThe same techniques extend to prove a similar lower-bound for other natural poly-nomials such as the symmetric polynomials and the determinant. Establishing astronger lower-bound for any explicit polynomial is a major open problem. Anotheropen problem is obtaining a super-linear lower-bound for a polynomial map of con-stant (even 1) total degree. Outstanding candidates for the latter open problemare the linear maps computing the Discrete Fourier Transform over the Complexnumbers, or the Walsh transform over the Rationals (for both O(n logn)-time al-gorithms are known, but no super-linear lower-bounds are known).We now focus on speci�c polynomials of central importance. The most naturaland well studied candidate for the last open problem is the matrix multiplicationfunction MM: let A;B be two m �m matrices over F , and de�ne MMn(A;B) to bethe sequence of n = m2 values of the entries of the matrix A � B. Thus, MMn is asequence of n explicit bilinear forms over the 2n input variables (which representthe entries of both matrices). It is known that SGF(2)(MMn) � 3n (cf., [206]). Onthe other hand, the obvious algorithm that takes O(m3) = O(n3=2) steps can beimproved.Theorem B.10 [62]: For every �eld F , it holds that SF (MMn) = o(n1:19).So what is the complexity of MM (even if one counts only multiplication gates)? Isit linear or almost-linear or is it the case that S(MM) > n� for some � > 1? This isindeed a famous open problem.We next consider the determinant and permanent polynomials (DET and PER,resp.) over the n = m2 variables representing an m�m matrix. While DET playsa major role in classical mathematics, PER is somewhat esoteric in that context(though it appears in Statistical Mechanics and Quantum Mechanics). In the con-text of complexity theory both polynomials are of great importance, because theycapture natural complexity classes. The function DET has relatively low complex-ity (and is related to the class of polynomials having polynomial-sized arithmeticformulae), whereas PER seems to have high complexity (and is complete for thecounting class #P (see x6.2.1)). Thus, it is conjectured that PER is not polynomial-time reducible to DET. One restricted type of reduction that makes sense in thisalgebraic context is a reduction by projection.De�nition B.11 (projections): Let pn : Fn ! F ` and qN : FN ! F ` be poly-nomial maps and x1; :::; xn be variables over F . We say that there is a projectionfrom pn to qN over F , if there exists a function � : [N]! fx1; :::; xng[F such thatpn(x1; :::; xn) � qN (�(1); :::; �(N)).Clearly, if there is a projection from pn to qN then SF (pn) � SF (qN). Let DETmand PERm denote the functions DET and PER restricted to m-by-m matrices. It isknown that there is a projection from PERm to DET3m , but to yield a polynomial-time reduction one would need a projection of PERm to DETpoly(m). Needless to say,it is conjectured that no such projection exists.

B.4. PROOF COMPLEXITY 527B.4 Proof ComplexityIt is common practice to classify proofs according to the level of their di�culty,but can this appealing classi�cation be put on sound grounds? This is essentiallythe task undertaken by Proof Complexity. It seeks to classify theorems accordingto the di�culty of proving them, much like Circuit Complexity seeks to classifyfunctions according to the di�culty of computing them. Furthermore, just likein circuit complexity, we shall also refer to a few (restricted) models, called proofsystems, which represent various methods of reasoning. Thus, the di�culty ofproving various theorems will be measured with respect to various proof systems.We will consider only propositional proof systems, and so the theorems (in thesesystems) will be propositional tautologies. Each of these systems will be completeand sound; that is, each tautology and only a tautology will have a proof relativeto these systems. The formal de�nition of a proof system spells out what we takefor granted: the e�ciency of the veri�cation procedure. In the following de�nitionthe e�ciency of the veri�cation procedure refers to its running-time measured interms of the total length of the alleged theorem and proof.9De�nition B.12 [61]: A (propositional) proof system is a polynomial-time Turingmachine M such that a formula T is a tautology if and only if there exists a string�, called a proof, such that M(�; T) = 1.In agreement with standard formalisms, the proof is viewed as coming before thetheorem. De�nition B.12 guarantees the completeness and soundness of the proofsystem as well as veri�cation e�ciency (relative to the total length of the allegedproof{theorem pair). Note that De�nition B.12 allows proofs of arbitrary length,suggesting that the length of the proof � is a measure of the complexity of thetautology T with respect to the proof system M .For each tautology T , let LM (T) denote the length of the shortest proof of T inM (i.e., the length of the shortest string � such that M accepts (�; T)). That is,LM captures the proof complexity of various tautologies with respect to the proofsystem M . Abusing notation, we let LM (n) denotes the maximum LM (T) overall tautologies T of length n. (By de�nition, for every proof system M , the valueLM (n) is well-de�ned and so LM is a total function over the natural numbers.) Thefollowing simple theorem provides a basic connection between proof complexity(with respect to any propositional proof system) and computational complexity(i.e., the NP-vs-coNP Question).Theorem B.13 [61]: There exists a propositional proof system M such that thefunction LM is upper-bounded by a polynomial if and only if NP = coNP.In particular, a propositional proof system M such that LM is upper-bounded bya polynomial coincides with a NP-proof system (as in De�nition 2.5) for the set ofpropositional tautologies, which is a coNP-complete set.9Indeed, this convention di�ers from the convention emplyed in Chapter 9, where the com-plexity of veri�cation (i.e., veri�er's running-time) was measured as a function of the length ofthe alleged theorem. Both approaches were mentioned in Section 2.1, where the two approachescoincide because in Section 2.1 we mandated proofs of length polynomial in the alleged theorem.

528 APPENDIX B. ON THE QUEST FOR LOWER BOUNDSThe long-term goal of Proof Complexity is establishing super-polynomial lower-bounds on the length of proofs in any propositional proof system (and thus es-tablishing NP 6= coNP). It is natural to start this formidable project by �rstconsidering simple (and thus weaker) proof systems, and then moving on to moreand more complex ones. Moreover, various natural proof systems, capturing ba-sic (restricted) types and \primitives" of reasoning as well as natural tautologies,suggest themselves as objects for this study. In the rest of this section we focus onsuch restricted proof systems.Di�erent branches of Mathematics such as logic, algebra and geometry give riseto di�erent proof systems, often implicitly. A typical system would have a set ofaxioms and a set of deduction rules. A proof (in this system) would proceed toderive the desired tautology in a sequence of steps, each producing a formula (oftencalled a line of the proof), which is either an axiom, or follows from previous for-mulae via one of the deduction rules. Regarding these proof systems, we make twoobservations. First, proofs in these systems can be easily veri�ed by an algorithmand thus they �t the general framework of De�nition B.12. Second, these proofsystems perfectly �t the model of a dag with internal vertices lbeled by deductionrules (as in Section B.1): When assigning axioms to the inputs, the application ofthe deduction rules at the internal vertices yields a proof of the tautology assignedto each output.10For various proof systems �, we turn to study the proof length L�(T) of tau-tologies T in proof system �. The �rst observation, revealing a major di�erencebetween proof complexity and circuit complexity, is that the trivial counting ar-gument fails. The reason is that, while the number of functions on n bits is 22n ,there are at most 2n tautologies of this length. Thus, in proof complexity, even theexistence of a hard tautology, not necessarily an explicit one, would be of interest(and, in particular, if established for all propositional proof systems then it wouldyield NP 6= coNP). (Note that here we refer to hard instances of of a problemand not to hard problems.) Anyhow, as we shall see, most known proof-lengthlower-bounds (with respect to restricted proof systems) apply to very natural (letalone explicit) tautologies.An important convention: There is an equivalent and somewhat more conve-nient view of (simple) proof systems, namely as (simple) refutation systems. First,recalling that 3SAT is NP-complete, note that the negation of any (propositional)tautology can be written as a conjunction of clauses, where each clause is a disjunc-tion of only 3 literals (variables or their negation). Now, if we take these clausesas axioms and derive (using the rules of the system) a obvious contradiction (e.g.,the negation of an axiom, or better yet the empty clause), then we have proved thetautology (since we have proved that its negation yields a contradiction). Proofcomplexity often takes the refutation viewpoint, and often exchanges \tautology"with its negation (\contradiction").10General proof systems as in De�nition B.12 can also be adapted to this formalism, by con-sidering a deduction rule that corresponds to a single step of the machine M . However, thededuction rules considered below are even simpler, and more importantly they are more natural.

B.4. PROOF COMPLEXITY 529Organization: The rest of this section is divided to three parts, referring tological, algebraic and geometric proof systems. We will briey describe importantrepresentative and basic results in each of these domains, and refer the readerto [27] for further detail (and, in particular, to adequate references).B.4.1 Logical Proof SystemsThe proof systems in this section will all have lines that are Boolean formulae,and the di�erences will be in the structural limits imposed on these formulae. Themost basic proof system, called Frege system, puts no restriction on the formulaemanipulated by the proof. It has one derivation rule, called the cut rule: A_C;B_:C ` A_B (for any propositional formulae A;B and C). Adding any other soundrule, like modus ponens, has little e�ect on the length of proofs in this system.Frege systems are basic in the sense that (in several variants) they are themost common systems in Logic. Indeed, polynomial length proofs in Frege systemsnaturally corresponds to \polynomial-time reasoning" about feasible objects. Themajor open problem in proof complexity is �nding any tautology (i.e., a family oftautologies) that has no polynomial-long proof in the Frege system.Since lower-bounds for Frege systems seem intractable at the moment, we turnto subsystems of Frege which are interesting and natural. The most widely studiedsystem (of refutation) is Resolution, whose importance stems from its use by mostpropositional (as well as �rst order) automated theorem provers. The formulae al-lowed as lines in Resolution are clauses (disjunctions), and so the cut rule simpli�esto the resolution rule: A _ x;B _ :x ` A _ B, for any clauses A;B and variable x.The gap between the power of general Frege systems and Resolution is reectedby the existence of tautologies that are easy for Frege and hard for Resolution. Aspeci�c example is provided by the pigeonhole principle, denoted PHPmn , which is apropositional tautology that expresses the fact that there is no one-to-one mappingof m pigeons to n < m holes.Theorem B.14 LFrege(PHPn+1n) = nO(1) but LResolution(PHPn+1n) = 2
(n)B.4.2 Algebraic Proof SystemsJust as a natural contradiction in the Boolean setting is an unsatis�able collectionof clauses, a natural contradiction in the algebraic setting is a system of polyno-mials without a common root. Moreover, CNF formulae can be easily convertedto a system of polynomials, one per clause, over any �eld. One often adds thepolynomials x2i � xi which ensure Boolean values.A natural proof system (related to Hilbert's Nullstellensatz, and to computa-tions of Grobner bases in symbolic algebra programs) is Polynomial Calculus, abbre-viated PC. The lines in this system are polynomials (represented explicitly by allcoe�cients), and it has two deduction rules: For any two polynomials g; h, the ruleg; h ` g + h, and for any polynomial g and variable xi, the rule g; xi ` xig. Stronglength lower-bounds (obtained from degree lower-bounds) are known for this sys-

530 APPENDIX B. ON THE QUEST FOR LOWER BOUNDStem. For example, encoding the pigeonhole principle PHPmn as a contradicting setof constant degree polynomials, we have the following lower-bound.Theorem B.15 For every n and every m > n, it holds that LPC(PHPmn) � 2n=2,over every �eld.B.4.3 Geometric Proof SystemsYet another natural way to represent contradictions is by a set of regions in spacethat have empty intersection. Again, we care mainly about discrete (say, Boolean)domains, and a wide source of interesting contradictions are integer programs aris-ing from Combinatorial Optimization. Here, the constraints are (a�ne) linearinequalities with integer coe�cients (so the regions are subsets of the Boolean cubecarved out by half-spaces). The most basic system is called Cutting Planes (CP),and its lines are linear inequalities with integer coe�cients. The deduction rulesof PC are (the obvious) addition of inequalities, and the (less obvious) division ofthe coe�cients by a constant (and rounding, taking advantage of the integrality ofthe solution space).While PHPmn is \easy" in this system, exponential lower-bounds are known forother tautologies. We mention that they are obtained from the monotone circuitlower bounds of Section B.2.2.

Appendix COn the Foundations ofModern CryptographyIt is possible to build a cabin with no foundations,but not a lasting building.Eng. Isidor Goldreich (1906{1995)Summary: Cryptography is concerned with the construction of com-puting systems that withstand any abuse: Such a system is constructedso to maintain a desired functionality, even under malicious attemptsaimed at making it deviate from this functionality.This appendix is aimed at presenting the foundations of cryptography,which are the paradigms, approaches and techniques used to concep-tualize, de�ne and provide solutions to natural security concerns. Itpresents some of these conceptual tools as well as some of the funda-mental results obtained using them. The emphasis is on the clari�cationof fundamental concepts, and on demonstrating the feasibility of solvingseveral central cryptographic problems. The presentation assumes ba-sic knowledge of algorithms, probability theory and complexity theory,but nothing beyond this.The appendix augments the treatment of one-way functions, pseudoran-dom generators and zero-knowledge proofs, given in Sections 7.1, 8.2and 9.2, respectively.1 Using these basic primitives, the appendix pro-vides a treatment of basic cryptographic applications such as Encryp-tion, Signatures, and General Cryptographic Protocols.1These augmentations are important for cryptography, but are not central to complexity theoryand thus were omitted from the main text. 531

532APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.1 Introduction and PreliminariesThe rigorous treatment and vast expansion of cryptography is one of the majorachievements of theoretical computer science. In particular, classical notions suchas secure encryption and unforgeable signatures were placed on sound grounds,and new (unexpected) directions and connections were uncovered. Furthermore,this development was coupled with the introduction of novel concepts such as com-putational indistinguishability, pseudorandomness, and zero-knowledge interactiveproofs, which are of independent interest (see Sections 7.1, 8.2 and 9.2, respec-tively). Indeed, modern cryptography is strongly coupled with complexity theory(in contrast to \classical" cryptography which is strongly related to informationtheory).C.1.1 The Underlying PrinciplesModern cryptography is concerned with the construction of information systemsthat are robust against malicious attempts aimed at causing these systems to violatetheir prescribed functionality. The prescribed functionality may be the secret andauthenticated communication of information over an insecure channel, the holdingof incoercible and secret electronic voting, or conducting any \fault-resilient" multi-party computation. Indeed, the scope of modern cryptography is very broad, andit stands in contrast to \classical" cryptography (which has focused on the singleproblem of enabling secret communication over insecure channel).C.1.1.1 Coping with adversariesNeedless to say, the design of cryptographic systems is a very di�cult task. Onecannot rely on intuitions regarding the \typical" state of the environment in whichthe system operates. For sure, the adversary attacking the system will try to ma-nipulate the environment into \untypical" states. Nor can one be content withcounter-measures designed to withstand speci�c attacks, since the adversary (whichacts after the design of the system is completed) will try to attack the schemes inways that are di�erent from the ones the designer had envisioned. Although thevalidity of the foregoing assertions seems self-evident, still some people hope thatin practice ignoring these tautologies will not result in actual damage. Experi-ence shows that these hopes rarely come true; cryptographic schemes based onmake-believe are broken, typically sooner than later.In view of the foregoing, it makes little sense to make assumptions regardingthe speci�c strategy that the adversary may use. The only assumptions that canbe justi�ed refer to the computational abilities of the adversary. Furthermore,the design of cryptographic systems has to be based on �rm foundations; whereasad-hoc approaches and heuristics are a very dangerous way to go.The foundations of cryptography are the paradigms, approaches and techniquesused to conceptualize, de�ne and provide solutions to natural \security concerns".Solving a cryptographic problem (or addressing a security concern) is a two-stageprocess consisting of a de�nitional stage and a constructive stage. First, in the

C.1. INTRODUCTION AND PRELIMINARIES 533de�nitional stage, the functionality underlying the natural concern is to be iden-ti�ed, and an adequate cryptographic problem has to be de�ned. Trying to listall undesired situations is infeasible and prone to error. Instead, one should de�nethe functionality in terms of operation in an imaginary ideal model, and requirea candidate solution to emulate this operation in the real, clearly de�ned, model(which speci�es the adversary's abilities). Once the de�nitional stage is completed,one proceeds to construct a system that satis�es the de�nition. Such a constructionmay use some simpler tools, and in such a case its security is proved relying on thefeatures of these tools.Example: Starting with the wish to ensure secret (resp., reliable) communicationover insecure channels, the de�nitional stage leads to the formulation of the notionof secure encryption schemes (resp., signature schemes). Next, such schemes areconstructed by using simpler primitives such as one-way functions, and the securityof the construction is proved via a \reducibility argument" (which demonstrateshow inverting the one-way function \reduces" to violating the claimed security ofthe construction; cf., Section 7.1.2).C.1.1.2 The use of computational assumptionsLike in the case of the foregoing example, most of the tools and applications ofcryptography exist only if some sort of computational hardness exists. Speci�cally,these tools and applications require (either explicitly or implicitly) the ability togenerate instances of hard problems. Such ability is captured in the de�nitionof one-way functions. Thus, one-way functions are the very minimum needed fordoing most natural tasks of cryptography. (It turns out, as we shall see, thatthis necessary condition is \essentially" su�cient; that is, the existence of one-wayfunctions (or augmentations and extensions of this assumption) su�ces for doingmost of cryptography.)Our current state of understanding of e�cient computation does not allow usto prove that one-way functions exist. In particular, as discussed in Sections 7.1.1and C.2, proving that one-way functions exist seems even harder than proving thatP 6= NP . Hence, we have no choice (at this stage of history) but to assume thatone-way functions exist. As justi�cation to this assumption we can only o�er thecombined beliefs of hundreds (or thousands) of researchers. Furthermore, thesebeliefs concern a simply stated assumption, and their validity follows from severalwidely believed conjectures which are central to various �elds (e.g., the conjecturedintractability of integer factorization is central to computational number theory).Since we need assumptions anyhow, \why not just assume whatever we want"(i.e., the existence of a solution to some natural cryptographic problem)? Well,�rstly, we need to know what we want; that is, we must �rst clarify what exactlywe want, which means going through the typically complex de�nitional stage. Butonce this stage is completed and a de�nition is obtained, can we just assume theexistence of a system satisfying this de�nition? Not really: the mere existence of ade�nition does not imply that it can be satis�ed by any system.

534APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYThe way to demonstrate that a cryptographic de�nition is viable (and thatthe corresponding intuitive security concern can be satis�ed) is to prove that itcan be satis�ed based on a better understood assumption (i.e., one that is morecommon and widely believed). For example, looking at the de�nition of zero-knowledge proofs, it is not a-priori clear that such proofs exist at all (in a non-trivialsense). The non-triviality of the notion was �rst demonstrated by presenting a zero-knowledge proof system for statements, regarding Quadratic Residuosity, which arebelieved to be hard to verify (without extra information). Furthermore, contraryto prior beliefs, it was later shown that the existence of one-way functions impliesthat any NP-statement can be proved in zero-knowledge. Thus, facts that werenot known at all to hold (and were even believed to be false), have been shownto hold by \reduction" to widely believed assumptions (without which most ofcryptography collapses anyhow).In summary: not all assumptions are equal. Thus, \reducing" a complex, newand doubtful assumption to a widely-believed and simple (or even merely simpler)assumption is of great value. Furthermore, \reducing" the solution of a new taskto the assumed security of a well-known primitive typically means providing aconstruction that, using the known primitive, solves the new task. This meansthat we do not only gain con�dence about the solvability of the new task, but wealso obtain a solution based on a primitive that, being well-known, typically hasseveral candidate implementations.C.1.2 The Computational ModelCryptography, as surveyed here, is concerned with the construction of e�cientschemes for which it is infeasible to violate the security feature. Thus, we need anotion of e�cient computations as well as a notion of infeasible ones. The compu-tations of the legitimate users of the scheme ought be e�cient, whereas violatingthe security features (by an adversary) ought to be infeasible. We stress that we donot identify feasible computations with e�cient ones, but rather view the formernotion as potentially more liberal. Let us elaborate.C.1.2.1 E�cient Computations and Infeasible onesE�cient computations are commonly modeled by computations that are polynomial-time in the security parameter. The polynomial bounding the running-time of thelegitimate user's strategy is �xed and typically explicit (and small). Indeed, ouraim is to have a notion of e�ciency that is as strict as possible (or, equivalently,develop strategies that are as e�cient as possible). Here (i.e., when referring tothe complexity of the legitimate users) we are in the same situation as in any algo-rithmic setting. Things are di�erent when referring to our assumptions regardingthe computational resources of the adversary, where we refer to the notion of fea-sible, which we wish to be as wide as possible. A common approach is to postulatethat feasible computations are polynomial-time too, but here the polynomial is nota-priori speci�ed (and is to be thought of as arbitrarily large). In other words, the

C.1. INTRODUCTION AND PRELIMINARIES 535adversary is restricted to the class of polynomial-time computations and anythingbeyond this is considered to be infeasible.Although many de�nitions explicitly refer to the convention of associating fea-sible computations with polynomial-time ones, this convention is inessential toany of the results known in the area. In all cases, a more general statement canbe made by referring to a general notion of feasibility, which should be preservedunder standard algorithmic composition, yielding theories that refer to adversariesof running-time bounded by any speci�c super-polynomial function (or class offunctions). Still, for sake of concreteness and clarity, we shall use the former con-vention in our formal de�nitions (but our motivational discussions will refer to anunspeci�ed notion of feasibility that covers at least e�cient computations).C.1.2.2 Randomized (or probabilistic) ComputationsRandomized computations play a central role in cryptography. One fundamentalreason for this fact is that randomness is essential for the existence (or rather thegeneration) of secrets. Thus, we must allow the legitimate users to employ random-ized computations, and certainly (since we consider randomization as feasible) wemust consider also adversaries that employ randomized computations. This bringsup the issue of success probability: typically, we require that legitimate users suc-ceed (in ful�lling their legitimate goals) with probability 1 (or negligibly close tothis), whereas adversaries succeed (in violating the security features) with negli-gible probability. Thus, the notion of a negligible probability plays an importantrole in our exposition.One requirement of the de�nition of negligible probability is to provide a robustnotion of rareness: A rare event should occur rarely even if we repeat the experimentfor a feasible number of times. That is, in case we consider any polynomial-timecomputation to be feasible, a function � : N ! N is called negligible if 1 � (1 ��(n))p(n) < 0:01 for every polynomial p and su�ciently big n (i.e., � is negligibleif for every positive polynomial p0 the function �(�) is upper-bounded by 1=p0(�)).We will also refer to the notion of noticeable probability. Here the requirementis that events that occur with noticeable probability, will occur almost surely (i.e.,except with negligible probability) if we repeat the experiment for a polynomialnumber of times. Thus, a function � :N!N is called noticeable if for some positivepolynomial p0 the function �(�) is lower-bounded by 1=p0(�).C.1.3 Organization and BeyondThis appendix focuses on several archetypical cryptographic problems (e.g., en-cryption and signature schemes) and on several central tools (e.g., computationaldi�culty, pseudorandomness, and zero-knowledge proofs). For each of these prob-lems, we start by presenting the natural concern underlying it, then de�ne theproblem, and �nally demonstrate that the problem may be solved. In the latterstep, our focus is on demonstrating the feasibility of solving the problem, not onproviding a practical solution.

536APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYOur aim is to present the basic concepts, techniques and results in cryptography,and our emphasis is on the clari�cation of fundamental concepts and the relation-ship among them. This is done in a way independent of the particularities of somepopular number theoretic examples. These particular examples played a centralrole in the development of the �eld and still o�er the most practical implementa-tions of all cryptographic primitives, but this does not mean that the presentationhas to be linked to them. On the contrary, we believe that concepts are best clari-�ed when presented at an abstract level, decoupled from speci�c implementations.Actual organization: The appendix is organized in two main parts, correspond-ing to the Basic Tools of Cryptography and the Basic Applications of Cryptography.The basic tools: The most basic tool is computational di�culty, which in turn iscaptured by the notion of one-way functions. Another notion of key impor-tance is that of computational indistinguishability, underlying the theory ofpseudorandomness as well as much of the rest of cryptography. Pseudoran-dom generators and functions are important tools that are frequently used.So are zero-knowledge proofs, which play a key role in the design of securecryptographic protocols and in their study.The basic applications: Encryption and signature schemes are the most basicapplications of Cryptography. Their main utility is in providing secret andreliable communication over insecure communication media. Loosely speak-ing, encryption schemes are used for ensuring the secrecy (or privacy) of theactual information being communicated, whereas signature schemes are usedto ensure its reliability (or authenticity). Another basic topic is the construc-tion of secure cryptographic protocols for the implementation of arbitraryfunctionalities.The presentation of the basic tools in Sections C.2{C.4 augments (and sometimesrepeats parts of) Sections 7.1, 8.2, and 9.2 (which provide a basic treatment of one-way functions, pseudorandom generators, and zero-knowledge proofs, respectively).Sections C.5{C.7, provide a overview of the basic applications; that is, EncryptionSchemes, Signature Schemes, and General Cryptographic Protocols.Suggestions for further reading. This appendix is a brief summary of theauthor's two-volume work on the subject [91, 92]. Furthermore, the �rst part (i.e.,Basic Tools) corresponds to [91], whereas the second part (i.e., Basic Applications)corresponds to [92]. Needless to say, the interested reader is referred to thesetextbooks for further detail (and, in particular, for missing references).Practice. The aim of this appendix is to introduce the reader to the theoreticalfoundations of cryptography. As argued, such foundations are necessary for soundpractice of cryptography. Indeed, practice requires much more than theoreticalfoundations, whereas the current text makes no attempt to provide anything be-yond the latter. However, given a sound foundation, one can learn and evaluate

C.2. COMPUTATIONAL DIFFICULTY 537various practical suggestions that appear elsewhere. On the other hand, lack ofsound foundations results in inability to critically evaluate practical suggestions,which in turn leads to unsound decisions. Nothing could be more harmful to thedesign of schemes that need to withstand adversarial attacks than misconceptionsabout such attacks.C.2 Computational Di�cultyModern Cryptography is concerned with the construction of systems that are easyto operate (properly) but hard to foil. Thus, a complexity gap (between the ease ofproper usage and the di�culty of deviating from the prescribed functionality) liesat the heart of Modern Cryptography. However, gaps as required for Modern Cryp-tography are not known to exist; they are only widely believed to exist. Indeed,almost all of Modern Cryptography rises or falls with the question of whether one-way functions exist. We mention that the existence of one-way functions impliesthat NP contains search problems that are hard to solve on the average, whichin turn implies that NP is not contained in BPP (i.e., a worst-case complexityconjecture).Loosely speaking, one-way functions are functions that are easy to evaluate buthard (on the average) to invert. Such functions can be thought of as an e�cientway of generating \puzzles" that are infeasible to solve (i.e., the puzzle is a randomimage of the function and a solution is a corresponding preimage). Furthermore,the person generating the puzzle knows a solution to it and can e�ciently verifythe validity of (possibly other) solutions to the puzzle. Thus, one-way functionshave, by de�nition, a clear cryptographic avor (i.e., they manifest a gap betweenthe ease of one task and the di�culty of a related one).C.2.1 One-Way FunctionsWe start by reproducing the basic de�nition of one-way functions as appearing inSection 7.1.1, where this de�nition is further discussed.De�nition C.1 (one-way functions, De�nition 7.1 restated): A function f :f0; 1g�!f0; 1g� is called one-way if the following two conditions hold:1. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =f(x) for every x 2 f0; 1g�.2. Hard to invert: For every probabilistic polynomial-time algorithm A0, everypolynomial p, and all su�ciently large n,Pr[A0(f(x); 1n) 2 f�1(f(x))] < 1p(n)where the probability is taken uniformly over x2f0; 1gn and all the internalcoin tosses of algorithm A0.

538APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYSome of the most popular candidates for one-way functions are based on the con-jectured intractability of computational problems in number theory. One suchconjecture is that it is infeasible to factor large integers. Consequently, the func-tion that takes as input two (equal length) primes and outputs their product iswidely believed to be a one-way function. Furthermore, factoring such a com-posite is infeasible if and only if squaring modulo such a composite is a one-wayfunction (see [183]). For certain composites (i.e., products of two primes that areboth congruent to 3 mod 4), the latter function induces a permutation over theset of quadratic residues modulo this composite. A related permutation, which iswidely believed to be one-way, is the RSA function [193]: x 7! xe mod N , whereN = P � Q is a composite as above, e is relatively prime to (P � 1) � (Q� 1), andx 2 f0; :::; N � 1g. The latter examples (as well as other popular suggestions) arebetter captured by the following formulation of a collection of one-way functions(which is indeed related to De�nition C.1):De�nition C.2 (collections of one-way functions): A collection of functions, ffi :Di ! f0; 1g�gi2I , is called one-way if there exists three probabilistic polynomial-time algorithms, I, D and F , such that the following two conditions hold:1. Easy to sample and compute: On input 1n, the output of (the index selection)algorithm I is distributed over the set I \ f0; 1gn (i.e., is an n-bit long indexof some function). On input (an index of a function) i 2 I, the output of(the domain sampling) algorithm D is distributed over the set Di (i.e., overthe domain of the function fi). On input i 2 I and x 2 Di, (the evaluation)algorithm F always outputs fi(x).2. Hard to invert:2 For every probabilistic polynomial-time algorithm, A0, everypositive polynomial p(�), and all su�ciently large n'sPr �A0(i; fi(x))2f�1i (fi(x))� < 1p(n)where i I(1n) and x D(i).The collection is said to be a collection of permutations if each of the fi's is apermutation over the corresponding Di, and D(i) is almost uniformly distributedin Di.For example, in case of the RSA, one considers fN;e : DN;e ! DN;e that satis�esfN;e(x) = xe mod N , where DN;e = f0; :::; N � 1g. De�nition C.2 is also a goodstarting point for the de�nition of a trapdoor permutation.3 Loosely speaking,the latter is a collection of one-way permutations augmented with an e�cient al-gorithm that allows for inverting the permutation when given adequate auxiliaryinformation (called a trapdoor).2Note that this condition refers to the distributions I(1n) and D(i), which are merely requiredto range over I \ f0; 1gn and Di, respectively. (Typically, the distributions I(1n) and D(i) are(almost) uniform over I \ f0; 1gn and Di, respectively.)3Indeed, a more adequate term would be a collection of trapdoor permutations, but the shorter(and less precise) term is the commonly used one.

C.2. COMPUTATIONAL DIFFICULTY 539De�nition C.3 (trapdoor permutations): A collection of permutations as in Def-inition C.2 is called a trapdoor permutation if there are two auxiliary probabilisticpolynomial-time algorithms I 0 and F�1 such that (1) the distribution I 0(1n) rangesover pairs of strings so that the �rst string is distributed as in I(1n), and (2) forevery (i; t) in the range of I 0(1n) and every x 2 Di it holds that F�1(t; fi(x)) = x.(That is, t is a trapdoor that allows to invert fi.)For example, in case of the RSA, the function fN;e can be inverted by raising theimage to the power d (modulo N = P �Q), where d is the multiplicative inverse ofe modulo (P � 1) � (Q� 1). Indeed, in this case, the trapdoor information is (N; d).Strong versus weak one-way functions (summary of Section 7.1.2). Re-call that the foregoing de�nitions require that any feasible algorithm succeeds ininverting the function with negligible probability. A weaker notion only requiresthat any feasible algorithm fails to invert the function with noticeable probability.It turns out that the existence of such weak one-way functions implies the exis-tence of strong one-way functions (as in De�nition C.1). The construction itselfis straightforward, but analyzing it transcends the analogous information theoreticsetting. Instead, the security (i.e., hardness of inverting) the resulting constructionis proved via a so called \reducibility argument" that transforms the violation ofthe conclusion (i.e., the hypothetical insecurity of the resulting construction) intoa violation of the hypothesis (i.e., insecurity of the given primitive). This strategy(i.e., a \reducibility argument") is used to prove all conditional results in the area.C.2.2 Hard-Core PredicatesRecall that saying that a function f is one-way implies that, given a typical f -image y, it is infeasible to �nd a preimage of y under f . This does not meanthat it is infeasible to �nd partial information about the preimage(s) of y under f .Speci�cally, it may be easy to retrieve half of the bits of the preimage (e.g., givena one-way function f consider the function g de�ned by g(x; r) def= (f(x); r), forevery jxj= jrj). As will become clear in subsequent sections, hiding partial infor-mation (about the function's preimage) plays an important role in many advancedcryptographic constructs (e.g., secure encryption). This partial information can beconsidered as a \hard core" of the di�culty of inverting f . Loosely speaking, apolynomial-time computable (Boolean) predicate b, is called a hard-core of a func-tion f if no feasible algorithm, given f(x), can guess b(x) with success probabilitythat is non-negligibly better than one half. The actual de�nition is presented inSection 7.1.3 (i.e., De�nition 7.6).Note that if b is a hard-core of a 1-1 function f that is polynomial-time com-putable then f is a one-way function. On the other hand, recall that Theorem 7.7asserts that for any one-way function f , the inner-product mod 2 of x and r is ahard-core of the function f 0, where f 0(x; r) = (f(x); r).

540APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.3 PseudorandomnessIn practice \pseudorandom" sequences are often used instead of truly random se-quences. The underlying belief is that if an (e�cient) application performs wellwhen using a truly random sequence then it will perform essentially as well whenusing a \pseudorandom" sequence. However, this belief is not supported by ad-hoc notions of \pseudorandomness" such as passing the statistical tests in [146] orhaving large \linear-complexity" (as de�ned in [112]). Needless to say, using such\pseudorandom" sequences (instead of truly random sequences) in a cryptographicapplication is very dangerous.In contrast, truly random sequences can be safely replaced by pseudorandomsequences provided that pseudorandom distributions are de�ned as being compu-tationally indistinguishable from the uniform distribution. Such a de�nition makesthe soundness of this replacement an easy corollary. Loosely speaking, pseudoran-dom generators are then de�ned as e�cient procedures for creating long pseudo-random sequences based on few truly random bits (i.e., a short random seed). Therelevance of such constructs to cryptography is in providing legitimate users thatshare short random seeds a method for creating long sequences that look randomto any feasible adversary (which does not know the said seed).C.3.1 Computational IndistinguishabilityA central notion in Modern Cryptography is that of \e�ective similarity" (a.k.acomputational indistinguishability; cf. [108, 238]). The underlying thesis is thatwe do not care whether or not objects are equal, all we care about is whether ornot a di�erence between the objects can be observed by a feasible computation. Incase the answer is negative, the two objects are equivalent as far as any practicalapplication is concerned. Indeed, in the sequel we will often interchange such(computationally indistinguishable) objects. In this section we recall the de�nitionof computational indistinguishability (presented in Section 8.2.3), and consider twovariants.De�nition C.4 (computational indistinguishability, De�nition 8.4 revised4): Wesay that X = fXngn2N and Y = fYngn2N are computationally indistinguishableif for every probabilistic polynomial-time algorithm D every polynomial p, and allsu�ciently large n,jPr[D(1n; Xn)=1]� Pr[D(1n; Yn)=1]j < 1p(n)where the probabilities are taken over the relevant distribution (i.e., either Xn orYn) and over the internal coin tosses of algorithm D.4For sake of streamlining De�nition C.4 with De�nition C.5 (and unlike in De�nition 8.4), herethe distinguisher is explicitly given the index n of the distribution that it inspects. (In typicalapplications, the di�erence between De�nitions 8.4 and C.4 is immaterial because the index n iseasily determined from any sample of the corresponding distributions.)

C.3. PSEUDORANDOMNESS 541See further discussion in Section 8.2.3. In particular, recall that for \e�cientlyconstructible" distributions, indistinguishability by a single sample (as in De�ni-tion C.4) implies indistinguishability by multiple samples (as in De�nition 8.5).Extension to ensembles indexed by strings. We consider a natural extensionof De�nition C.4 in which, rather than referring to ensembles indexed by N , we referto ensembles indexed by an arbitrary set S � f0; 1g�. Typically, for an ensemblefZ�g�2S , it holds that Z� ranges over strings of length that is polynomially-relatedto the length of �.De�nition C.5 We say that fX�g�2S and fY�g�2S are computationally indistin-guishable if for every probabilistic polynomial-time algorithm D every polynomialp, and all su�ciently long � 2 S,jPr[D(�;X�)=1]� Pr[D(�; Y�)=1]j < 1p(j�j)where the probabilities are taken over the relevant distribution (i.e., either X� orY�) and over the internal coin tosses of algorithm D.Note that De�nition C.4 is obtained as a special case by setting S = f1n : n 2 Ng.A non-uniform version. A non-uniform de�nition of computational indistin-guishability can be derived from De�nition C.5 by arti�cially augmenting the in-dices of the distributions. That is, fX�g�2S and fY�g�2S are computationallyindistinguishable in a non-uniform sense if for every polynomial p the ensemblesfX 0�0g�02S0 and fY 0�0g�02S0 are computationally indistinguishable (as in De�ni-tion C.5), where S0 = f�� : � 2 S ^ � 2 f0; 1gp(j�j)g and X 0�� = X� (resp.,Y 0�� = Y�) for every � 2 f0; 1gp(j�j). An equivalent (alternative) de�nition can beobtained by following the formulation that underlies De�nition 8.12.C.3.2 Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is an e�cient (deterministic) algorithmthat on input a short random seed outputs a (typically much) longer sequence thatis computationally indistinguishable from a uniformly chosen sequence.De�nition C.6 (pseudorandom generator, De�nition 8.1 restated): Let ` :N!Nsatisfy `(n) > n, for all n 2 N . A pseudorandom generator, with stretch function `,is a (deterministic) polynomial-time algorithm G satisfying the following:1. For every s 2 f0; 1g�, it holds that jG(s)j = `(jsj).2. fG(Un)gn2N and fU`(n)gn2N are computationally indistinguishable, whereUm denotes the uniform distribution over f0; 1gm.Indeed, the probability ensemble fG(Un)gn2N is called pseudorandom.

542APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYWe stress that pseudorandom sequences can replace truly random sequences notonly in \standard" algorithmic applications but also in cryptographic ones. Thatis, any cryptographic application that is secure when the legitimate parties usetruly random sequences, is also secure when the legitimate parties use pseudo-random sequences. The bene�t in such a substitution (of random sequences bypseudorandom ones) is that the latter sequences can be e�ciently generated usingmuch less true randomness. Furthermore, in an interactive setting, it is possible toeliminate all random steps from the on-line execution of a program, by replacingthem with the generation of pseudorandom bits based on a random seed selectedand �xed o�-line (or at set-up time). This allows interactive parties to generatea long sequence of common secret bits based on a shared random seed which mayhave been selected at a much earlier time.Various cryptographic applications of pseudorandom generators will be pre-sented in the sequel, but let us �rst recall that pseudorandom generators exist ifand only if one-way functions exist (see Theorem 8.11). For further treatment ofpseudorandom generators, the reader is referred to Section 8.2.C.3.3 Pseudorandom FunctionsRecall that pseudorandom generators provide a way to e�ciently generate longpseudorandom sequences from short random seeds. Pseudorandom functions, in-troduced and constructed by Goldreich, Goldwasser, and Micali [95], are even morepowerful: they provide e�cient direct access to the bits of a huge pseudorandomsequence (which is not feasible to scan bit-by-bit). More precisely, a pseudorandomfunction is an e�cient (deterministic) algorithm that given an n-bit seed, s, and ann-bit argument, x, returns an n-bit string, denoted fs(x), such that it is infeasibleto distinguish the values of fs, for a uniformly chosen s 2 f0; 1gn, from the valuesof a truly random function F : f0; 1gn ! f0; 1gn. That is, the (feasible) testingprocedure is given oracle access to the function (but not its explicit description),and cannot distinguish the case it is given oracle access to a pseudorandom functionfrom the case it is given oracle access to a truly random function.De�nition C.7 (pseudorandom functions): A pseudorandom function (ensemble),is a collection of functions ffs :f0; 1gjsj!f0; 1gjsjgs2f0;1g� that satis�es the follow-ing two conditions:1. (e�cient evaluation) There exists an e�cient (deterministic) algorithm thatgiven a seed, s, and an argument, x 2 f0; 1gjsj, returns fs(x).2. (pseudorandomness) For every probabilistic polynomial-time oracle machine,M , every positive polynomial p and all su�ciently large n's��Pr[MfUn (1n) = 1]� Pr[MFn(1n) = 1] �� < 1p(n)where Fn denotes a uniformly selected function mapping f0; 1gn to f0; 1gn.

C.3. PSEUDORANDOMNESS 543One key feature of the foregoing de�nition is that pseudorandom functions canbe generated and shared by merely generating and sharing their seed; that is, a\random looking" function fs : f0; 1gn ! f0; 1gn, is determined by its n-bit seeds. Thus, parties wishing to share a \random looking" function fs (determining2n-many values), merely need to generate and share among themselves the n-bitseed s. (For example, one party may randomly select the seed s, and communicateit, via a secure channel, to all other parties.) Sharing a pseudorandom functionallows parties to determine (by themselves and without any further communication)random-looking values depending on their current views of the environment (whichneed not be known a priori). To appreciate the potential of this tool, one shouldrealize that sharing a pseudorandom function is essentially as good as being ableto agree, on the y, on the association of random values to (on-line) given values,where the latter are taken from a huge set of possible values. We stress thatthis agreement is achieved without communication and synchronization: Wheneversome party needs to associate a random value to a given value, v 2 f0; 1gn, it willassociate to v the (same) random value rv 2 f0; 1gn (by setting rv = fs(v), wherefs is a pseudorandom function agreed upon beforehand). Concrete applications of(this power of) pseudorandom functions appear in Sections C.5.2 and C.6.2.Theorem C.8 (How to construct pseudorandom functions): Pseudorandom func-tions can be constructed using any pseudorandom generator.Proof Sketch:5 Let G be a pseudorandom generator that stretches its seed by afactor of two (i.e., `(n) = 2n), and let G0(s) (resp., G1(s)) denote the �rst (resp.,last) jsj bits in G(s). LetG�jsj����2�1(s) def= G�jsj(� � �G�2 (G�1(s)) � � �);de�ne fs(x1x2 � � �xn) def= Gxn���x2x1(s), and consider the function ensemble ffs :f0; 1gjsj!f0; 1gjsjgs2f0;1g� . Pictorially, the function fs is de�ned by n-step walksdown a full binary tree of depth n having labels at the vertices. The root of thetree, hereafter referred to as the level 0 vertex of the tree, is labeled by the strings. If an internal vertex is labeled r then its left child is labeled G0(r) whereas itsright child is labeled G1(r). The value of fs(x) is the string residing in the leafreachable from the root by a path corresponding to the string x.We claim that the function ensemble ffsgs2f0;1g� is pseudorandom. The proofuses the hybrid technique (cf. Section 8.2.3): The ith hybrid, denoted H in, is afunction ensemble consisting of 22i�n functions f0; 1gn!f0; 1gn, each determinedby 2i random n-bit strings, denoted s = hs�i�2f0;1gi . The value of such functionhs at x = ��, where j�j = i, is de�ned to equal G�(s�). Pictorially, the functionhs is de�ned by placing the strings in s in the corresponding vertices of level i, andlabeling vertices of lower levels using the very rule used in the de�nition of fs. Theextreme hybrids correspond to our indistinguishability claim (i.e., H0n � fUn andHnn is a truly random function), and the indistinguishability of neighboring hybrids5See details in [91, Sec. 3.6.2].

544APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYfollows from our indistinguishability hypothesis (by using a reducibility argument).Speci�cally, we show that the ability to distinguish H in from H i+1n yields an abilityto distinguish multiple samples of G(Un) from multiple samples of U2n (by placingon the y, halves of the given samples at adequate vertices of the i+1st level).Variants. Useful variants (and generalizations) of the notion of pseudorandomfunctions include Boolean pseudorandom functions that are de�ned over all strings(i.e., fs : f0; 1g� ! f0; 1g) and pseudorandom functions that are de�ned for otherdomains and ranges (i.e., fs : f0; 1gd(jsj) ! f0; 1gr(jsj), for arbitrary polynomiallybounded functions d; r : N ! N). Various transformations between these variantsare known (cf. [91, Sec. 3.6.4] and [92, Apdx. C.2]).C.4 Zero-KnowledgeZero-knowledge proofs provide a powerful tool for the design of cryptographic pro-tocols as well as a good bench-mark for the study of various issues regarding suchprotocols. Loosely speaking, zero-knowledge proofs are proofs that yield nothingbeyond the validity of the assertion. That is, a veri�er obtaining such a proofonly gains conviction in the validity of the assertion (as if it was told by a trustedparty that the assertion holds). This is formulated by saying that anything that isfeasibly computable from a zero-knowledge proof is also feasibly computable fromthe (valid) assertion itself. The latter formulation follows the simulation paradigm,which is discussed next, while reproducing part of the discussion in x9.2.1.1 andmaking additional comments regarding the use of this paradigm in cryptography.C.4.1 The Simulation ParadigmA key question regarding the modeling of security concerns is how to express theintuitive requirement that an adversary \gains nothing substantial" by deviatingfrom the prescribed behavior of an honest user. The answer provided by the sim-ulation paradigm is that the adversary gains nothing if whatever it can obtain byunrestricted adversarial behavior can also be obtained, within essentially the samecomputational e�ort, by a benign behavior. The de�nition of the \benign behavior"captures what we want to achieve in terms of security, and is speci�c to the securityconcern to be addressed. For example, in the context of zero-knowledge the unre-stricted adversarial behavior is captured by an arbitrary probabilistic polynomial-time veri�er strategy, whereas the benign behavior is any computation that isbased (only) on the assertion itself (while assuming that the latter is valid). Otherexamples are discussed in Sections C.5.1 and C.7.1.The de�nitional approach to security represented by the simulation paradigm(and more generally the entire de�nitional approach surveyed in this appendix) maybe considered overly cautious, because it seems to prohibit also \non-harmful" gainsof some \far fetched" adversaries.6 We warn against this impression. Firstly, there6Indeed, according to the simulation paradigm, a system is called secure only if all possible

C.4. ZERO-KNOWLEDGE 545is nothing more dangerous in cryptography than to consider \reasonable" adver-saries (a notion which is almost a contradiction in terms): typically, the adversarieswill try exactly what the system designer has discarded as \far fetched". Secondly,it seems impossible to come up with de�nitions of security that distinguish \break-ing the system in a harmful way" from \breaking it in a non-harmful way": whatis harmful is application-dependent, whereas a good de�nition of security ought tobe application-independent (as otherwise using the cryptographic system in anynew application will require a full re-evaluation of its security). Furthermore, evenwith respect to a speci�c application, it is typically very hard to classify the set of\harmful breakings".C.4.2 The Actual De�nitionIn x9.2.1.2 zero-knowledge was de�ned as a property of some prover strategies(within the context of interactive proof systems, as de�ned in Section 9.1.2). Moregenerally, the term may apply to any interactive machine, regardless of its goal. Astrategy A is zero-knowledge on (inputs from) the set S if, for every feasible strategyB�, there exists a feasible computation C� such that the following two probabilityensembles are computationally indistinguishable (according to De�nition C.5):1. f(A;B�)(x)gx2S def= the output of B� after interacting with A on commoninput x 2 S; and2. fC�(x)gx2S def= the output of C� on input x 2 S.Recall that the �rst ensemble represents an actual execution of an interactive pro-tocol, whereas the second ensemble represents the computation of a stand-aloneprocedure (called the \simulator"), which does not interact with anybody.The foregoing de�nition does not account for auxiliary information that anadversary B� may have prior to entering the interaction. Accounting for suchauxiliary information is essential for using zero-knowledge proofs as subprotocolsinside larger protocols. This is taken care of by a stricter notion called auxiliary-input zero-knowledge, which was not presented in Section 9.2.De�nition C.9 (zero-knowledge, revisited): A strategy A is auxiliary-input zero-knowledge on inputs from S if, for every probabilistic polynomial-time strategy B�and every polynomial p, there exists a probabilistic polynomial-time algorithm C�such that the following two probability ensembles are computationally indistinguish-able:1. f(A;B�(z))(x)gx2S ; z2f0;1gp(jxj) def= the output of B� when having auxiliary-input z and interacting with A on common input x 2 S; and2. fC�(x; z)gx2S ; z2f0;1gp(jxj) def= the output of C� on inputs x 2 S and z 2f0; 1gp(jxj).adversaries can be adequately simulated by adequate benign behavior. Thus, this approachconsiders also \far fetched" adversaries and does not disregard \non-harmful" gains that cannotbe simulated.

546APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYAlmost all known zero-knowledge proofs are in fact auxiliary-input zero-knowledge.As hinted, auxiliary-input zero-knowledge is preserved under sequential composi-tion. A simulator for the multiple-session protocol can be constructed by itera-tively invoking the single-session simulator that refers to the residual strategy ofthe adversarial veri�er in the given session (while feeding this simulator with thetranscript of previous sessions). Indeed, the residual single-session veri�er gets thetranscript of the previous sessions as part of its auxiliary input (i.e., z in De�ni-tion C.9). For details, see [91, Sec. 4.3.4].C.4.3 A General Result and a Generic ApplicationA question avoided so far is whether zero-knowledge proofs exist at all. Clearly,every set in P (or rather in BPP) has a \trivial" zero-knowledge proof (in which theveri�er determines membership by itself); however, what we seek is zero-knowledgeproofs for statements that the veri�er cannot decide by itself.Assuming the existence of \commitment schemes" (cf. xC.4.3.1), which inturn exist if one-way functions exist [169, 118], there exist (auxiliary-input) zero-knowledge proofs of membership in any NP-set. These zero-knowledge proofs, ab-stractly depicted in Construction 9.10, have the following important property: theprescribed prover strategy is e�cient, provided it is given as auxiliary-input an NP-witness to the assertion (to be proved).7 Implementing the abstract boxes (referredto in Construction 9.10) by commitment schemes, we get:Theorem C.10 (On the applicability of zero-knowledge proofs (Theorem 9.11, re-visited)): If (non-uniformly hard) one-way functions exist then every set S 2 NPhas an auxiliary-input zero-knowledge interactive proof. Furthermore, the pre-scribed prover strategy can be implemented in probabilistic polynomial-time, pro-vided that it is given as auxiliary-input an NP-witness for membership of the com-mon input in S.Theorem C.10 makes zero-knowledge a very powerful tool in the design of crypto-graphic schemes and protocols (see xC.4.3.2). We comment that the intractabilityassumption used in Theorem C.10 seems essential.C.4.3.1 Commitment schemesLoosely speaking, commitment schemes are two-stage (two-party) protocols allow-ing for one party to commit itself (at the �rst stage) to a value while keeping thevalue secret. At a later (i.e., second) stage, the commitment is \opened" and it isguaranteed that the \opening" can yield only a single value, which is determined7The auxiliary-input given to the prescribed prover (in order to allow for an e�cient imple-mentation of its strategy) is not to be confused with the auxiliary-input that is given to maliciousveri�ers (in the de�nition of auxiliary-input zero-knowledge). The former is typically an NP-witness for the common input, which is available to the user that invokes the prover strategy (cf.the generic application discussed in xC.4.3.2). In contrast, the auxiliary-input that is given tomalicious veri�ers models arbitrary partial information that may be available to the adversary.

C.4. ZERO-KNOWLEDGE 547during the committing phase. Thus, the (�rst stage of the) commitment scheme isboth binding and hiding.A simple (uni-directional communication) commitment scheme can be con-structed based on any one-way 1-1 function f (with a corresponding hard-coreb). To commit to a bit �, the sender uniformly selects s 2 f0; 1gn, and sends thepair (f(s); b(s) � �). Note that this is both binding and hiding. An alternativeconstruction, which can be based on any one-way function, uses a pseudorandomgenerator G that stretches its seed by a factor of three (cf. Theorem 8.11). Acommitment is established, via two-way communication, as follows (cf. [169]): Thereceiver selects uniformly r 2 f0; 1g3n and sends it to the sender, which selectsuniformly s 2 f0; 1gn and sends r � G(s) if it wishes to commit to the value oneand G(s) if it wishes to commit to zero. To see that this is binding, observe thatthere are at most 22n \bad" values r that satisfy G(s0) = r �G(s1) for some pair(s0; s1), and with overwhelmingly high probability the receiver will not pick one ofthese bad values. The hiding property follows by the pseudorandomness of G.C.4.3.2 A generic applicationAs mentioned, Theorem C.10 makes zero-knowledge a very powerful tool in thedesign of cryptographic schemes and protocols. This wide applicability is due totwo important aspects regarding Theorem C.10: Firstly, Theorem C.10 provides azero-knowledge proof for every NP-set, and secondly the prescribed prover can beimplemented in probabilistic polynomial-time when given an adequate NP-witness.We now turn to a typical application of zero-knowledge proofs.In a typical cryptographic setting, a user U has a secret and is supposed to takesome action based on its secret. For example, U may be instructed to send severaldi�erent commitments (cf., xC.4.3.1) to a single secret value of its choice. Thequestion is how can other users verify that U indeed took the correct action (asdetermined by U 's secret and publicly known information). Indeed, if U disclosesits secret then anybody can verify that U took the correct action. However, U doesnot want to reveal its secret. Using zero-knowledge proofs we can satisfy both con-icting requirements (i.e., having other users verify that U took the correct actionwithout violating U 's interest in not revealing its secret). That is, U can provein zero-knowledge that it took the correct action. Note that U 's claim to havingtaken the correct action is an NP-assertion (since U 's legal action is determined asa polynomial-time function of its secret and the public information), and that Uhas an NP-witness to its validity (i.e., the secret is an NP-witness to the claim thatthe action �ts the public information). Thus, by Theorem C.10, it is possible forU to e�ciently prove the correctness of its action without yielding anything aboutits secret. Consequently, it is fair to ask U to prove (in zero-knowledge) that itbehaves properly, and so to force U to behave properly. Indeed, \forcing properbehavior" is the canonical application of zero-knowledge proofs (see xC.7.3.2).This paradigm (i.e., \forcing proper behavior" via zero-knowledge proofs), whichin turn is based on Theorem C.10, has been utilized in numerous di�erent settings.Indeed, this paradigm is the basis for the wide applicability of zero-knowledgeprotocols in Cryptography.

548APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.4.4 De�nitional Variations and Related NotionsIn this section we consider numerous variants on the notion of zero-knowledge andthe underlying model of interactive proofs. These include black-box simulation andother variants of zero-knowledge (cf. Section C.4.4.1), as well as notions such asproofs of knowledge, non-interactive zero-knowledge, and witness indistinguishableproofs (cf. Section C.4.4.2).Before starting, we call the reader's attention to the notion of computationalsoundness and to the related notion of argument systems, discussed in x9.1.5.2.We mention that argument systems may be more e�cient than interactive proofsas well as provide stronger zero-knowledge guarantees. Speci�cally, almost-perfectzero-knowledge arguments for NP can be constructed based on any one-way func-tion [172], where almost-perfect zero-knowledge means that the simulator's outputis statistically close to the veri�er's view in the real interaction (see a discussionin xC.4.4.1). Note that stronger security guarantee for the prover (as provided byalmost-perfect zero-knowledge) comes at the cost of weaker security guarantee forthe veri�er (as provided by computational soundness). The answer to the questionof whether or not this trade-o� is worthwhile seems to be application dependent,and one should also take into account the availability and complexity of the corre-sponding protocols.C.4.4.1 De�nitional variationsWe consider several de�nitional issues regarding the notion of zero-knowledge (asde�ned in De�nition C.9).Universal and black-box simulation. One strengthening of De�nition C.9 isobtained by requiring the existence of a universal simulator, denoted C, that cansimulate (the interactive gain of) any veri�er strategy B� when given the veri�er'sprogram an auxiliary-input; that is, in terms of De�nition C.9, one should replaceC�(x; z) by C(x; z; hB�i), where hB�i denotes the description of the program of B�(which may depend on x and on z). That is, we e�ectively restrict the simulationby requiring that it be a uniform (feasible) function of the veri�er's program (ratherthan arbitrarily depend on it). This restriction is very natural, because it seemshard to envision an alternative way of establishing the zero-knowledge property ofa given protocol. Taking another step, one may argue that since it seems infea-sible to reverse-engineer programs, the simulator may as well just use the veri�erstrategy as an oracle (or as a \black-box"). This reasoning gave rise to the notionof black-box simulation, which was introduced and advocated in [98] and furtherstudied in numerous works. The belief was that inherent limitations regardingblack-box simulation represent inherent limitations of zero-knowledge itself. Forexample, it was believed that the fact that the parallel version of the interactiveproof of Construction 9.10 cannot be simulated in a black-box manner (unless NPis contained in BPP) implies that this version is not zero-knowledge (as per De�ni-tion C.9 itself). However, the (underlying) belief that any zero-knowledge protocolcan be simulated in a black-box manner was later refuted by Barak [25].

C.4. ZERO-KNOWLEDGE 549Honest veri�er versus general cheating veri�er. De�nition C.9 refers toall feasible veri�er strategies, which is most natural in the cryptographic setting,because zero-knowledge is supposed to capture the robustness of the prover un-der any feasible (i.e., adversarial) attempt to gain something by interacting withit. A weaker and still interesting notion of zero-knowledge refers to what can begained by an \honest veri�er" (or rather a semi-honest veri�er)8 that interactswith the prover as directed, with the exception that it may maintain (and out-put) a record of the entire interaction (i.e., even if directed to erase all recordsof the interaction). Although such a weaker notion is not satisfactory for stan-dard cryptographic applications, it yields a fascinating notion from a conceptualas well as a complexity-theoretic point of view. Furthermore, every proof systemthat is zero-knowledge with respect to the honest-veri�er can be transformed intoa standard zero-knowledge proof (without using intractability assumptions and inthe case of \public-coin" proofs this is done without signi�cantly increasing theprover's computational e�ort; see [228]).Statistical versus Computational Zero-Knowledge. Recall that De�nition C.9postulates that for every probability ensemble of one type (i.e., representing theveri�er's output after interaction with the prover) there exists a \similar" ensembleof a second type (i.e., representing the simulator's output). One key parameter isthe interpretation of \similarity". Three interpretations, yielding di�erent notionsof zero-knowledge, have been extensively considered in the literature:1. Perfect Zero-Knowledge requires that the two probability ensembles be iden-tically distributed.92. Statistical (or Almost-Perfect) Zero-Knowledge requires that these probabilityensembles be statistically close (i.e., the variation distance between themshould be negligible).3. Computational (or rather general) Zero-Knowledge requires that these proba-bility ensembles be computationally indistinguishable.Indeed, Computational Zero-Knowledge is the most liberal notion, and is the notionconsidered in De�nition C.9. We note that the class of problems having statisticalzero-knowledge proofs contains several problems that are considered intractable.The interested reader is referred to [227].8The term \honest veri�er" is more appealing when considering an alternative (equivalent)formulation of De�nition C.9. In the alternative de�nition (see [91, Sec. 4.3.1.3]), the simulatoris \only" required to generate the veri�er's view of the real interaction, where the veri�er's viewincludes its (common and auxiliary) inputs, the outcome of its coin tosses, and all messages ithas received.9The actual de�nition of Perfect Zero-Knowledge allows the simulator to fail (while outputtinga special symbol) with negligible probability, and the output distribution of the simulator isconditioned on its not failing.

550APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.4.4.2 Related notions: POK, NIZK, and WIWe briey discuss the notions of proofs of knowledge (POK), non-interactive zero-knowledge (NIZK), and witness indistinguishable proofs (WI).Proofs of Knowledge. Loosely speaking, proofs of knowledge are interactiveproofs in which the prover asserts \knowledge" of some object (e.g., a 3-coloringof a graph), and not merely its existence (e.g., the existence of a 3-coloring of thegraph, which in turn is equivalent to the assertion that the graph is 3-colorable).See further discussion in Section 9.2.3. We mention that proofs of knowledge, and inparticular zero-knowledge proofs of knowledge, have many applications to the designof cryptographic schemes and cryptographic protocols. One famous application ofzero-knowledge proofs of knowledge is to the construction of identi�cation schemes(e.g., the Fiat-Shamir scheme).Non-Interactive Zero-Knowledge. The model of non-interactive zero-knowledge(NIZK) proof systems consists of three entities: a prover, a veri�er and a uniformlyselected reference string (which can be thought of as being selected by a trustedthird party). Both the veri�er and prover can read the reference string (as well asthe common input), and each can toss additional coins. The interaction consists ofa single message sent from the prover to the veri�er, who is then left with the �naldecision (whether or not to accept the common input). The (basic) zero-knowledgerequirement refers to a simulator that outputs pairs that should be computationallyindistinguishable from the distribution (of pairs consisting of a uniformly selectedreference string and a random prover message) seen in the real model.10 We men-tion that NIZK proof systems have numerous applications (e.g., to the constructionof public-key encryption and signature schemes, where the reference string may beincorporated in the public-key), which in turn motivate various augmentations ofthe basic de�nition of NIZK (see [91, Sec. 4.10] and [92, Sec. 5.4.4.4]). Such NIZKproofs for any NP-set can be constructed based on standard intractability assump-tions (e.g., intractability of factoring), but even constructing basic NIZK proofsystems seems more di�cult than constructing interactive zero-knowledge proofsystems.Witness Indistinguishability. The notion of witness indistinguishability wassuggested in [76] as a meaningful relaxation of zero-knowledge. Loosely speaking,for any NP-relation R, a proof (or argument) system for the corresponding NP-setis called witness indistinguishable if no feasible veri�er may distinguish the case inwhich the prover uses one NP-witness to x (i.e., w1 such that (x;w1) 2 R) fromthe case in which the prover is using a di�erent NP-witness to the same input x(i.e., w2 such that (x;w2) 2 R). Clearly, any zero-knowledge protocol is witnessindistinguishable, but the converse does not necessarily hold. Furthermore, it seems10Note that the veri�er does not e�ect the distribution seen in the real model, and so the basicde�nition of zero-knowledge does not refer to it. The veri�er (or rather a process of adaptivelyselecting assertions to be proved) is referred to in the adaptive variants of the de�nition.

C.5. ENCRYPTION SCHEMES 551that witness indistinguishable protocols are easier to construct than zero-knowledgeones. Another advantage of witness indistinguishable protocols is that they areclosed under arbitrary concurrent composition, whereas (in general) zero-knowledgeprotocols are not closed even under parallel composition. Witness indistinguishableprotocols turned out to be an important tool in the construction of more complexprotocols. We refer, in particular, to the technique of [75] for constructing zero-knowledge proofs (and arguments) based on witness indistinguishable proofs (resp.,arguments).C.5 Encryption SchemesThe problem of providing secret communication over insecure media is the tra-ditional and most basic problem of cryptography. The setting of this problemconsists of two parties communicating through a channel that is possibly tappedby an adversary. The parties wish to exchange information with each other, butkeep the \wire-tapper" as ignorant as possible regarding the contents of this infor-mation. The canonical solution to this problem is obtained by the use of encryptionschemes. Loosely speaking, an encryption scheme is a protocol allowing these par-ties to communicate secretly with each other. Typically, the encryption schemeconsists of a pair of algorithms. One algorithm, called encryption, is applied by thesender (i.e., the party sending a message), while the other algorithm, called decryp-tion, is applied by the receiver. Hence, in order to send a message, the sender �rstapplies the encryption algorithm to the message, and sends the result, called theciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e., thereceiver) applies the decryption algorithm to it, and retrieves the original message(called the plaintext).In order for the foregoing scheme to provide secret communication, the receivermust know something that is not known to the wire-tapper. (Otherwise, the wire-tapper can decrypt the ciphertext exactly as done by the receiver.) This extraknowledge may take the form of the decryption algorithm itself, or some parame-ters and/or auxiliary inputs used by the decryption algorithm. We call this extraknowledge the decryption-key. Note that, without loss of generality, we may assumethat the decryption algorithm is known to the wire-tapper, and that the decryp-tion algorithm operates on two inputs: a ciphertext and a decryption-key. (Thisdescription implicitly presupposes the existence of an e�cient algorithm for gener-ating (random) keys.) We stress that the existence of a decryption-key, not knownto the wire-tapper, is merely a necessary condition for secret communication.Evaluating the \security" of an encryption scheme is a very tricky business.A preliminary task is to understand what is \security" (i.e., to properly de�newhat is meant by this intuitive term). Two approaches to de�ning security areknown. The �rst (\classical") approach, introduced by Shannon [204], is informa-tion theoretic. It is concerned with the \information" about the plaintext that is\present" in the ciphertext. Loosely speaking, if the ciphertext contains informa-tion about the plaintext then the encryption scheme is considered insecure. It hasbeen shown that such high (i.e., \perfect") level of security can be achieved only

552APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYif the key in use is at least as long as the total amount of information sent via theencryption scheme [204]. This fact (i.e., that the key has to be longer than theinformation exchanged using it) is indeed a drastic limitation on the applicabilityof such (perfectly-secure) encryption schemes.The second (\modern") approach, followed in the current text, is based oncomputational complexity. This approach is based on the thesis that it does notmatter whether the ciphertext contains information about the plaintext, but ratherwhether this information can be e�ciently extracted. In other words, instead ofasking whether it is possible for the wire-tapper to extract speci�c information, weask whether it is feasible for the wire-tapper to extract this information. It turnsout that the new (i.e., \computational complexity") approach can o�er securityeven when the key is much shorter than the total length of the messages sent viathe encryption scheme.The computational complexity approach enables the introduction of conceptsand primitives that cannot exist under the information theoretic approach. A typ-ical example is the concept of public-key encryption schemes, introduced by Di�eand Hellman [66] (with the most popular candidate suggested by Rivest, Shamir,and Adleman [193]). Recall that in the foregoing discussion we concentrated onthe decryption algorithm and its key. It can be shown that the encryption algo-rithm must also get, in addition to the message, an auxiliary input that depends onthe decryption-key. This auxiliary input is called the encryption-key. Traditionalencryption schemes, and in particular all the encryption schemes used in the millen-nia until the 1980's, operate with an encryption-key that equals the decryption-key.Hence, the wire-tapper in these schemes must be ignorant of the encryption-key,and consequently the key distribution problem arises; that is, how can two par-ties wishing to communicate over an insecure channel agree on a secret encryp-tion/decryption key. (The traditional solution is to exchange the key through analternative channel that is secure, though much more expensive to use.) The com-putational complexity approach allows the introduction of encryption schemes inwhich the encryption-key may be given to the wire-tapper without compromisingthe security of the scheme. Clearly, the decryption-key in such schemes is di�erentfrom the encryption-key, and furthermore it is infeasible to obtain the decryption-key from the encryption-key. Such encryption schemes, called public-key schemes,have the advantage of trivially resolving the key distribution problem (because theencryption-key can be publicized). That is, once some Party X generates a pair ofkeys and publicizes the encryption-key, any party can send encrypted messages toParty X such that Party X can retrieve the actual information (i.e., the plaintext),whereas nobody else can learn anything about the plaintext.In contrast to public-key schemes, traditional encryption schemes in which theencryption-key equals the description-key are called private-key schemes, becausein these schemes the encryption-key must be kept secret (rather than be publicas in public-key encryption schemes). We note that a full speci�cation of eitherschemes requires the speci�cation of the way in which keys are generated; that is, a(randomized) key-generation algorithm that, given a security parameter, producesa (random) pair of corresponding encryption/decryption keys (which are identical

C.5. ENCRYPTION SCHEMES 553in case of private-key schemes).Thus, both private-key and public-key encryption schemes consist of three ef-�cient algorithms: a key generation algorithm denoted G, an encryption algorithmdenoted E, and a decryption algorithm denoted D. For every pair of encryptionand decryption keys (e; d) generated by G, and for every plaintext x, it holds thatDd(Ee(x)) = x, where Ee(x) def= E(e; x) and Dd(y) def= D(d; y). The di�erence be-tween the two types of encryption schemes is reected in the de�nition of security:the security of a public-key encryption scheme should hold also when the adversaryis given the encryption-key, whereas this is not required for a private-key encryp-tion scheme. In the following de�nitional treatment we focus on the public-key case(and the private-key case can be obtained by omitting the encryption-key from thesequence of inputs given to the adversary).C.5.1 De�nitions A good disguise should not reveal the person's height.Sha� Goldwasser and Silvio Micali, 1982For simplicity, we �rst consider the encryption of a single message (which, for fur-ther simplicity, is assumed to be of length that equals the security parameter, n).11As implied by the foregoing discussion, a public-key encryption scheme is said tobe secure if it is infeasible to gain any information about the plaintext by lookingat the ciphertext (and the encryption-key). That is, whatever information aboutthe plaintext one may compute from the ciphertext and some a-priori informa-tion, can be essentially computed as e�ciently from the a-priori information alone.This fundamental de�nition of security, called semantic security, was introducedby Goldwasser and Micali [108].De�nition C.11 (semantic security): A public-key encryption scheme (G;E;D)is semantically secure if for every probabilistic polynomial-time algorithm, A, thereexists a probabilistic polynomial-time algorithm B such that for every two functionsf; h : f0; 1g�!f0; 1g� and all probability ensembles fXngn2N that satisfy jh(x)j =poly(jxj) and Xn 2 f0; 1gn, it holds thatPr[A(e; Ee(x); h(x))=f(x)] < Pr[B(1n; h(x))=f(x)] + �(n)where the plaintext x is distributed according to Xn, the encryption-key e is dis-tributed according to G(1n), and � is a negligible function.That is, it is feasible to predict f(x) from h(x) as successfully as it is to predictf(x) from h(x) and (e; Ee(x)), which means that nothing is gained by obtaining(e; Ee(x)). Note that no computational restrictions are made regarding the func-tions h and f . We stress that the foregoing de�nition (as well as the next one)11In the case of public-key schemes no generality is lost by these simplifying assumptions, but inthe case of private-key schemes one should consider the encryption of polynomially-many messages(as we do at the end of this section).

554APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYrefers to public-key encryption schemes, and in the case of private-key schemesalgorithm A is not given the encryption-key e.The following technical interpretation of security states that it is infeasible todistinguish the encryptions of any two plaintexts (of the same length).12 As weshall see, this de�nition (also originating in [108]) is equivalent to De�nition C.11.De�nition C.12 (indistinguishability of encryptions): A public-key encryptionscheme (G;E;D) has indistinguishable encryptions if for every probabilistic polynomial-time algorithm, A, and all sequences of triples, (xn; yn; zn)n2N, where jxnj = jynj =n and jznj = poly(n), it holds thatjPr[A(e; Ee(xn); zn)=1]� Pr[A(e; Ee(yn); zn)=1]j = �(n)Again, e is distributed according to G(1n), and � is a negligible function.In particular, zn may equal (xn; yn). Thus, it is infeasible to distinguish the en-cryptions of any two �xed messages (such as the all-zero message and the all-onesmessage). Thus, the following motto is adequate too.A good disguise should not allow a mother to distinguish her own children.Sha� Goldwasser and Silvio Micali, 1982De�nition C.11 is more appealing in most settings where encryption is consideredthe end goal. De�nition C.12 is used to establish the security of candidate en-cryption schemes as well as to analyze their application as modules inside largercryptographic protocols. Thus, the equivalence of these de�nitions is of majorimportance.Equivalence of De�nitions C.11 and C.12 { proof ideas. Intuitively, in-distinguishability of encryptions (i.e., of the encryptions of xn and yn) is a specialcase of semantic security; speci�cally, it corresponds to the case that Xn is uni-form over fxn; yng, the function f indicates one of the plaintexts and h does notdistinguish them (i.e., f(w) = 1 i� w = xn and h(xn) = h(yn) = zn, where zn isas in De�nition C.12). The other direction is proved by considering the algorithmB that, on input (1n; v) where v = h(x), generates (e; d) G(1n) and outputsA(e; Ee(1n); v), where A is as in De�nition C.11. Indistinguishability of encryptionsis used to prove that B performs as well as A (i.e., for every h; f and fXngn2N,it holds that Pr[B(1n; h(Xn))=f(Xn)] = Pr[A(e; Ee(1n); h(Xn))=f(Xn)] approx-imately equals Pr[A(e; Ee(Xn); h(Xn))=f(Xn)]).Probabilistic Encryption: A secure public-key encryption scheme must em-ploy a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given theencryption-key as (additional) input, it is easy to distinguish the encryption of the12Indeed, satisfying this condition requires using a probabilistic encryption algorithm.

C.5. ENCRYPTION SCHEMES 555all-zero message from the encryption of the all-ones message.13 This explains theassociation of the robust de�nitions of security with the paradigm of probabilisticencryption, an association that originates in the title of the pioneering work ofGoldwasser and Micali [108].Further discussion: We stress that (the equivalent) De�nitions C.11 and C.12go way beyond saying that it is infeasible to recover the plaintext from the ci-phertext. The latter statement is indeed a minimal requirement from a secureencryption scheme, but is far from being a su�cient requirement. Typically, en-cryption schemes are used in applications where even obtaining partial informationon the plaintext may endanger the security of the application. When designing anapplication-independent encryption scheme, we do not know which partial informa-tion endangers the application and which does not. Furthermore, even if one wantsto design an encryption scheme tailored to a speci�c application, it is rare (to saythe least) that one has a precise characterization of all possible partial informationthat endanger this application. Thus, we need to require that it is infeasible toobtain any information about the plaintext from the ciphertext. Furthermore, inmost applications the plaintext may not be uniformly distributed and some a-prioriinformation regarding it may be available to the adversary. We require that thesecrecy of all partial information is preserved also in such a case. That is, evenin presence of a-priori information on the plaintext, it is infeasible to obtain any(new) information about the plaintext from the ciphertext (beyond what is feasibleto obtain from the a-priori information on the plaintext). The de�nition of seman-tic security postulates all of this. The equivalent de�nition of indistinguishabilityof encryptions is useful in demonstrating the security of candidate constructions aswell as for arguing about their e�ect as part of larger protocols.Security of multiple messages: De�nitions C.11 and C.12 refer to the se-curity of an encryption scheme that is used to encrypt a single plaintext (per agenerated key). Since the plaintext may be longer than the key14, these de�ni-tions are already non-trivial, and an encryption scheme satisfying them (even inthe private-key model) implies the existence of one-way functions. Still, in manycases, it is desirable to encrypt many plaintexts using the same encryption-key.Loosely speaking, an encryption scheme is secure in the multiple-messages settingif conditions as in De�nition C.11 (resp., De�nition C.12) hold when polynomially-many plaintexts are encrypted using the same encryption-key (cf. [92, Sec. 5.2.4]).In the public-key model, security in the single-message setting implies security inthe multiple-messages setting. We stress that this is not necessarily true for the13The same holds for (stateless) private-key encryption schemes, when considering the securityof encrypting several messages (rather than a single message as in the foregoing text). Forexample, if one uses a deterministic encryption algorithm then the adversary can distinguish twoencryptions of the same message from the encryptions of a pair of di�erent messages.14Recall that for sake of simplicity we have considered only messages of length n, but thegeneral de�nitions refer to messages of arbitrary (polynomial in n) length. We comment that, inthe general form of De�nition C.11, one should provide the length of the message as an auxiliaryinput to both algorithms (A and B).

556APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYprivate-key model.C.5.2 ConstructionsIt is common practice to use \pseudorandom generators" as a basis for private-key encryption schemes. We stress that this is a very dangerous practice whenthe \pseudorandom generator" is easy to predict (such as the \linear congruentialgenerator"). However, this common practice becomes sound provided one usespseudorandom generators (as de�ned in Section C.3.2). An alternative and moreexible construction follows.Private-Key Encryption Scheme based on Pseudorandom Functions:We present a simple construction of a private-key encryption scheme that usespseudorandom functions as de�ned in Section C.3.3. The key-generation algorithmconsists of uniformly selecting a seed s 2 f0; 1gn for a (pseudorandom) function, de-noted fs. To encrypt a message x 2 f0; 1gn (using key s), the encryption algorithmuniformly selects a string r 2 f0; 1gn and produces the ciphertext (r; x � fs(r)),where � denotes the exclusive-or of bit strings. To decrypt the ciphertext (r; y)(using key s), the decryption algorithm just computes y � fs(r). The proof ofsecurity of this encryption scheme consists of two steps:1. Proving that an idealized version of the scheme, in which one uses a uniformlyselected function F :f0; 1gn!f0; 1gn, rather than the pseudorandom functionfs, is secure.2. Concluding that the real scheme is secure (because, otherwise one could dis-tinguish a pseudorandom function from a truly random one).Note that we could have gotten rid of the randomization (in the encryption process)if we had allowed the encryption algorithm to be history dependent (e.g., use acounter in the role of r). This can be done if all parties that use the same key(for encryption) coordinate their encryption actions (by maintaining a joint state(e.g., counter)). Indeed, when using a private-key encryption scheme, a commonsituation is that the same key is only used for communication between two speci�cparties, which update a joint counter during their communication. Furthermore,if the encryption scheme is used for fifo communication between the parties andboth parties can reliably maintain the counter value, then there is no need (forthe sender) to send the counter value. (The resulting scheme is related to \streamciphers" which are commonly used in practice.)We comment that the use of a counter (or any other state) in the encryptionprocess is not reasonable in the case of public-key encryption schemes, because itis incompatible with the canonical usage of such schemes (i.e., allowing all partiesto send encrypted messages to the \owner of the encryption-key" without engagingin any type of further coordination or communication). Furthermore (unlike in thecase of private-key schemes), probabilistic encryption is essential for the securityof public-key encryption schemes even in the case of encrypting a single message.

C.5. ENCRYPTION SCHEMES 557Following Goldwasser and Micali [108], we now demonstrate the use of probabilisticencryption in the construction of public-key encryption schemes.Public-Key Encryption Scheme based on Trapdoor Permutations: Wepresent two constructions of public-key encryption schemes that employ a collectionof trapdoor permutations, as de�ned in De�nition C.3. Let ffi : Di ! Digi besuch a collection, and let b be a corresponding hard-core predicate. In the �rstscheme, the key-generation algorithm consists of selecting a permutation fi alongwith a corresponding trapdoor t, and outputting (i; t) as the key-pair. To encrypta (single) bit � (using the encryption-key i), the encryption algorithm uniformlyselects r 2 Di, and produces the ciphertext (fi(r); � � b(r)). To decrypt theciphertext (y; �) (using the decryption-key t), the decryption algorithm computes� � b(f�1i (y)) (using the trapdoor t of fi). Clearly, (� � b(r))� b(f�1i (fi(r))) = �.Indistinguishability of encryptions is implied by the hypothesis that b is a hard-coreof fi. We comment that this scheme is quite wasteful in bandwidth; nevertheless,the paradigm underlying its construction (i.e., applying the trapdoor permutationto a randomized version of the plaintext rather than to the actual plaintext) isvaluable in practice.A more e�cient construction of a public-key encryption scheme, which usesthe same key-generation algorithm, follows. To encrypt an `-bit long string x(using the encryption-key i), the encryption algorithm uniformly selects r 2 Di,computes y b(r) � b(fi(r)) � � � b(f `�1i (r)) and produces the ciphertext (fì (r); x �y). To decrypt the ciphertext (u; v) (using the decryption-key t), the decryptionalgorithm �rst recovers r = f�`i (u) (using the trapdoor t of fi), and then obtainsv�b(r)�b(fi(r)) � � � b(f `�1i (r)). Note the similarity to the Blum-Micali Construction(depicted in Eq. (8.10)), and the fact that the proof of the pseudorandomness ofEq. (8.10) can be extended to establish the computational indistinguishability of(b(r) � � � b(f `�1i (r)); fì (r)) and (r0; fì (r)), for random and independent r 2 Di andr0 2 f0; 1g`. Indistinguishability of encryptions follows, and thus the second schemeis secure. We mention that, assuming the intractability of factoring integers, thisscheme has a concrete implementation with e�ciency comparable to that of RSA.C.5.3 Beyond Eavesdropping SecurityOur treatment so far has referred only to a \passive" attack in which the adversarymerely eavesdrops the line over which ciphertexts are sent. Stronger types of at-tacks (i.e., \active" ones), culminating in the so-called Chosen Ciphertext Attack,may be possible in various applications. Speci�cally, in some settings it is feasiblefor the adversary to make the sender encrypt a message of the adversary's choice,and in some settings the adversary may even make the receiver decrypt a ciphertextof the adversary's choice. This gives rise to chosen plaintext attacks and to chosenciphertext attacks, respectively, which are not covered by the security de�nitionsconsidered in Sections C.5.1 and C.5.2. Here we briey discuss such \active" at-tacks, focusing on chosen ciphertext attacks (of the strongest type known as \aposteriori" or \CCA2").

558APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYLoosely speaking, in a chosen ciphertext attack, the adversary may obtain thedecryptions of ciphertexts of its choice, and is deemed successful if it learns some-thing regarding the plaintext that corresponds to some di�erent ciphertext (see [92,Sec. 5.4.4]). That is, the adversary is given oracle access to the decryption functioncorresponding to the decryption-key in use (and, in the case of private-key schemes,it is also given oracle access to the corresponding encryption function). The adver-sary is allowed to query the decryption oracle on any ciphertext except for the \testciphertext" (i.e., the very ciphertext for which it tries to learn something aboutthe corresponding plaintext). It may also make queries that do not correspond tolegitimate ciphertexts, and the answer will be accordingly (i.e., a special `failure'symbol). Furthermore, the adversary may e�ect the selection of the test cipher-text (by specifying a distribution from which the corresponding plaintext is to bedrawn).Private-key and public-key encryption schemes secure against chosen ciphertextattacks can be constructed under (almost) the same assumptions that su�ce forthe construction of the corresponding passive schemes. Speci�cally:Theorem C.13 Assuming the existence of one-way functions, there exist private-key encryption schemes that are secure against chosen ciphertext attack.Theorem C.14 Assuming the existence of enhanced15 trapdoor permutations,there exist public-key encryption schemes that are secure against chosen cipher-text attack.Both theorems are proved by constructing encryption schemes in which the adver-sary's gain from a chosen ciphertext attack is eliminated by making it infeasible(for the adversary) to obtain any useful knowledge via such an attack. In the caseof private-key schemes (i.e., Theorem C.13), this is achieved by making it infeasible(for the adversary) to produce legitimate ciphertexts (other than those explicitlygiven to it, in response to its request to encrypt plaintexts of its choice). This,in turn, is achieved by augmenting the ciphertext with an \authentication tag"that is hard to generate without knowledge of the encryption-key; that is, we use amessage-authentication scheme (as de�ned in Section C.6). In the case of public-key schemes (i.e., Theorem C.14), the adversary can certainly generate ciphertextsby itself, and the aim is to make it infeasible (for the adversary) to produce legit-imate ciphertexts without \knowing" the corresponding plaintext. This, in turn,will be achieved by augmenting the plaintext with a non-interactive zero-knowledge\proof of knowledge" of the corresponding plaintext.Security against chosen ciphertext attack is related to the notion of non-malleabilityof the encryption scheme. Loosely speaking, in a non-malleable encryption schemeit is infeasible for an adversary, given a ciphertext, to produce a valid ciphertextfor a related plaintext (e.g., given a ciphertext of a plaintext 1x, for an unknown x,it is infeasible to produce a ciphertext to the plaintext 0x). For further discussionsee [92, Sec. 5.4.5].15Loosely speaking, the enhancement refers to the hardness condition of De�nition C.2, andrequires that it be hard to recover f�1i (y) also when given the coins used to sample y (ratherthan merely y itself). See [92, Apdx. C.1].

C.6. SIGNATURES AND MESSAGE AUTHENTICATION 559C.6 Signatures and Message AuthenticationBoth signature schemes and message authentication schemes are methods for \vali-dating" data; that is, verifying that the data was approved by a certain party (or setof parties). The di�erence between signature schemes and message authenticationschemes is that signatures should be universally veri�able, whereas authenticationtags are only required to be veri�able by parties that are also able to generatethem.Signature Schemes: The need to discuss \digital signatures" (cf. [66, 182]) hasarisen with the introduction of computer communication to the business environ-ment (in which parties need to commit themselves to proposals and/or declarationsthat they make). Discussions of \unforgeable signatures" did take place also priorto the computer age, but the objects of discussion were handwritten signatures(and not digital ones), and the discussion was not perceived as related to cryp-tography. Loosely speaking, a scheme for unforgeable signatures should satisfy thefollowing requirements:� each user can e�ciently produce its own signature on documents of its choice;� every user can e�ciently verify whether a given string is a signature of another(speci�c) user on a speci�c document; but� it is infeasible to produce signatures of other users to documents they did notsign.We note that the formulation of unforgeable digital signatures provides also a clearstatement of the essential ingredients of handwritten signatures. The ingredientsare each person's ability to sign for itself, a universally agreed veri�cation proce-dure, and the belief (or assertion) that it is infeasible (or at least hard) to forgesignatures (i.e., produce some other person's signatures to documents that werenot signed by it such that these \unauthentic" signatures are accepted by theveri�cation procedure).Message authentication schemes: Message authentication is a task relatedto the setting considered for encryption schemes; that is, communication over aninsecure channel. This time, we consider an active adversary that is monitoringthe channel and may alter the messages sent over it. The parties communicatingthrough this insecure channel wish to authenticate the messages they send suchthat their counterpart can tell an original message (sent by the sender) from amodi�ed one (i.e., modi�ed by the adversary). Loosely speaking, a scheme formessage authentication should satisfy the following requirements:� each of the communicating parties can e�ciently produce an authenticationtag to any message of its choice;� each of the communicating parties can e�ciently verify whether a given stringis an authentication tag of a given message; but

560APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY� it is infeasible for an external adversary (i.e., a party other than the commu-nicating parties) to produce authentication tags to messages not sent by thecommunicating parties.Note that, in contrast to the speci�cation of signature schemes, we do not requireuniversal veri�cation: only the designated receiver is required to be able to verifythe authentication tags. Furthermore, we do not require that the receiver can notproduce authentication tags by itself (i.e., we only require that external parties cannot do so). Thus, message authentication schemes cannot convince a third partythat the sender has indeed sent the information (rather than the receiver havinggenerated it by itself). In contrast, signatures can be used to convince third parties:in fact, a signature to a document is typically sent to a second party so that inthe future this party may (by merely presenting the signed document) convincethird parties that the document was indeed generated (or rather approved) by thesigner.C.6.1 De�nitionsBoth signature schemes and message authentication schemes consist of three e�-cient algorithms: key generation, signing and veri�cation. As in the case of encryp-tion schemes, the key-generation algorithm, denoted G, is used to generate a pair ofcorresponding keys, one is used for signing (via algorithm S) and the other is usedfor veri�cation (via algorithm V). That is, Ss(�) denotes a signature produced byalgorithm S on input a signing-key s and a document �, whereas Vv(�; �) denotesthe verdict of the veri�cation algorithm V regarding the document � and the al-leged signature � relative to the veri�cation-key v. Needless to say, for any pair ofkeys (s; v) generated by G and for every �, it holds that Vv(�; Ss(�)) = 1.The di�erence between the two types of schemes is reected in the de�nition ofsecurity. In the case of signature schemes, the adversary is given the veri�cation-key, whereas in the case of message authentication schemes the veri�cation-key(which may equal the signing-key) is not given to the adversary. Thus, schemesfor message authentication can be viewed as a private-key version of signatureschemes. This di�erence yields di�erent functionalities (even more than in the caseof encryption): In typical use of a signature scheme, each user generates a pair ofsigning and veri�cation keys, publicizes the veri�cation-key and keeps the signing-key secret. Subsequently, each user may sign documents using its own signing-key,and these signatures are universally veri�able with respect to its public veri�cation-key. In contrast, message authentication schemes are typically used to authenticateinformation sent among a set of mutually trusting parties that agree on a secretkey, which is being used both to produce and verify authentication-tags. (Indeed,it is assumed that the mutually trusting parties have generated the key together orhave exchanged the key in a secure way, prior to the communication of informationthat needs to be authenticated.)We focus on the de�nition of secure signature schemes, and consider very pow-erful attacks on the signature scheme as well as a very liberal notion of breakingit. Speci�cally, the attacker is allowed to obtain signatures to any message of its

C.6. SIGNATURES AND MESSAGE AUTHENTICATION 561choice. One may argue that in many applications such a general attack is not pos-sible (because messages to be signed must have a speci�c format). Yet, our viewis that it is impossible to de�ne a general (i.e., application-independent) notionof admissible messages, and thus a general/robust de�nition of an attack seemsto have to be formulated as suggested here. (Note that at worst, our approach isoverly cautious.) Likewise, the adversary is said to be successful if it can producea valid signature to any message for which it has not asked for a signature duringits attack. Again, this means that the ability to form signatures to \nonsensical"messages is also viewed as a breaking of the scheme. Yet, again, we see no wayto have a general (i.e., application-independent) notion of \meaningful" messages(such that only forging signatures to them will be considered a breaking of thescheme).De�nition C.15 (secure signature schemes { a sketch): A chosen message attackis a process that, on input a veri�cation-key, can obtain signatures (relative tothe corresponding signing-key) to messages of its choice. Such an attack is said tosucceed (in existential forgery) if it outputs a valid signature to a message for whichit has not requested a signature during the attack. A signature scheme is secure (orunforgeable) if every feasible chosen message attack succeeds with at most negligibleprobability, where the probability is taken over the initial choice of the key-pair aswell as over the adversary's actions.One popular suggestion is signing messages by applying the inverse of a trapdoorpermutation, where the trapdoor is used as a signing-key and the permutationitself is used (in the forward direction) towards veri�cation. We warn that, ingeneral, this scheme does not satisfy De�nition C.15 (e.g., the permutation may bea homomorphism of some group).C.6.2 ConstructionsSecure message authentication schemes can be constructed using pseudorandomfunctions (or rather the generalized notion of pseudorandom functions discussedat the end of Section C.3.3). Speci�cally, the key-generation algorithm consists ofuniformly selecting a seed s 2 f0; 1gn for such a function, denoted fs : f0; 1g�!f0; 1gn, and the (only valid) tag of message x with respect to the key s is fs(x).As in the case of our private-key encryption scheme, the proof of security of thecurrent message authentication scheme consists of two steps:1. Proving that an idealized version of the scheme, in which one uses a uniformlyselected function F :f0; 1g�!f0; 1gn, rather than the pseudorandom functionfs, is secure (i.e., unforgeable).2. Concluding that the real scheme is secure (because, otherwise one could dis-tinguish a pseudorandom function from a truly random one).Note that this message authentication scheme makes an \extensive use of pseu-dorandom functions" (i.e., the pseudorandom function is applied directly to the

562APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYmessage, which may be rather long). More e�cient schemes can be constructedeither based on a more restricted use of a pseudorandom function or based on othercryptographic primitives.Constructing secure signature schemes seems more di�cult than constructingmessage authentication schemes. Nevertheless, secure signature schemes can beconstructed based on the same assumptions.Theorem C.16 The following three conditions are equivalent:1. One-way functions exist.2. Secure signature schemes exist.3. Secure message authentication schemes exist.We stress that, unlike in the case of public-key encryption schemes, the constructionof signature schemes (which may be viewed as a public-key analogue of messageauthentication) does not require a trapdoor property. Three central paradigmsused in the construction of secure signature schemes are the \refreshing" of the\e�ective" signing-key, the usage of an \authentication tree", and the \hashingparadigm" (to be all discussed in the sequel). In addition to being used in theproof of Theorem C.16, these three paradigms are of independent interest.The refreshing paradigm. Introduced in [110], the refreshing paradigm is aimedat limiting the potential dangers of chosen message attacks. This is achieved bysigning the actual document using a newly (and randomly) generated instanceof the signature scheme, and authenticating (the veri�cation-key of) this randominstance with respect to the �xed and public veri�cation-key.16 Intuitively, thegain in terms of security is that a full-edged chosen message attack cannot belaunched on a �xed instance of the underlying signature schemes (i.e., on the �xedveri�cation-key that was published by the user and is known to the attacker). Allthat an attacker may obtain (via a chosen message attack on the new scheme) issignatures, relative to the original signing-key (which is coupled with the �xed andpublic veri�cation-key), to random strings (or rather random veri�cation-keys) aswell as additional signatures that are each relative to a random and independentlydistributed signing-key (which is coupled with a freshly generated veri�cation-key).Authentication trees. The security bene�ts of the refreshing paradigm are am-pli�ed when combining it with the use of authentication trees. The idea is to use thepublic veri�cation-key (only) for authenticating several (e.g., two) fresh instancesof the signature scheme, use each of these instances for authenticating several ad-ditional fresh instances, and so on. Thus, we obtain a tree of fresh instances of thebasic signature scheme, where each internal node authenticates its children. We16That is, consider a basic signature scheme (G;S; V) used as follows. Suppose that the userU has generated a key-pair (s; v) G(1n), and has placed the veri�cation-key v on a public-�le.When a party asks U to sign some document �, the user U generates a new (\fresh") key-pair(s0; v0) G(1n), signs v0 using the original signing-key s, signs � using the new signing-key s0,and presents (Ss(v0); v0; Ss0 (�)) as a signature to �. An alleged signature, (�1; v0; �2), is veri�edby checking whether both Vv(v0; �1) = 1 and Vv0 (�; �2) = 1 hold.

C.6. SIGNATURES AND MESSAGE AUTHENTICATION 563can now use the leaves of this tree for signing actual documents, where each leaf isused at most once. Thus, a signature to an actual document consists of1. a signature to this document authenticated with respect to the veri�cation-key associated with some leaf, and2. a sequence of veri�cation-keys associated with the nodes along the path fromthe root to this leaf, where each such veri�cation-key is authenticated withrespect to the veri�cation-key of its parent.We stress that the same signature, relative to the key of the parent node, is usedfor authenticating the veri�cation-keys of all its children. Thus, each instance ofthe signature scheme is used for signing at most one string (i.e., a single sequence ofveri�cation-keys if the instance resides in an internal node, and an actual documentif the instance resides in a leaf).17 Hence, it su�ces to use a signature scheme that issecure as long as it is applied for legitimately signing a single string. Such signatureschemes, called one-time signature schemes, are easier to construct than standardsignature schemes, especially if one only wishes to sign strings that are signi�cantlyshorter than the signing-key (resp., than the veri�cation-key). For example, usinga one-way function f , we may let the signing-key consist of a sequence of n pairs ofstrings, let the corresponding veri�cation-key consist of the corresponding sequenceof images of f , and sign an n-bit long message by revealing the adequate preimages.(That is, the signing-key consist of a sequence ((s01; s11); :::; (s0n; s1n)) 2 f0; 1g2n2 , thecorresponding veri�cation-key is (f(s01); f(s11)); :::; (f(s0n); f(s1n))), and the signa-ture of the message �1 � � ��n is (s�11 ; :::; s�nn).)The hashing paradigm. Note, however, that in the foregoing authentication-tree, the instances of the signature scheme (associated with internal nodes) areused for signing a pair of veri�cation-keys. Thus, we need a one-time signaturescheme that can be used for signing messages that are longer than the veri�cation-key. In order to bridge the gap between (one-time) signature schemes that areapplicable for signing short messages and schemes that are applicable for signinglong messages, we use the hashing paradigm. This paradigm refers to the commonpractice of signing documents via a two stage process: First the actual document ishashed to a (relatively) short string, and next the basic signature scheme is appliedto the resulting string. This practice is sound provided that the hashing functionbelongs to a family of collision-resistant hashing (a.k.a collision-free hashing) func-tions. Loosely speaking, the collision-resistant requirement means that, given ahash function that is randomly selected in such a family, it is infeasible to �nd twodi�erent strings that are hashed by this function to the same value. We also refer17A naive implementation of the foregoing (full-edged) signature scheme calls for storing in(secure) memory all the instances of the basic (one-time) signature scheme that are generatedthroughout the entire signing process (which refers to numerous documents). However, we notethat it su�ces to be able to reconstruct the random-coins used for generating each of theseinstances, and the former can be determined by a pseudorandom function (applied to the nameof the corresponding vertex in the tree). Indeed, the seed of this pseudorandom function will bepart of the signing-key of the resulting (full-edged) signature scheme.

564APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYthe interested reader to a variant of the hashing paradigm that uses the seeminglyweaker notion of a family of Universal One-Way Hash Functions (see [171] or [92,Sec. 6.4.3]).C.7 General Cryptographic ProtocolsThe design of secure protocols that implement arbitrary desired functionalities isa major part of modern cryptography. Taking the opposite perspective, the designof any cryptographic scheme may be viewed as the design of a secure protocol forimplementing a corresponding functionality. Still, we believe that it makes sense todi�erentiate between basic cryptographic primitives (which involve little interac-tion) like encryption and signature schemes on one hand, and general cryptographicprotocols on the other hand.In this section, we survey general results concerning secure multi-party com-putations, where the two-party case is an important special case. In a nutshell,these results assert that one can construct protocols for securely computing anydesirable multi-party functionality. Indeed, what is striking about these results istheir generality, and we believe that the wonder is not diminished by the (variousalternative) conditions under which these results hold.A general framework for casting (m-party) cryptographic (protocol) problemsconsists of specifying a random process18 that maps m inputs to m outputs. Theinputs to the process are to be thought of as the local inputs of m parties, and them outputs are their corresponding local outputs. The random process describesthe desired functionality. That is, if the m parties were to trust each other (or trustsome external party), then they could each send their local input to the trustedparty, who would compute the outcome of the process and send to each party thecorresponding output. A pivotal question in the area of cryptographic protocols isto what extent can this (imaginary) trusted party be \emulated" by the mutuallydistrustful parties themselves.The results surveyed in this section describe a variety of models in which suchan \emulation" is possible. The models vary by the underlying assumptions re-garding the communication channels, numerous parameters governing the extentof adversarial behavior, and the desired level of emulation of the trusted party (i.e.,level of \security"). Our treatment refers to the security of stand-alone executions.The preservation of security in an environment in which many executions of manyprotocols are attacked is beyond the scope of this section, and the interested readeris referred to [92, Sec. 7.7.2].18That is, we consider the secure evaluation of randomized functionalities, rather than \only"the secure evaluation of functions. Speci�cally, we consider an arbitrary (randomized) processF that on input (x1; :::; xm), �rst selects at random (depending only on ` def= Pmi=1 jxij) an m-ary function f , and then outputs the m-tuple f(x1; :::; xm) = (f1(x1; :::; xm); :::; fm(x1; :::; xm)).In other words, F (x1; :::; xm) = F 0(r; x1; :::; xm), where r is uniformly selected in f0; 1g`0 (with`0 = poly(`)), and F 0 is a function mapping (m+ 1)-long sequences to m-long sequences.

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 565C.7.1 The De�nitional Approach and Some ModelsBefore describing the aforementioned results, we further discuss the notion of\emulating a trusted party", which underlies the de�nitional approach to securemulti-party computation. This approach follows the simulation paradigm (cf. Sec-tion C.4.1) which deems a scheme to be secure if whatever a feasible adversary canobtain after attacking it, is also feasibly attainable by a benign behavior. In thegeneral setting of multi-party computation we compare the e�ect of adversariesthat participate in the execution of the actual protocol to the e�ect of adversariesthat participate in an imaginary execution of a trivial (ideal) protocol for com-puting the desired functionality with the help of a trusted party. If whatever theadversaries can feasibly obtain in the real setting can also be feasibly obtained inthe ideal setting then the actual protocol \emulates the ideal setting" (i.e., \emu-lates a trusted party"), and thus is deemed secure. This approach can be appliedin a variety of models, and is used to de�ne the goals of security in these models.19We �rst discuss some of the parameters used in de�ning various models, and nextdemonstrate the application of the foregoing approach in two important cases. Forfurther details, see [92, Sec. 7.2 and 7.5.1].C.7.1.1 Some parameters used in de�ning security modelsThe following parameters are described in terms of the actual (or real) computation.In some cases, the corresponding de�nition of security is obtained by imposing somerestrictions or provisions on the ideal model.20 In all cases, the desired notion ofsecurity is de�ned by requiring that for any adequate adversary in the real model,there exist a corresponding adversary in the corresponding ideal model that obtainsessentially the same impact (as the real-model adversary).The communication channels: Most works in cryptography assume that com-munication is synchronous and that point-to-point channels exist between everypair of processors (i.e., a complete network). It is further assumed that the ad-versary cannot modify (or omit or insert) messages sent over any communicationchannel that connects honest parties. In the standard model, the adversary maytap all communication channels, and thus obtain any message sent between honestparties. In an alternative model, called the private-channel model, one postulates19A few technical comments are in place. Firstly, we assume that the inputs of all partiesare of the same length. We comment that as long as the lengths of the inputs are polynomiallyrelated, the foregoing convention can be enforced by padding. On the other hand, some lengthrestriction is essential for the security results, because in general it is impossible to hide allinformation regarding the length of the inputs to a protocol. Secondly, we assume that thedesired functionality is computable in probabilistic polynomial-time, because we wish the secureprotocol to run in probabilistic polynomial-time (and a protocol cannot be more e�cient thanthe corresponding centralized algorithm). Clearly, the results can be extended to functionalitiesthat are computable within any given (time-constructible) time bound, using adequate padding.20For example, in the case of two-party computation (see xC.7.1.3), secure computation ispossible only if premature termination is not considered a breach of security. In that case, thesuitable security de�nition is obtained (via the simulation paradigm) by allowing (an analogueof) premature termination in the ideal model.

566APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYthat the adversary cannot obtain messages sent between any pair of honest parties.Indeed, in some cases, the private-channel model can be emulated by the standardmodel (e.g., by using a secure encryption scheme).Set-up assumptions: Unless stated di�erently, no set-up assumptions are made(except for the obvious assumption that all parties have identical copies of theprotocol's program).Computational limitations: Typically, the focus is on computationally-boundedadversaries (e.g., probabilistic polynomial-time adversaries). However, the private-channel model allows for the (meaningful) consideration of computationally-unboundedadversaries.21Restricted adversarial behavior: The parameters of the model include ques-tions like whether the adversary is \active" or \passive" (i.e., whether a dishonestparty takes active steps to disrupt the execution of the protocol or merely gathersinformation) and whether or not the adversary is \adaptive" (i.e., whether the setof dishonest parties is �xed before the execution starts or is adaptively chosen byan adversary during the execution).Restricted notions of security: One important example is the willingness totolerate \unfair" protocols in which the execution can be suspended (at any time)by a dishonest party, provided that it is detected doing so. We stress that in case theexecution is suspended, the dishonest party does not obtain more information thanit could have obtained when not suspending the execution. (What may happen isthat the honest parties will not obtain their desired outputs, but will detect thatthe execution was suspended.) We stress that the motivation to this restrictedmodel is the impossibility of obtaining general secure two-party computation inthe unrestricted model.Upper bounds on the number of dishonest parties: These are assumedin some models, when required. For example, in some models, secure multi-partycomputation is possible only if a majority of the parties is honest.C.7.1.2 Example: Multi-party protocols with honest majorityHere we consider an active, non-adaptive, and computationally-bounded adversary,and do not assume the existence of private channels. Our aim is to de�ne multi-21We stress that, also in the case of computationally-unbounded adversaries, security shouldbe de�ned by requiring that, for every real adversary, whatever the adversary can compute afterparticipating in the execution of the actual protocol is computable within comparable time byan imaginary adversary participating in an imaginary execution of the trivial ideal protocol (forcomputing the desired functionality with the help of a trusted party). That is, although nocomputational restrictions are made on the real-model adversary, it is required that the ideal-model adversary that obtains the same impact does so within comparable time (i.e., within timethat is polynomially related to the running time of the real-model adversary being simulated).

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 567party protocols that remain secure provided that the honest parties are in majority.(The reason for requiring an honest majority will be discussed at the end of thissubsection.)We �rst observe that in any multi-party protocol, each party may change itslocal input before even entering the execution of the protocol. However, this isunavoidable also when the parties utilize a trusted party. Consequently, such ane�ect of the adversary on the real execution (i.e., modi�cation of its own inputprior to entering the actual execution) is not considered a breach of security. Ingeneral, whatever cannot be avoided when the parties utilize a trusted party, isnot considered a breach of security. We wish secure protocols (in the real model)to su�er only from whatever is unavoidable also when the parties utilize a trustedparty. Thus, the basic paradigm underlying the de�nitions of secure multi-partycomputations amounts to requiring that the only situations that may occur in thereal execution of a secure protocol are those that can also occur in a correspondingideal model (where the parties may employ a trusted party). In other words, the\e�ective malfunctioning" of parties in secure protocols is restricted to what ispostulated in the corresponding ideal model.In light of the foregoing, we start by de�ning an ideal model (or rather themisbehavior allowed in it). Since we are interested in executions in which themajority of parties are honest, we consider an ideal model in which any minoritygroup (of the parties) may collude as follows:1. First, the members of this dishonest minority share their original inputs anddecide together on replaced inputs to be sent to the trusted party. (The otherparties send their respective original inputs to the trusted party.)2. Upon receiving inputs from all parties, the trusted party determines the cor-responding outputs and sends them to the corresponding parties. (We stressthat the information sent between the honest parties and the trusted partyis not seen by the dishonest colluding minority.)3. Upon receiving the output-message from the trusted party, each honest partyoutputs it locally, whereas the members of the dishonest minority share theoutput-messages and determine their local outputs based on all they know(i.e., their initial inputs and their received output-messages).A secure multi-party computation with honest majority is required to emulate thisideal model. That is, the e�ect of any feasible adversary that controls a minority ofthe parties in a real execution of such a (real) protocol, can be essentially simulatedby a (di�erent) feasible adversary that controls the corresponding parties in theideal model.De�nition C.17 (secure protocols { a sketch): Let f be an m-ary functionalityand � be an m-party protocol operating in the real model.� For a real-model adversary A, controlling some minority of the parties (andtapping all communication channels), and an m-sequence x, we denote byreal�;A(x) the sequence of m outputs resulting from the execution of � oninput x under the attack of the adversary A.

568APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY� For an ideal-model adversary A0, controlling some minority of the parties,and an m-sequence x, we denote by idealf;A0(x) the sequence of m outputsresulting from the foregoing three-step ideal process, when applied to input xunder the attack of the adversary A0 and when the trusted party employs thefunctionality f .We say that � securely implements f with honest majority if for every feasible real-model adversary A, controlling some minority of the parties, there exists a feasibleideal-model adversary A0, controlling the same parties, such that the probability en-sembles freal�;A(x)gx and fidealf;A0(x)gx are computationally indistinguishable(as in De�nition C.5).Thus, security means that the e�ect of each minority group in a real executionof a secure protocol is \essentially restricted" to replacing its own local inputs(independently of the local inputs of the majority parties) before the protocolstarts, and replacing its own local outputs (depending only on its local inputs andoutputs) after the protocol terminates. (We stress that in the real execution theminority parties do obtain additional pieces of information; yet in a secure protocolthey gain nothing from these additional pieces of information, because they canactually reproduce those by themselves.)The fact that De�nition C.17 refers to a model without private channels isreected in the fact that our (sketchy) de�nition of the real-model adversary al-lowed it to tap all channels, which in turn e�ects the set of possible ensemblesfreal�;A(x)gx. When de�ning security in the private-channel model, the real-model adversary is not allowed to tap channels between honest parties, and thisagain e�ects the possible ensembles freal�;A(x)gx. On the other hand, whende�ning security with respect to passive adversaries, both the scope of the real-model adversaries and the scope of the ideal-model adversaries change. In thereal-model execution, all parties follow the protocol but the adversary may alterthe output of the dishonest parties arbitrarily depending on their intermediate in-ternal states during the entire execution. In the corresponding ideal-model, theadversary is not allowed to modify the inputs of dishonest parties (in Step 1), butis allowed to modify their outputs (in Step 3).We comment that a de�nition analogous to De�nition C.17 can be presented alsoin the case that the dishonest parties are not in minority. In fact, such a de�nitionseems more natural, but the problem is that such a de�nition cannot be satis�ed.That is, most (natural) functionalities do not have protocols for computing themsecurely in the case that at least half of the parties are dishonest and employ anadequate adversarial strategy. This follows from an impossibility result regardingtwo-party computation, which essentially asserts that there is no way to prevent aparty from prematurely suspending the execution. On the other hand, secure multi-party computation with dishonest majority is possible if premature suspension ofthe execution is not considered a breach of security (see xC.7.1.3).

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 569C.7.1.3 Another example: Two-party protocols allowing abortIn light of the last paragraph, we now consider multi-party computations in whichpremature suspension of the execution is not considered a breach of security. Forsimplicity, we focus on the special case of two-party computations. (As in xC.7.1.2,we consider a non-adaptive, active, and computationally-bounded adversary.)Intuitively, in any two-party protocol, each party may suspend the executionat any point in time, and furthermore it may do so as soon as it learns the desiredoutput. Thus, if the output of each party depends on the inputs of both parties,then it is always possible for one of the parties to obtain the desired output whilepreventing the other party from fully determining its own output.22 The samephenomenon occurs even in the case that the two parties just wish to generate acommon random value. In order to account for this phenomenon, when consideringactive adversaries in the two-party setting, we do not consider such prematuresuspension of the execution a breach of security. Consequently, we consider an idealmodel in which each of the two parties may \shut-down" the trusted (third) partyat any point in time. In particular, this may happen after the trusted party hassupplied the outcome of the computation to one party but before it has suppliedthe outcome to the other party. Thus, an execution in the corresponding idealmodel proceeds as follows:1. Each party sends its input to the trusted party, where the dishonest partymay replace its input or send no input at all (which can be treated as sendinga default value).2. Upon receiving inputs from both parties, the trusted party determines thecorresponding pair of outputs, and sends the �rst output to the �rst party.3. If the �rst party is dishonest, then it may instruct the trusted party to halt,otherwise it always instructs the trusted party to proceed. If instructed toproceed, the trusted party sends the second output to the second party.4. Upon receiving the output-message from the trusted party, an honest partyoutputs it locally, whereas a dishonest party may determine its output basedon all it knows (i.e., its initial input and its received output).A secure two-party computation allowing abort is required to emulate this idealmodel. That is, as in De�nition C.17, security is de�ned by requiring that forevery feasible real-model adversary A, there exists a feasible ideal-model adversaryA0, controlling the same party, such that the probability ensembles representingthe corresponding (real and ideal) executions are computationally indistinguish-able. This means that each party's \e�ective malfunctioning" in a secure protocolis restricted to supplying an initial input of its choice and aborting the computationat any point in time. (Needless to say, the choice of the initial input of each partymay not depend on the input of the other party.)22In contrast, in the case of an honest majority (cf., xC.7.1.2), the honest party that fails toobtain its output is not alone. It may seek help from the other honest parties, which (being inmajority and) by joining forces can do things that dishonest minorities cannot do: See xC.7.3.2.

570APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYWe mention that an alternative way of dealing with the problem of prematuresuspension of execution (i.e., abort) is to restrict the attention to single-outputfunctionalities; that is, functionalities in which only one party is supposed to obtainan output. The de�nition of secure computation of such functionalities can be madeidentical to De�nition C.17, with the exception that no restriction is made on theset of dishonest parties (and in particular one may consider a single dishonest partyin the case of two-party protocols). For further details, see [92, Sec. 7.2.3].C.7.2 Some Known ResultsWe next list some of the models for which general secure multi-party computationis known to be attainable (i.e., models in which one can construct secure multi-party protocols for computing any desired functionality). We mention that the �rstresults of this type were obtained by Goldreich, Micali, Wigderson and Yao [100,240, 101].In the standard channel model. Assuming the existence of enhanced23 trap-door permutations, secure multi-party computation is possible in the following threemodels (cf. [100, 240, 101] and details in [92, Chap. 7]):1. Passive adversaries, for any number of dishonest parties.2. Active adversaries that may control only a minority of the parties.3. Active adversaries, for any number of dishonest parties, provided that sus-pension of execution is not considered a violation of security (cf. xC.7.1.3).In all these cases, the adversaries are computationally-bounded and non-adaptive.On the other hand, the adversaries may tap the communication lines between hon-est parties (i.e., we do not assume \private channels" here). The results for activeadversaries assume a broadcast channel. Indeed, the latter can be implemented(while tolerating any number of dishonest parties) using a signature scheme andassuming that each party knows (or can reliably obtain) the veri�cation-key corre-sponding to each of the other parties.In the private channels model. Making no computational assumptions andallowing computationally-unbounded adversaries, but assuming private channels,secure multi-party computation is possible in the following two models (cf. [34, 53]):1. Passive adversaries that may control only a minority of the parties.2. Active adversaries that may control only less than one third of the parties.In both cases the adversaries may be adaptive.23See Footnote 15.

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 571C.7.3 Construction Paradigms and Two Simple ProtocolsWe briey sketch a couple of paradigms used in the construction of secure multi-party protocols. We focus on the construction of secure protocols for the modelof computationally-bounded and non-adaptive adversaries [100, 240, 101]. Theseconstructions proceed in two steps (see details in [92, Chap. 7]): First a secure pro-tocol is presented for the model of passive adversaries (for any number of dishonestparties), and next such a protocol is \compiled" into a protocol that is secure inone of the two models of active adversaries (i.e., either in a model allowing theadversary to control only a minority of the parties or in a model in which prema-ture suspension of the execution is not considered a violation of security). Thesetwo steps are presented in the following two corresponding subsections, in whichwe also present two relatively simple protocols for two speci�c tasks, which in turnare used extensively in the general protocols.Recall that in the model of passive adversaries, all parties follow the prescribedprotocol, but at termination the adversary may alter the outputs of the dishonestparties depending on their intermediate internal states (during the entire execu-tion). We refer to protocols that are secure in the model of passive (resp., active)adversaries by the term passively-secure (resp., actively-secure).C.7.3.1 Passively-secure computation with sharesFor sake of simplicity, we consider here only the special case of deterministic m-aryfunctionalities (i.e., functions). We assume that the m parties hold a circuit forcomputing the value of the function on inputs of the adequate length, and that thecircuit contains only and and not gates. The key idea is having each party \secretlyshare" its input with everybody else, and having the parties \secretly transform"shares of the input wires of the circuit into shares of the output wires of thecircuit, thus obtaining shares of the outputs (which allows for the reconstructionof the actual outputs). The value of each wire in the circuit is shared such thatall shares yield the value, whereas lacking even one of the shares keeps the valuetotally undetermined. That is, we use a simple secret sharing scheme such that abit b is shared by a random sequence of m bits that sum-up to b mod 2. First, eachparty shares each of its input bits with all parties (by secretly sending each party arandom value and setting its own share accordingly). Next, all parties jointly scanthe circuit from its input wires to its output wires, processing each gate as follows:� When encountering a gate, the parties already hold shares of the values ofthe wires entering the gate, and their aim is to obtain shares of the value ofthe wires exiting the gate.� For a not-gate this is easy: the �rst party just ips the value of its share,and all other parties maintain their shares.� Since an and-gate corresponds to multiplication modulo 2, the parties needto securely compute the following randomized functionality (where the xi'sdenote shares of one entry-wire, the yi's denote shares of the second entry-wire, the zi's denote shares of the exit-wire, and the shares indexed by i are

572APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYheld by Party i):((x1; y1); :::; (xm; ym)) 7! (z1; :::; zm) , where (C.1)mXi=1 zi = mXi=1 xi! � mXi=1 yi!: (C.2)That is, the zi's are random subject to Eq. (C.2).Finally, the parties send their shares of each circuit-output wire to the designatedparty, which reconstructs the value of the corresponding bit. Thus, the parties havepropagated shares of the circuit-input wires into shares of the circuit-output wires,by repeatedly conducting a passively-secure computation of them-ary functionalityof Eq. (C.1)& (C.2). That is, securely evaluating the entire (arbitrary) circuit\reduces" to securely conducting a speci�c (very simple) multi-party computation.But things get even simpler: the key observation is that mXi=1 xi! � mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) : (C.3)Thus, the m-ary functionality of Eq. (C.1)& (C.2) can be computed as follows(where all arithmetic operations are mod 2):1. Each Party i locally computes zi;i def= xiyi.2. Next, each pair of parties (i.e., Parties i and j) securely compute randomshares of xiyj + yixj . That is, Parties i and j (holding (xi; yi) and (xj ; yj),respectively), need to securely compute the randomized two-party function-ality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z's are random subject tozi;j + zj;i = xiyj + yixj . Equivalently, Party j uniformly selects zj;i 2 f0; 1g,and Parties i and j securely compute the following deterministic functionality((xi; yi); (xj ; yj ; zj;i)) 7! (zj;i + xiyj + yixj ; �); (C.4)where � denotes the empty string.3. Finally, for every i = 1; :::;m, the sum Pmj=1 zi;j yields the desired share ofParty i.The foregoing construction is analogous to a construction that was outlined in [101].A detailed description and full proofs appear in [92, Sec. 7.3.4 and 7.5.2].The foregoing construction \reduces" the passively-secure computation of anym-ary functionality to the implementation of the simple 2-ary functionality ofEq. (C.4). The latter can be implemented in a passively-secure manner by using a1-out-of-4 Oblivious Transfer. Loosely speaking, a 1-out-of-k Oblivious Transfer isa protocol enabling one party to obtain one out of k secrets held by another party,without the second party learning which secret was obtained by the �rst party.That is, it allows a passively-secure computation of the two-party functionality(i; (s1; :::; sk)) 7! (si; �): (C.5)

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 573Note that any function f : [k] � f0; 1g� ! f0; 1g� � f�g can be computed in apassively-secure manner by invoking a 1-out-of-k Oblivious Transfer on inputs iand (f(1; y); :::; f(k; y)), where i (resp., y) is the initial input of the �rst (resp.,second) party.A passively-secure 1-out-of-k Oblivious Transfer. Using a collection of en-hanced trapdoor permutations, ff� : D� ! D�g�2I and a corresponding hard-corepredicate b, we outline a passively-secure implementation of the functionality ofEq. (C.5), when restricted to single-bit secrets.Inputs: The �rst party, hereafter called the receiver, has input i 2 f1; 2; :::; kg. Thesecond party, called the sender, has input (�1; �2; :::; �k) 2 f0; 1gk.Step S1: The sender selects at random a permutation f� along with a correspond-ing trapdoor, denoted t, and sends the permutation f� (i.e., its index �) tothe receiver.Step R1: The receiver uniformly and independently selects x1; :::; xk 2 D�, setsyi = f�(xi) and yj = xj for every j 6= i, and sends (y1; y2; :::; yk) to thesender.Thus, the receiver knows f�1� (yi) = xi, but cannot predict b(f�1� (yj)) for anyj 6= i. Needless to say, the last assertion presumes that the receiver followsthe protocol (i.e., we only consider passive-security).Step S2: Upon receiving (y1; y2; :::; yk), using the inverting-with-trapdoor algo-rithm and the trapdoor t, the sender computes zj = f�1� (yj), for everyj 2 f1; :::; kg. It sends the k-tuple (�1 � b(z1); �2 � b(z2); :::; �k � b(zk))to the receiver.Step R2: Upon receiving (c1; c2; :::; ck), the receiver locally outputs ci � b(xi).We �rst observe that this protocol correctly computes 1-out-of-k Oblivious Trans-fer; that is, the receiver's local output (i.e., ci�b(xi)) indeed equals (�i�b(f�1� (f�(xi))))�b(xi) = �i. Next, we o�er some intuition as to why this protocol constitutes aprivately-secure implementation of 1-out-of-k Oblivious Transfer. Intuitively, thesender gets no information from the execution because, for any possible value of i,the sender sees the same distribution; speci�cally, a sequence of k uniformly andindependently distributed elements of D�. (Indeed, the key observation is that ap-plying f� to a uniformly distributed element of D� yields a uniformly distributedelement of D�.) As for the receiver, intuitively, it gains no computational knowl-edge from the execution because, for j 6= i, the only information that the receiverhas regarding �j is the triple (�; xj ; �j � b(f�1� (xj))), where xj is uniformly dis-tributed in D�, and from this information it is infeasible to predict �j better thanby a random guess.24 (See [92, Sec. 7.3.2] for a detailed proof of security.)24The latter intuition presumes that sampling D� is trivial (i.e., that there is an easily com-putable correspondence between the coins used for sampling and the resulting sample), whereasin general the coins used for sampling may be hard to compute from the corresponding outcome.This is the reason that an enhanced hardness assumption is used in the general analysis of theforegoing protocol.

574APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.7.3.2 From passively-secure protocols to actively-secure onesWe show how to transform any passively-secure protocol into a correspondingactively-secure protocol. The communication model in both protocols consists ofa single broadcast channel. Note that the messages of the original protocol maybe assumed to be sent over a broadcast channel, because the adversary may seethem anyhow (by tapping the point-to-point channels), and because a broadcastchannel is trivially implementable in the case of passive adversaries. As for the re-sulting actively-secure protocol, the broadcast channel it uses can be implementedvia an (authenticated) Byzantine Agreement protocol, thus providing an emulationof this model on the standard point-to-point model (in which a broadcast channeldoes not exist). We mention that authenticated Byzantine Agreement is typicallyimplemented using a signature scheme (and assuming that each party knows theveri�cation-key corresponding to each of the other parties).Turning to the transformation itself, the main idea (mentioned in xC.4.3.2) isusing zero-knowledge proofs in order to force parties to behave in a way that isconsistent with the (passively-secure) protocol. Actually, we need to con�ne eachparty to a unique consistent behavior (i.e., according to some �xed local input and asequence of coin tosses), and to guarantee that a party cannot �x its input (and/orits coin tosses) in a way that depends on the inputs (and/or coin tosses) of honestparties. Thus, some preliminary steps have to be taken before the step-by-stepemulation of the original protocol may start. Speci�cally, the compiled protocol(which, like the original protocol, is executed over a broadcast channel) proceedsas follows:1. Committing to the local input: Prior to the emulation of the original protocol,each party commits to its input (using a commitment scheme as de�nedin xC.4.3.1). In addition, using a zero-knowledge proof-of-knowledge (seeSection 9.2.3), each party also proves that it knows its own input; that is,it proves that it can decommit to the commitment it sent. (These zero-knowledge proof-of-knowledge prevent dishonest parties from setting theirinputs in a way that depends on inputs of honest parties.)2. Generation of local random tapes: Next, all parties jointly generate a se-quence of random bits for each party such that only this party knows theoutcome of the random sequence generated for it, and everybody else gets acommitment to this outcome. These sequences will be used as the random-inputs (i.e., sequence of coin tosses) for the original protocol. Each bit in therandom-sequence generated for Party X is determined as the exclusive-or ofthe outcomes of instances of an (augmented) coin-tossing protocol (cf. [92,Sec. 7.4.3.5]) that Party X plays with each of the other parties. The lat-ter protocol provides the other parties with a commitment to the outcomeobtained by Party X.3. E�ective prevention of premature termination: In addition, when compiling(the passively-secure protocol to an actively-secure protocol) for the modelthat allows the adversary to control only a minority of the parties, each party

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 575shares its input and its random-input with all other parties using a \Veri�ableSecret Sharing" (VSS) protocol (cf. [92, Sec. 7.5.5.1]). Loosely speaking, aVSS protocol allows sharing a secret in a way that enables each participantto verify that the share it got �ts the publicly posted information, whichincludes commitments to all shares, where a su�cient number of the latterallow for the e�cient recovery of the secret. The use of VSS guarantees thatif Party X prematurely suspends the execution, then the honest parties cantogether reconstruct all Party X's secrets and carry on the execution whileplaying its role. This step e�ectively prevents premature termination, and isnot needed in a model that does not consider premature termination a breachof security.4. Step-by-step emulation of the original protocol: Once all the foregoing stepsare completed, the new protocol emulates the steps of the original protocol.In each step, each party augments the message determined by the originalprotocol with a zero-knowledge proof that asserts that the message was in-deed computed correctly. Recall that the next message (as determined bythe original protocol) is a function of the sender's own input, its random-input, and the messages it has received so far (where the latter are known toeverybody because they were sent over a broadcast channel). Furthermore,the sender's input is determined by its commitment (as sent in Step 1), andits random-input is similarly determined (in Step 2). Thus, the next mes-sage (as determined by the original protocol) is a function of publicly knownstrings (i.e., the said commitments as well as the other messages sent overthe broadcast channel). Moreover, the assertion that the next message wasindeed computed correctly is an NP-assertion, and the sender knows a cor-responding NP-witness (i.e., its own input and random-input as well as thecorresponding decommitment information). Thus, the sender can prove inzero-knowledge (to each of the other parties) that the message it is sendingwas indeed computed according to the original protocol.The foregoing compilation was �rst outlined in [100, 101]. A detailed descriptionand full proofs appear in [92, Sec. 7.4 and 7.5].A secure coin-tossing protocol. Using a commitment scheme, we outline asecure (ordinary as opposed to augmented) coin-tossing protocol.Step C1: Party 1 uniformly selects � 2 f0; 1g and sends Party 2 a commitment,denoted c, to �.Step C2: Party 2 uniformly selects �0 2 f0; 1g, and sends �0 to Party 1.Step C3: Party 1 outputs the value � � �0, and sends � along with the decommit-ment information, denoted d, to Party 2.Step C4: Party 2 checks whether or not (�; d) �t the commitment c it has obtainedin Step 1. It outputs � � �0 if the check is satis�ed and halts with output ?

576APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYotherwise, where ? indicates that Party 1 has e�ectively aborted the protocolprematurely.Intuitively, Steps C1{C2 may be viewed as \tossing a coin into the well". Atthis point (i.e., after Step C2), the value of the coin is determined (essentiallyas a random value), but only one party (i.e., Party 1) \can see" (i.e., knows) thisvalue. Clearly, if both parties are honest then they both output the same uniformlychosen bit, recovered in Steps C3 and C4, respectively. Intuitively, each partycan guarantee that the outcome is uniformly distributed, and Party 1 can causepremature termination by improper execution of Step 3. Formally, we have to showhow the e�ect of any real-model adversary can be simulated by an adequate ideal-model adversary (which is allowed premature termination). This is done in [92,Sec. 7.4.3.1].C.7.4 Concluding RemarksIn Sections C.7.1-C.7.2 we have mentioned numerous de�nitions and results regard-ing secure multi-party protocols, where some of these de�nitions are incomparableto others (i.e., they neither imply the others nor are implies by them). For example,in xC.7.1.2 and xC.7.1.3, we have presented two alternative de�nitions of \securemulti-party protocols", one requiring an honest majority and the other allowingabort. These de�nitions are incomparable and there is no generic reason to preferone over the other. Actually, as mentioned in xC.7.1.2, one could formulate a nat-ural de�nition that implies both de�nitions (i.e., waiving the bound on the numberof dishonest parties in De�nition C.17). Indeed, the resulting de�nition is free ofthe annoying restrictions that were introduced in each of the two aforementionedde�nitions; the \only" problem with the resulting de�nition is that it cannot besatis�ed (in general). Thus, for the �rst time in this appendix, we have reached asituation in which a natural (and general) de�nition cannot be satis�ed, and we areforced to choose between two weaker alternatives, where each of these alternativescarries fundamental disadvantages.In general, Section C.7 carries a stronger avor of compromise (i.e., recognizinginherent limitations and settling for a restricted meaningful goal) than previoussections. In contrast to the impression given in other parts of this appendix, itturns out that we cannot get all that we may want (and this is without mentioningthe problems involved in preserving security under concurrent composition; cf. [92,Sec. 7.7.2]). Instead, we should study the alternatives, and go for the one that bestsuits our real needs.Indeed, as stated in Section C.1, the fact that we can de�ne a cryptographicgoal does not mean that we can satisfy it as de�ned. In case we cannot satisfythe initial de�nition, we should search for relaxations that can be satis�ed. Theserelaxations should be de�ned in a clear manner such that it would be obvious whatthey achieve (and what they fail to achieve). Doing so will allow a sound choice ofthe relaxation to be used in a speci�c application.

Appendix DProbabilistic Preliminariesand Advanced Topics inRandomizationWhat is this? Chicken Curry and Seafood Salad?Fine, but in the same plate? This is disgusting!Johan H�astad at Grendel's, Cambridge (1985)Summary: This appendix lumps together some preliminaries regard-ing probability theory and some advanced topics related to the role anduse of randomness in computation. Needless to say, each of these topicsappears in a separate section.The probabilistic preliminaries include our conventions regarding ran-dom variables, which are used throughout the book. Also included areoverviews of three useful probabilistic inequalities: Markov's Inequality,Chebyshev's Inequality, and Cherno� Bound.The advanced topics include hashing, sampling, and randomness ex-traction. For hashing, we describe constructions of pairwise (and t-wiseindependent) hashing functions and (a few variants of) the LeftoverHashing Lemma (used a few times in the main text). We then reviewthe \complexity of sampling": that is, the number of samples and therandomness complexity involved in estimating the average value of anarbitrary function de�ned over a huge domain. Finally, we provide anoverview on the question of extracting almost perfect randomness fromsources of weak (or defected) randomness.577

578APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIOND.1 Probabilistic preliminariesProbability plays a central role in complexity theory (see, for example, Chapters 6{9). We assume that the reader is familiar with the basic notions of probabilitytheory. In this section, we merely present the probabilistic notations that are usedthroughout the book and three useful probabilistic inequalities.D.1.1 Notational ConventionsThroughout the entire book we refer only to discrete probability distributions.Speci�cally, the underlying probability space consists of the set of all strings of acertain length `, taken with uniform probability distribution. That is, the samplespace is the set of all `-bit long strings, and each such string is assigned probabilitymeasure 2�`. Traditionally, random variables are de�ned as functions from thesample space to the reals. Abusing the traditional terminology, we use the termrandom variable also when referring to functions mapping the sample space into theset of binary strings. We often do not specify the probability space, but rather talkdirectly about random variables. For example, we may say that X is a randomvariable assigned values in the set of all strings such that Pr[X = 00] = 14 andPr[X =111] = 34 . (Such a random variable may be de�ned over the sample spacef0; 1g2, so that X(11) = 00 and X(00) = X(01) = X(10) = 111.) One importantcase of a random variable is the output of a randomized process (e.g., a probabilisticpolynomial-time algorithm, as in Section 6.1).All our probabilistic statements refer to random variables that are de�ned be-forehand. Typically, we may write Pr[f(X) = 1], where X is a random variablede�ned beforehand (and f is a function). An important convention is that all oc-currences of the same symbol in a probabilistic statement refer to the same (unique)random variable. Hence, if B(�; �) is a Boolean expression depending on two vari-ables, and X is a random variable then Pr[B(X;X)] denotes the probability thatB(x; x) holds when x is chosen with probability Pr[X=x]. For example, for everyrandom variableX , we have Pr[X=X] = 1. We stress that if we wish to discuss theprobability that B(x; y) holds when x and y are chosen independently with identi-cal probability distribution, then we will de�ne two independent random variableseach with the same probability distribution. Hence, if X and Y are two indepen-dent random variables then Pr[B(X;Y)] denotes the probability that B(x; y) holdswhen the pair (x; y) is chosen with probability Pr[X=x] � Pr[Y =y]. For example,for every two independent random variables, X and Y , we have Pr[X = Y] = 1only if both X and Y are trivial (i.e., assign the entire probability mass to a singlestring).Throughout the entire book, Un denotes a random variable uniformly dis-tributed over the set of all strings of length n. Namely, Pr[Un = �] equals 2�nif � 2 f0; 1gn and equals 0 otherwise. We often refer to the distribution of Un asthe uniform distribution (neglecting to qualify that it is uniform over f0; 1gn). In ad-dition, we occasionally use random variables (arbitrarily) distributed over f0; 1gnor f0; 1g`(n), for some function ` : N!N . Such random variables are typicallydenoted by Xn, Yn, Zn, etc. We stress that in some cases Xn is distributed over

D.1. PROBABILISTIC PRELIMINARIES 579f0; 1gn, whereas in other cases it is distributed over f0; 1g`(n), for some function `(which is typically a polynomial). We often talk about probability ensembles, whichare in�nite sequence of random variables fXngn2N such that each Xn ranges overstrings of length bounded by a polynomial in n.Statistical di�erence. The statistical distance (a.k.a variation distance) betweenthe random variables X and Y is de�ned as12 �Xv jPr[X = v]� Pr[Y = v]j = maxS fPr[X 2 S]� Pr[Y 2 S]g: (D.1)We say that X is �-close (resp., �-far) to Y if the statistical distance between themis at most (resp., at least) �.D.1.2 Three InequalitiesThe following probabilistic inequalities are very useful. These inequalities refer torandom variables that are assigned real values and provide upper-bounds on theprobability that the random variable deviates from its expectation.D.1.2.1 Markov's InequalityThe most basic inequality isMarkov's Inequality that applies to any random variablewith bounded maximum or minimum value. For simplicity, this inequality is statedfor random variables that are lower-bounded by zero, and reads as follows: Let Xbe a non-negative random variable and v be a non-negative real number. ThenPr [X�v] � E(X)v (D.2)Equivalently, Pr[X � r � E(X)] � 1r . The proof amounts to the following sequence:E(X) = Xx Pr[X=x] � x� Xx<v Pr[X=x] � 0 +Xx�v Pr[X=x] � v= Pr[X�v] � vD.1.2.2 Chebyshev's InequalityUsing Markov's inequality, one gets a potentially stronger bound on the deviationof a random variable from its expectation. This bound, called Chebyshev's inequal-ity, is useful when having additional information concerning the random variable(speci�cally, a good upper bound on its variance). For a random variable X of�nite expectation, we denote by Var(X) def= E[(X � E(X))2] the variance of X , and

580APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONobserve that Var(X) = E(X2)�E(X)2. Chebyshev's Inequality then reads as follows:Let X be a random variable, and � > 0. ThenPr [jX � E(X)j��] � Var(X)�2 : (D.3)Proof: We de�ne a random variable Y def= (X � E(X))2, and apply Markov'sinequality. We getPr [jX � E(X)j��] = Pr �(X � E(X))2 � �2�� E[(X � E(X))2]�2and the claim follows.Corollary (Pairwise Independent Sampling): Chebyshev's inequality is particu-larly useful in the analysis of the error probability of approximation via repeatedsampling. It su�ces to assume that the samples are picked in a pairwise indepen-dent manner, where X1; X2; :::; Xn are pairwise independent if for every i 6= j andevery �; � it holds that Pr[Xi=� ^ Xj =�] = Pr[Xi=�] � Pr[Xj =�]. The corol-lary reads as follows: Let X1; X2; :::; Xn be pairwise independent random variableswith identical expectation, denoted �, and identical variance, denoted �2. Then,for every " > 0, it holds thatPr �����Pni=1Xin � ����� � "� � �2"2n : (D.4)Proof: De�ne the random variables Xi def= Xi � E(Xi). Note that the X i's arepairwise independent, and each has zero expectation. Applying Chebyshev's in-equality to the random variablePni=1 Xin , and using the linearity of the expectationoperator, we get Pr "����� nXi=1 Xin � ������ � "# � Var �Pni=1 Xin �"2= E h�Pni=1Xi�2i"2 � n2Now (again using the linearity of expectation)E24 nXi=1Xi!235 = nXi=1 E hX2i i+ X1�i 6=j�n E �XiXj�By the pairwise independence of the X i's, we get E[XiXj] = E[Xi] � E[Xj], andusing E[Xi] = 0, we get E24 nXi=1 Xi!235 = n � �2

D.1. PROBABILISTIC PRELIMINARIES 581The corollary follows.D.1.2.3 Cherno� BoundWhen using pairwise independent sample points, the error probability in the ap-proximation decreases linearly with the number of sample points (see Eq. (D.4)).When using totally independent sample points, the error probability in the approx-imation can be shown to decrease exponentially with the number of sample points.(Recall that the random variables X1; X2; :::; Xn are said to be totally independentif for every sequence a1; a2; :::; an it holds that Pr[^ni=1Xi=ai] =Qni=1 Pr[Xi=ai].)Probability bounds supporting the foregoing statement are given next. The �rstbound, commonly referred to as Cherno� Bound, concerns 0-1 random variables(i.e., random variables that are assigned as values either 0 or 1), and asserts thefollowing. Let p � 12 , and X1; X2; :::; Xn be independent 0-1 random variables suchthat Pr[Xi=1] = p, for each i. Then, for every " 2 (0; p], it holds thatPr �����Pni=1Xin � p���� > "� < 2 � e�c�"2�n , where c = max(2; 13p). (D.5)The more common formulation sets c = 2, but the case c = 1=3p is very usefulwhen p is small and one cares about a multiplicative deviation (e.g., " = p=2).Proof Sketch: We upper-bound Pr[Pni=1Xi � pn > "n], and Pr[pn�Pni=1Xi >"n] is bounded similarly. Letting Xi def= Xi � E(Xi), we apply Markov's inequalityto the random variable e�Pni=1Xi , where � 2 (0; 1] will be determined to optimizethe expressions that we derive. Thus, Pr[Pni=1Xi > "n] is upper-bounded byE[e�Pni=1Xi]e�"n = e��"n � nYi=1E[e�Xi]where the equality is due to the independence of the random variables. To simplifythe rest of the proof, we establish a sub-optimal bound as follows. Using a Taylorexpansion of ex (e.g., ex < 1+x+x2 for jxj � 1) and observing that E[Xi] = 0, weget E[e�Xi] < 1+�2E[X2i], which equals 1+�2p(1�p). Thus, Pr[Pni=1Xi�pn > "n]is upper-bounded by e��"n � (1 + �2p(1� p))n < exp(��"n+ �2p(1� p)n), whichis optimized at � = "=(2p(1� p)) yielding exp(� "24p(1�p) � n) � exp(�"2 � n).The foregoing proof strategy can be applied in more general settings.1 A moregeneral bound, which refers to independent random variables that are each boundedbut are not necessarily identical, is given next (and is commonly referred to asHoefding Inequality). Let X1; X2; :::; Xn be n independent random variables, eachranging in the (real) interval [a; b], and let � def= 1nPni=1 E(Xi) denote the average1For example, verify that the current proof actually applies to the case that Xi 2 [0; 1] ratherthan Xi 2 f0; 1g, by noting that Var[Xi] � p(1� p) still holds.

582APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONexpected value of these variables. Then, for every " > 0,Pr �����Pni=1Xin � ����� > "� < 2 � e� 2"2(b�a)2 �n (D.6)The special case (of Eq. (D.6)) that refers to identically distributed random vari-ables is easy to derive from the foregoing Cherno� Bound (by recalling Footnote 1and using a linear mapping of the interval [a; b] to the interval [0; 1]). This specialcase is useful in estimating the average value of a (bounded) function de�ned overa large domain, especially when the desired error probability needs to be negligi-ble (i.e., decrease faster than any polynomial in the number of samples). Such anestimate can be obtained provided that we can sample the function's domain (andevaluate the function).D.1.2.4 Pairwise independent versus totally independent samplingTo demonstrate the di�erence between the sampling bounds provided in xD.1.2.2and xD.1.2.3, we consider the problem of estimating the average value of a functionf :
 ! [0; 1]. In general, we say that a random variable Z provides an ("; �)-approximation of a value v if Pr[jZ � vj > "] � �. By Eq. (D.6), the average valueof f evaluated at n = O(("�2 � log(1=�)) independent samples (selected uniformlyin
) yield an ("; �)-approximation of � = Px2
 f(x)=j
j. Thus, the number ofsample points is polynomially related to "�1 and logarithmically related to ��1. Incontrast, by Eq. (D.4), an ("; �)-approximation by n pairwise independent samplescalls for setting n = O("�2 � ��1). We stress that, in both cases the number ofsamples is polynomially related to the desired accuracy of the estimation (i.e., ").The only advantage of totally independent samples over pairwise independent onesis in the dependency of the number of samples on the error probability (i.e., �).D.2 HashingHashing is extensively used in complexity theory (see, e.g., x6.2.2.2, Section 6.2.3,x6.2.4.2, x8.2.5.3, and x8.4.2.1). The typical application is for mapping arbitrary(unstructured) sets \almost uniformly" to a structured set of adequate size. Specif-ically, hashing is used for mapping an arbitrary 2m-subset of f0; 1gn to f0; 1gm inan \almost uniform" manner.For any �xed set S of cardinality 2m, there exists a 1-1 mapping fS : S !f0; 1gm, but this mapping is not necessarily e�ciently computable (e.g., it mayrequire \knowing" the entire set S). On the other hand, no single function f :f0; 1gn ! f0; 1gm can map every 2m-subset of f0; 1gn to f0; 1gm in a 1-1 manner(or even approximately so). Nevertheless, for every 2m-subset S � f0; 1gn, arandom function f : f0; 1gn ! f0; 1gm has the property that, with overwhelminglyhigh probability, f maps S to f0; 1gm such that no point in the range has too manyf -preimages in S. The problem is that a truly random function is unlikely to havea succinct representation (let alone an e�cient evaluation algorithm). We thus seekfamilies of functions that have a \random mapping" property (as in Item 1 of the

D.2. HASHING 583following de�nition), but do have a succinct representation as well as an e�cientevaluation algorithm (as in Items 2 and 3 of the following de�nition).D.2.1 De�nitionsMotivated by the foregoing discussion, we consider families of functions fHmn gm<nsuch that the following properties hold:1. For every S � f0; 1gn, with high probability, a function h selected uniformlyin Hmn maps S to f0; 1gm in an \almost uniform" manner. For example, wemay require that, for any jSj = 2m and each point y, with high probabilityover the choice of h, it holds that jfx 2 S : h(x) = ygj � poly(n).2. The functions in Hmn have succinct representation. For example, we mayrequire that Hmn � f0; 1g`(n;m), for some polynomial `.3. The functions in Hmn can be e�ciently evaluated. That is, there exists apolynomial-time algorithm that, on input a representation of a function, h(in Hmn), and a string x2f0; 1gn, returns h(x). In some cases we make evenmore stringent requirements regarding the algorithm (e.g., that it runs inlinear space).Condition 1 was left vague on purpose. At the very least, we require that theexpected size of fx 2 S : h(x) = yg equals jSj=2m. We shall see (in Section D.2.3)that di�erent interpretations of Condition 1 are satis�ed by di�erent families ofhashing functions. We focus on t-wise independent hashing functions, de�ned next.De�nition D.1 (t-wise independent hashing functions): A family Hmn of func-tions from n-bit strings to m-bit strings is called t-wise independent if for every tdistinct domain elements x1; :::; xt 2 f0; 1gn and every y1; :::; yt 2 f0; 1gm it holdsthat Prh2Hmn [^ti=1h(xi) = yi] = 2�t�mThat is, a uniformly chosen h 2 Hmn maps every t domain elements to the range ina totally uniform manner. Note that for t � 2, it follows that the probability thata random h 2 Hmn maps two distinct domain elements to the same image equals2�m. Such (families of) functions are called universal (cf. [50]), but we will focuson the stronger condition of t-wise independence.D.2.2 ConstructionsThe following constructions are merely a re-interpretation of the constructionspresented in x8.5.1.1. (Alternatively, one may view the constructions presentedin x8.5.1.1 as a re-interpretation of the following two constructions.)Construction D.2 (t-wise independent hashing): For t;m; n 2 N such that m �n, consider the following family of hashing functions mapping n-bit strings to m-bit strings. Each t-sequence s = (s0; s1; :::; st�1) 2 f0; 1gt�n describes a function

584APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONhs : f0; 1gn ! f0; 1gm such that hs(x) equals the m-bit pre�x of the binary repre-sentation of Pt�1j=0 sjxj , where the arithmetic is that of GF(2n), the �nite �eld of2n elements.Proposition 8.24 implies that Construction D.2 constitutes a family of t-wise inde-pendent hash functions. Typically, we will use either t = 2 or t = �(n). To makethe construction totally explicit, we need an explicit representation of GF(2n);see comment following Proposition 8.24. An alternative construction for the caseof t = 2 may be obtained analogously to the pairwise independent generator ofProposition 8.25. Recall that a Toeplitz matrix is a matrix with all diagonals beinghomogeneous; that is, T = (ti;j) is a Toeplitz matrix if ti;j = ti+1;j+1, for all i; j.Construction D.3 (alternative pairwise independent hashing): For m � n, con-sider the family of hashing functions in which each pair (T; b), consisting of an-by-m Toeplitz matrix T and an m-dimensional vector b, describes a functionhT;b : f0; 1gn ! f0; 1gm such that hT;b(x) = Tx+ b.Proposition 8.25 implies that Construction D.3 constitutes a family of pairwiseindependent hash functions. Note that a n-by-m Toeplitz matrix can be speci�edby n+m� 1 bits, yielding a description length of n+2m� 1 bits. An alternativeconstruction (analogous to Eq. (8.23) and requiringm�n+m bits of representation)uses arbitrary n-by-m matrices rather than Toeplitz matrices.D.2.3 The Leftover Hash LemmaWe now turn to the \almost uniform" cover condition (i.e., Condition 1) mentionedin Section D.2.1. One concrete interpretation of this condition is given by thefollowing lemma (and another interpretation is implied by it: see Theorem D.5).Lemma D.4 Let m � n be integers, Hmn be a family of pairwise independent hashfunctions, and S � f0; 1gn. Then, for every y 2 f0; 1gm and every " > 0, for allbut at most an 2m"2jSj fraction of h 2 Hmn it holds that(1� ") � jSj2m < jfx 2 S : h(x) = ygj < (1 + ") � jSj2m : (D.7)Note that by pairwise independence (or rather even by 1-wise independence), theexpected size of fx 2 S : h(x) = yg is jSj=2m, where the expectation is takenuniformly over all h 2 Hmn . The lemma upper bounds the fraction of h's thatdeviate from the expected behavior (i.e., for which jh�1(y)\Sj 6= (1� ") � jSj=2m).Needless to say, the bound is meaningful only in case jSj > 2m="2. Focusing onthe case that jSj > 2m and setting " = 3p2m=jSj, we infer that for all but at mostan " fraction of h 2 Hmn it holds that jfx 2 S : h(x) = ygj = (1� ") � jSj=2m. Thus,each range element has approximately the right number of h-preimages in the setS, under almost all h 2 Hmn .Proof: Fixing an arbitrary set S � f0; 1gn and an arbitrary y 2 f0; 1gm, weestimate the probability that a uniformly selected h 2 Hmn violates Eq. (D.7). We

D.2. HASHING 585de�ne random variables �x, over the aforementioned probability space, such that�x = �x(h) equal 1 if h(x) = y and �x = 0 otherwise. The expected value ofPx2S �x is � def= jSj � 2�m, and we are interested in the probability that this sumdeviates from the expectation. Applying Chebyshev's Inequality, we getPr "�������Xx2S �x����� � " � �# < �"2�2because Var[Px2S �x] < jSj � 2�m by the pairwise independence of the �x's and thefact that E[�x] = 2�m. The lemma follows.A generalization (called mixing). The proof of Lemma D.4 can be easilyextended to show that for every set T � f0; 1gm and every " > 0, for all butat most an 2mjT j�jSj"2 fraction of h 2 Hmn it holds that jfx 2 S : h(x) 2 Tgj =(1 � ") � jT j � jSj=2m. (Hint: rede�ne �x = �(h) = 1 if h(x) 2 T and �x = 0otherwise.) This assertion is meaningful provided that jT j � jSj > 2m="2, and in thecase that m = n it is called a mixing property.An extremely useful corollary. The aforementioned generalization of Lemma D.4asserts that, for any �xed set of preimages S � f0; 1gn and any �xed sets of imagesT � f0; 1gm, most functions in Hmn behave well with respect to S and T (in thesense that they map approximately the adequate fraction of S (i.e., jT j=2m) to T).A seemingly stronger statement, which is (non-trivially) implied by Lemma D.4 it-self, reverses the order of quanti�cation with respect to T ; that is, for all adequatesets S, most functions in Hmn map S to f0; 1gm in an almost uniform manner (i.e.,assign each set T approximately the adequate fraction of S, where here the ap-proximation is up to an additive deviation). As we shall see, this is a consequenceof the following theorem.Theorem D.5 (a.k.a Leftover Hash Lemma): Let Hmn and S � f0; 1gn be as inLemma D.4, and de�ne " = 3p2m=jSj. Consider random variables X and H thatare uniformly distributed on S and Hmn , respectively. Then, the statistical distancebetween (H;H(X)) and (H;Um) is at most 2".It follows that, for X and " as in Theorem D.5 and any � > 0, for all but atmost an � fraction of the functions h 2 Hmn it holds that h(X) is (2"=�)-closeto Um.2 (Using the terminology of the subsequent Section D.4, we may say thatTheorem D.5 asserts that Hmn yields a strong extractor (with parameters to bespelled out there).)Proof: Let V denote the set of pairs (h; y) that violate Eq. (D.7), and V def=(Hmn � f0; 1gm) n V . Then for every (h; y) 2 V it holds thatPr[(H;H(X)) = (h; y)] = Pr[H = h] � Pr[h(X) = y]= (1� ") � Pr[(H;Um) = (h; y)]:2This follows by de�ning a random variable � = �(h) such that � equals the statistical distancebetween h(X) and Um, and applying Markov's inequality.

586APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONOn the other hand, by the setting of " and Lemma D.4 (which imply that Pr[(H; y) 2V] � " for every y 2 f0; 1gm), we have Pr[(H;Um) 2 V] � ". It follows thatPr[(H;H(X)) 2 V] = 1� Pr[(H;H(X)) 2 V]� 1� Pr[(H;Um)) 2 V] + " � 2":Using all these upper-bounds, we upper-bounded the statistical di�erence between(H;H(X)) and (H;Um), denoted �, by separating the contribution of V and V .Speci�cally, we have� = 12 � X(h;y)2Hmn �f0;1gm jPr[(H;H(X))=(h; y)]� Pr[(H;Um)=(h; y)]j� "2 + 12 � X(h;y)2V jPr[(H;H(X))=(h; y)]� Pr[(H;Um)=(h; y)]j ;where the �rst term upper-bounds the contribution of all pairs (h; y) 2 V . Hence,� � "2 + 12 � X(h;y)2V (Pr[(H;H(X))=(h; y)] + Pr[(H;Um)=(h; y)])� "2 + 12 � (2"+ ") ;where the �rst inequality is trivial (i.e., j� � �j � � + � for any non-negative �and �), and the second inequality uses the foregoing upper-bounds (i.e., Pr[(H;H(X)) 2V] � 2" and Pr[(H;Um) 2 V] � "). The theorem follows.An alternative proof of Theorem D.5. De�ne the collision probability of arandom variable Z, denote cp(Z), as the probability that two independent samplesof Z yield the same result. Alternatively, cp(Z) def= Pz Pr[Z = z]2. Theorem D.5follows by combining the following two facts:1. A general fact: If Z 2 [N] and cp(Z) � (1 + 4�2)=N then Z is �-close to theuniform distribution on [N].We prove the contra-positive: Assuming that the statistical distance betweenZ and the uniform distribution on [N] equals �, we show that cp(Z) �(1+4�2)=N . This is done by de�ning L def= fz : Pr[Z = z] < 1=Ng, and lower-bounding cp(Z) by using the fact that the collision probability is minimizedon uniform distributions. Speci�cally, considering the uniform distributionson L and [N] n L respectively, we havecp(Z) � jLj � �Pr[Z 2 L]jLj �2 + (N � jLj) ��Pr[Z 2 [N] n L]N � jLj �2: (D.8)Using � = � � Pr[Z 2 L], where � = jLj=N , the r.h.s of Eq. (D.8) equals(���)2�N + (1�(���))2(1��)N = �1 + �2(1��)�� � 1N � �1 + 4�2� � 1N .

D.2. HASHING 5872. The collision probability of (H;H(X)) is at most (1+ (2m=jSj))=(jHmn j � 2m).(Furthermore, this holds even if Hmn is only universal.)The proof is by a straightforward calculation. Speci�cally, note that cp(H;H(X)) =jHmn j�1�Eh2Hmn [cp(h(X))], whereas Eh2Hmn [cp(h(X))] = jSj�2Px1;x22S Pr[H(x1) =H(x2)]. The sum equals jSj + (jSj2 � jSj) � 2�m, and so cp(H;H(X)) <jHmn j�1 � (2�m + jSj�1).It follows that (H;H(X)) is 2p2m=jSj-close to (H;Um), which is actually a strongerbound than the one asserted by Theorem D.5.Stronger uniformity via higher independence. Recall that Lemma D.4 as-serts that for each point in the range of the hash function, with high probabilityover the choice of the hash function, this �xed point has approximately the expectednumber of preimages in S. A stronger condition asserts that, with high probabilityover the choice of the hash function, every point in its range has approximatelythe expected number of preimages in S. Such a guarantee can be obtained whenusing n-wise independent hash functions (rather than using pairwise independenthash functions).Lemma D.6 Let m � n be integers, Hmn be a family of n-wise independent hashfunctions, and S � f0; 1gn. Then, for every " 2 (0; 1), for all but at most an2m � (n �2m="2jSj)n=2 fraction of the functions h 2 Hmn , it is the case that Eq. (D.7)holds for every y 2 f0; 1gm.Indeed, the lemma should be used with 2m < "2jSj=4n. In particular, using m =log2 jSj � log2(5n="2) guarantees that with high probability (i.e., 1� 2m � 5�n=2 �1� (4=5)n=2) each range elements has (1� ") � jSj=2m preimages in S. Under thissetting of parameters jSj=2m = 5n="2, which is poly(n) whenever " = 1=poly(n).Needless to say, this guarantee is stronger than the conclusion of Theorem D.5.Proof: The proof follows the footsteps of the proof of Lemma D.4, taking advan-tage of the fact that here the random variables (i.e., the �x's) are n-wise indepen-dent. For t = n=2, this allows using the so-called 2tth moment analysis, whichgeneralizes the second moment analysis of pairwise independent samplying (pre-sented in xD.1.2.2). As in the proof of Lemma D.4, we �x any S and y, and de�ne�x = �x(h) = 1 if and only if h(x) = y. Letting � = E[Px2S �x] = jSj=2m and�x = �x � E(�x), we start with Markov's inequality:Pr "�������Xx2S �x����� � " � �# � E[(Px2S �x)2t]"2t�2t= Px1;:::;x2t2S E[Q2ti=1 �xi]"2t � (jSj=2m)2t (D.9)Using 2t-wise independence, we note that only the terms in Eq. (D.9) that do notvanish are those in which each variable appears with multiplicity. This mean thatonly terms having less than t distinct variables contribute to Eq. (D.9). Now, for

588APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONevery j � t, we have less than �jSjj � � (2t!) < (2t!=j!) � jSjj terms with j distinctvariables, and each such term contributes less than (2�m)j to the sum (because forevery e > 1 it holds that E[�exi] < E[�xi] = 2�m). Thus, Eq. (D.9) is upper-boundedby 2t!("jSj=2m)2t � tXj=1 (jSj=2m)jj! < 2 � 2t!=t!("2jSj=2m)t < �2t � 2m"2jSj �twhere the �rst inequality assumes jSj > n2m (which is justi�ed by the fact that theclaim hold vacuously otherwise). This upper-bounds the probability that a randomh 2 Hmn violates Eq. (D.7) with respect to a �xed y. Using a union bound on ally 2 f0; 1gm, the lemma follows.D.3 SamplingIn many settings repeated sampling is used to estimate the average (or other statis-tics) of a huge set of values.3 Namely, given a \value" function � : f0; 1gn! R,one wishes to approximate �� def= 12n Px2f0;1gn �(x) without having to inspect thevalue of � at each point of the domain. The obvious thing to do is sampling thedomain at random, and obtaining an approximation to �� by taking the average ofthe values of � on the sample points. It turns out that certain \pseudorandom"sequences of sample points may serve almost as well as truly random sequences ofsample points, and thus the foregoing problem is indeed related to Section 8.5.D.3.1 Formal SettingIt is essential to have the range of the function � be bounded (since otherwise noreasonable approximation is possible). For simplicity, we adopt the convention ofhaving [0; 1] be the range of �, and the problem for other (predetermined) rangescan be treated analogously. Our notion of approximation depends on two param-eters: accuracy (denoted ") and error probability (denoted �). We wish to have analgorithm that, with probability at least 1� �, gets within " of the correct value.This leads to the following de�nition.De�nition D.7 (sampler): A sampler is a randomized oracle machine that oninput parameters n (length), " (accuracy) and � (error), and oracle access to anyfunction � : f0; 1gn! [0; 1], outputs, with probability at least 1� �, a value that isat most " away from �� def= 12n Px2f0;1gn �(x). Namely,Pr[jsampler�(n; "; �)� ��j > "] < �where the probability is taken over the internal coin tosses of the sampler.A non-adaptive sampler is a sampler that consists of two deterministic algorithms:a sample generating algorithm, G, and a evaluation algorithm, V . On input n; "; �3Indeed, this problem was already mentioned in xD.1.2.4.

D.3. SAMPLING 589and a random seed of adequate length, algorithm G generates a sequence of queries,denoted s1; :::; sm 2 f0; 1gn. Algorithm V is given the corresponding sequence of�-values (i.e., �(s1); :::; �(sm)) and outputs an estimate to ��.We are interested in \the complexity of sampling" quanti�ed as a function of theparameters n, " and �. Speci�cally, we will consider three complexity measures:The sample complexity (i.e., the number of oracle queries made by the sampler); therandomness complexity (i.e., the length of the random seed used by the sampler);and the computational complexity (i.e., the running-time of the sampler). We saythat a sampler is e�cient if its running-time is polynomial in the total length ofits queries (i.e., polynomial in both its sample complexity and in n). We will focuson e�cient samplers. Furthermore, we will be most interested in e�cient samplersthat have optimal (up-to a constant factor) sample complexity, and will seek tominimize the randomness complexity of such samplers. Note that minimizing therandomness complexity without referring to the sample complexity makes no sense.D.3.2 Known ResultsWe note that all the following positive results refer to non-adaptive samplers,whereas the lower bound hold also for general samplers. For more details on theseresults, see [90, Sec. 3.6.4] and the references therein.The naive sampler. The straightforward method (a.k.a the naive sampler)consists of uniformly and independently selecting su�ciently many sample points(queries), and outputting the average value of the function on these points. UsingCherno� Bound it follows that O(log(1=�)"2) sample points su�ce. As indicated next,the naive sampler is optimal (up-to a constant factor) in its sample complexity, butis quite wasteful in randomness.It is known that
(log(1=�)"2) samples are needed in any sampler, and that anysampler that makes s(n; "; �) queries must have randomness complexity at leastn + log2(1=�) � log2 s(n; "; �) � O(1). These lower bounds are tight (as demon-strated by non-explicit and ine�cient samplers). The foregoing facts guide ourquest for improvements, which is aimed at �nding more randomness-e�cient waysof e�ciently generating sample sequences that can be used in conjunction with anappropriate evaluation algorithm V . (We stress that V need not necessarily takethe average of the values of the sampled points.)The pairwise-independent sampler. Using a pairwise-independence genera-tor (cf. x8.5.1.1) for generating sample points, along with the natural evaluationalgorithm (which outputs the average of the values of these points), we can ob-tain a great saving in the randomness complexity: In particular, using a seed oflength 2n, we can generate O(1=�"2) pairwise-independent sample points, which(by Eq. (D.4)) su�ce for getting accuracy " with error �. Thus, this (Pairwise-Independent) sampler uses 2n coin tosses rather than the
((log(1=�))"�2 �n) cointosses used by the naive sampler. Furthermore, for constant � > 0, the Pairwise-Independent Sampler is optimal up-to a constant factor in both its sample and

590APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONrandomness complexities. However, for small � (i.e., � = o(1)), this sampler iswasteful in sample complexity.The Median-of-Averages sampler. A new idea is required for going fur-ther, and a relevant tool { random walks on expander graphs (see Sections 8.5.3and E.2) { is needed too. Speci�cally, we combine the Pairwise-Independent Sam-pler with the Expander Random Walk Generator (of Proposition 8.29) to obtaina new sampler. The new sampler uses a t-long random walk on an expander withvertex set f0; 1g2n for generating a sequence of t def= O(log(1=�)) related seeds for tinvocations of the Pairwise-Independent Sampler, where each of these invocationsuses the corresponding 2n bits to generate a sequence of O(1="2) samples in f0; 1gn.The new sampler, called the Median-of-Averages Sampler, outputs the median ofthe t values obtained in these t invocation of the Pairwise-Independent Sampler.In analyzing this sampler, we �rst note that each of the foregoing t invocationsreturns a value that, with probability at least 0:9, is "-close to ��. By Theorem 8.28(see also Exercise 8.44), with probability at least 1�exp(�t) = 1��, most of theset invocations return an "-close approximation. Hence, the median among these tvalues is an ("; �)-approximation to the correct value. The resulting sampler hassample complexity O(log(1=�)"2) and randomness complexity 2n+O(log(1=�)), whichis optimal up-to a constant factor in both complexities.Further improvements. The randomness complexity of the Median-of-AveragesSampler can be decreased from 2n+O(log(1=�)) to n+O(log(1=�")), while main-taining its (optimal) sample complexity (of O(log(1=�)"2)). This is done by replacingthe Pairwise Independent Sampler by a sampler that picks a random vertex in asuitable expander, samples all its neighbors, and outputs the average value seen.Averaging Samplers. Averaging (a.k.a. \Oblivious") samplers are non-adaptivesamplers in which the evaluation algorithm is the natural one: that is, it merelyoutputs the average of the values of the sampled points. Indeed, the Pairwise-Independent Sampler is an averaging sampler, whereas the Median-of-AveragesSampler is not. Interestingly, averaging samplers have applications for which ordi-nary non-adaptive samplers do not su�ce. Averaging samplers are closely relatedto randomness extractors, de�ned and discussed in the subsequent Section D.4.An odd perspective. Recall that a non-adaptive sampler consists of a samplegenerator G and an evaluator V such that for every � :f0; 1gn! [0; 1] it holds thatPr(s1;:::;sm) G(Uk)[jV (�(s1); :::; �(sm))� ��j > "] < �; (D.10)where k denotes the length of the sampler's (random) seed. Thus, we may viewG as a pseudorandom generator that is subjected to a class of distinguishers thatis determined by a �xed algorithm V and an arbitrary function � : f0; 1gn ![0; 1]. Speci�cally, assuming that V works well when the m samples are distributeduniformly and independently (i.e., Pr[jV (�(U (1)n); :::; �(U (m)n)) � ��j > "] < �), we

D.4. RANDOMNESS EXTRACTORS 591require G to generate sequences that satisfy the corresponding condition (as statedin Eq. (D.10)). What is a bit odd about the foregoing perspective is that, exceptfor the case of averaging samplers, the class of distinguishers considered here ise�ected by a component (i.e., the evaluator V) that is potentially custom-made tohelp the generator G fool the distinguisher.4D.3.3 HittersHitters may be viewed as a relaxation of samplers. Speci�cally, considering onlyBoolean functions, hitters are required to generate a sample that contains a pointevaluating to 1 whenever at least an " fraction of the function values equal 1.That is, a hitter is a randomized algorithm that on input parameters n (length)," (accuracy) and � (error), outputs a list of n-bit strings such that, for every setS � f0; 1gn of density greater than ", with probability at least 1 � �, the listcontains at least one element of S. Note the correspondence to the ("; �)-hittingproblem de�ned in Section 8.5.3.Needless to say, any sampler yields a hitter (with respect to essentially thesame parameters n, " and �).5 However, hitting is strictly easier than evaluatingthe density of the target set: O(1=") (pairwise independent) random samples su�ceto hit any set of density " with constant probability, whereas
(1="2) samples areneeded for approximating the average value of a Boolean function up to accuracy "(with constant error probability). Indeed, adequate simpli�cations of the samplersdiscussed in Appendix D.3.2 yield hitters with sample complexity proportional to1=" (rather than to 1="2).D.4 Randomness ExtractorsExtracting almost-perfect randomness from sources of weak (i.e., defected) ran-domness is crucial for the actual use of randomized algorithms, procedures andprotocols. The latter are analyzed assuming that they are given access to a perfectrandom source, while in reality one typically has access only to sources of weak(i.e., highly imperfect) randomness. This gap is bridged by using randomness ex-tractors, which are e�cient procedures that (possibly with the help of little extrarandomness) convert any source of weak randomness into an almost-perfect randomsource. Thus, randomness extractors are devices that greatly enhance the quality4Another aspect in which samplers di�er from the various pseudorandom generators discussedin Chapter 8 is in the aim to minimize, rather than maximize, the number of \blocks" (denotedhere by m) in the output sequence. However, also in the case of samplers the aim is to maximizethe block-length (denoted here by n).5Speci�cally, any sampler with respect to the parameters n, " and �, yields a hitter withrespect to the parameters n, 2" and �. (The need for slackness is easily demonstrated by notingthat estimating the average with accuracy " = 1=2 is trivial, whereas hitting is non-trivial for anyaccuracy (density) " < 1.) The claim is obvious for non-adaptive samplers, but actually holdsalso for adaptive samplers. Note that adaptivity does not provide any advantage in the contextof hitters, because one may assume (without loss of generality) that all prior samples missed thetarget set S.

592APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONof random sources. In addition, randomness extractors are related to several otherfundamental problems, to be further discussed later.One key parameter, which was avoided in the foregoing discussion, is the classof weak random sources from which we need to extract almost perfect randomness.Needless to say, it is preferable to make as little assumptions as possible regardingthe weak random source. In other words, we wish to consider a wide class ofsuch sources, and require that the randomness extractor (often referred to as theextractor) \works well" for any source in this class. A general class of such sources isde�ned in xD.4.1.1, but �rst we wish to mention that even for very restricted classesof sources no deterministic extractor can work.6 To overcome this impossibilityresult, two approaches are used:Seeded extractors: The �rst approach consists of considering randomized ex-tractors that use a relatively small amount of randomness (in addition tothe weak random source). That is, these extractors obtain two inputs: ashort truly random seed and a relatively long sequence generated by an arbi-trary source that belongs to the speci�ed class of sources. This suggestion ismotivated in two di�erent ways:1. The application may actually have access to an almost-perfect randomsource, but bits from this high-quality source are much more expen-sive than bits from the weak (i.e., low-quality) random source. Thus,it makes sense to obtain few high-quality bits from the almost-perfectsource and use them to \purify" the cheap bits obtained from the weak(low-quality) source. Thus, combining many cheap (but low-quality)bits with few high-quality (but expensive) bits, we obtain many high-quality bits.2. In some applications (e.g., when using randomized algorithms), it maybe possible to invoke the application multiple times, and use the \typi-cal" outcome of these invocations (e.g., rule by majority in the case of adecision procedure). For such applications, we may proceed as follows:�rst we obtain an outcome r of the weak random source, then we invokethe application multiple times such that for every possible seed s weinvoke the application feeding it with extract(s; r), and �nally we usethe \typical" outcome of these invocations. Indeed, this is analogous tothe context of derandomization (see Section 8.3), and likewise this al-ternative is typically not applicable to cryptographic and/or distributedsettings.Few independent sources: The second approach consists of considering deter-ministic extractors that obtain samples from a few (say two) independentsources of weak randomness. Such extractors are applicable in any setting(including in cryptography), provided that the application has access to therequired number of independent weak random sources.6For example, consider the class of sources that output n-bit strings such that no stringoccurs with probability greater than 2�(n�1) (i.e., twice its probability weight under the uniformdistribution).

D.4. RANDOMNESS EXTRACTORS 593In this section we focus on the �rst type of extractors (i.e., the seeded extractors).This choice is motivated both by the relatively more mature state of the researchof seeded extractors and by the closer connection between seeded extractors andother topics in complexity theory.D.4.1 De�nitions and various perspectivesWe �rst present a de�nition that corresponds to the foregoing motivational discus-sion, and later discuss its relation to other topics in complexity.D.4.1.1 The Main De�nitionA very wide class of weak random sources corresponds to sources in which nospeci�c output is too probable. That is, the class is parameterized by a (probability)bound � and consists of all sources X such that for every x it holds that Pr[X =x] � �. In such a case, we say that X has min-entropy7 at least log2(1=�). Indeed,we represent sources as random variables, and assume that they are distributed overstrings of a �xed length, denoted n. An (n; k)-source is a source that is distributedover f0; 1gn and has min-entropy at least k.An interesting special case of (n; k)-sources is that of sources that are uniformover some subset of 2k strings. Such sources are called (n; k)-at. A useful obser-vation is that each (n; k)-source is a convex combination of (n; k)-at sources.De�nition D.8 (extractor for (n; k)-sources):1. An algorithm Ext :f0; 1gd�f0; 1gn!f0; 1gm is called an extractor with error" for the class C if for every source X in C it holds that Ext(Ud; X) is "-closeto Um. If C is the class of (n; k)-sources then Ext is called a (k; ")-extractor.2. An algorithm Ext is called a strong extractor with error " for C if for everysource X in C it holds that (Ud;Ext(Ud; X)) is "-close to (Ud; Um). A strong(k; ")-extractor is de�ned analogously.Using the aforementioned \decomposition" of (n; k)-sources into (n; k)-at sources,it follows that Ext is a (k; ")-extractor if and only if it is an extractor with error" for the class of (n; k)-at sources. (A similar claim holds for strong extractors.)Thus, much of the technical analysis is conducted with respect to the class of(n; k)-at sources. For example, by analyzing the case of (n; k)-at sources it iseasy to see that, for d = log2(n="2) + O(1), there exists a (k; ")-extractor Ext :f0; 1gd�f0; 1gn ! f0; 1gk. (The proof employs the Probabilistic Method and usesa union bound on the (�nite) set of all (n; k)-at sources.)87Recall that the entropy of a random variableX is de�ned asPx Pr[X = x]�log2(1=Pr[X = x]).Indeed the min-entropy of X equals minxflog2(1=Pr[X = x])g, and is always upper-bounded byits entropy.8Indeed, the key fact is that the number of (n; k)-at sources is N def= �2n2k�. The probabilitythat a random function Ext : f0; 1gd � f0; 1gn ! f0; 1gk is not an extractor with error " for a

594APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONWe seek, however, explicit extractors; that is, extractors that are implementableby polynomial-time algorithms. We note that the evaluation algorithm of any fam-ily of pairwise independent hash functions mapping n-bit strings to m-bit stringsconstitutes a (strong) (k; ")-extractor for " = 2�
(k�m) (see Theorem D.5). How-ever, these extractors necessarily use a long seed (i.e., d � 2m must hold (andin fact d = n + 2m � 1 holds in Construction D.3)). In Section D.4.2 we surveyconstructions of e�cient (k; ")-extractors that obtain logarithmic seed length (i.e.,d = O(log(n="))). But before doing so, we provide a few alternative perspectiveson extractors.An important note on logarithmic seed length. The case of logarithmic seedlength (i.e., d = O(log(n="))) is of particular importance for a variety of reasons.Firstly, when emulating a randomized algorithm using a defected random source(as in Item 2 of the motivational discussion of seeded extractors), the overhead isexponential in the length of the seed. Thus, the emulation of a generic probabilisticpolynomial-time algorithm can be done in polynomial time only if the seed lengthis logarithmic. Similarly, the applications discussed in xD.4.1.2 and xD.4.1.3 arefeasible only if the seed length is logarithmic. Lastly, we note that logarithmic seedlength is an absolute lower-bound for (k; ")-extractors, whenever k < n � n
(1)(and the extractor is non-trivial (i.e., m � 1 and " < 1=2)).D.4.1.2 Extractors as averaging samplersThere is a close relationship between extractors and averaging samplers (which arede�ned towards the end of Section D.3.2). We shall �rst show that any averagingsampler gives rise to an extractor. Let G : f0; 1gn ! (f0; 1gm)t be the sample gen-erating algorithm of an averaging sampler having accuracy " and error probability�. That is, G uses n bits of randomness and generates t sample points in f0; 1gmsuch that, for every f : f0; 1gm ! [0; 1] with probability at least 1� �, the averageof the f -values of these t pseudorandom points resides in the interval [f �"], wheref def= E[f(Um)]. De�ne Ext : [t] � f0; 1gn ! f0; 1gm such that Ext(i; r) is theith sample generated by G(r). We shall prove that Ext is a (k; 2")-extractor, fork = n� log2("=�).Suppose towards the contradiction that there exists a (n; k)-at source X suchthat for some S � f0; 1gm it is the case that Pr[Ext(Ud; X) 2 S] > Pr[Um 2 S]+2",where d = log2 t and [t] � f0; 1gd. De�neB = fx 2 f0; 1gn : Pr[Ext(Ud; x) 2 S] > (jSj=2m) + "g:Then, jBj > " � 2k = � � 2n. De�ning f(z) = 1 if z 2 S and f(z) = 0 otherwise, wehave f def= E[f(Um)] = jSj=2m. But, for every r 2 B the f -average of the sample�xed (n; k)-at source is upper-bounded by p def= 22k � exp(�
(2d+k"2)), because p bounds theprobability that when selecting 2d+k random k-bit long strings there exists a set T � f0; 1gk thatis hit by more than ((jT j=2k) + ") � 2d+k of these strings. Note that for d = log2(n="2) +O(1) itholds that N � p� 1. In fact, the same analysis applies to the extraction of m = k + log2 n bits(rather than k bits).

D.4. RANDOMNESS EXTRACTORS 595G(r) is greater than f + ", in contradiction to the hypothesis that the sampler haserror probability � (with respect to accuracy ").We now turn to show that extractors give rise to averaging samplers. Let Ext :f0; 1gd � f0; 1gn ! f0; 1gm be a (k; ")-extractor. Consider the sample generationalgorithm G : f0; 1gn ! (f0; 1gm)2d de�ne by G(r) = (Ext(s; r))s2f0;1gd . We provethat G corresponds to an averaging sampler with accuracy " and error probability� = 2�(n�k�1).Suppose towards the contradiction that there exists a function f : f0; 1gm ![0; 1] such that for �2n = 2k+1 strings r 2 f0; 1gn the average f -value of thesample G(r) deviates from f def= E[f(Um)] by more than ". Suppose, without lossof generality, that for at least half of these r's the average is greater than f + ",and let B denote the set of these r's. Then, for X that is uniformly distributed onB and is thus a (n; k)-source, we haveE[f(Ext(Ud; X))] > E[f(Um)] + ";which (using jf(z)j � 1 for every z) contradicts the hypothesis that Ext(Ud; X) is"-close to Um.D.4.1.3 Extractors as randomness-e�cient error-reductionsAs may be clear from the foregoing discussion, extractors yield randomness-e�cientmethods for error-reduction. This is the case because error-reduction is a spe-cial case of the sampling problem, obtained by considering Boolean functions.Speci�cally, for a two-sided error decision procedure A, consider the functionfx : f0; 1g�(jxj)! f0; 1g such that fx(r) = 1 if A(x; r) = 1 and fx(r) = 0 otherwise.Assuming that the probability that A is correct is at least 0:5 + " (say " = 1=6),error reduction amounts to providing a sampler with accuracy " and any desirederror probability � � " for the Boolean function fx. Thus, by xD.4.1.2, any (k; ")-extractor Ext : f0; 1gd�f0; 1gn ! f0; 1g�(jxj) with k = n� log(1=�)� 1 yields thedesired error-reduction, provided that 2d is feasible (e.g., 2d = poly(�(jxj)), where�(�) represents the randomness complexity of the original algorithm A). The ques-tion of interest here is how does n (which represents the randomness complexity ofthe corresponding sampler) grow as a function of �(jxj) and �.Error-reduction using the extractor Ext: [poly(�(jxj))]�f0; 1gn!f0; 1g�(jxj)error probability randomness complexityoriginal algorithm 1=3 �(jxj)resulting algorithm � (may depend on jxj) n (function of �(jxj) and �)Needless to say, the answer to the foregoing question depends on the quality of theextractor that we use. In particular, using Part 1 of the forthcoming Theorem D.10,we note that for every � > 1, one can obtain n = O(�(jxj)) + � log2(1=�), for any� > 2�poly(�(jxj)). Note that, for � < 2�O(�(jxj)), this bound on the randomness-complexity of error-reduction is better than the bound of n = �(jxj) +O(log(1=�))that is provided (for the reduction of one-sided error) by the Expander Random

596APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONWalk Generator (of Section 8.5.3), albeit the number of samples here is larger (i.e.,poly(�(jxj)=�) rather than O(log(1=�))).Mentioning the reduction of one-sided error-probability brings us to a cor-responding relaxation of the notion of an extractor, which is called a disperser.Loosely speaking, a (k; ")-disperser is only required to hit (with positive probabil-ity) any set of density greater than " in its image, rather than produce a distributionthat is "-close to uniform.De�nition D.9 (dispersers): An algorithm Dsp : f0; 1gd � f0; 1gn ! f0; 1gm iscalled a (k; ")-disperser if for every (n; k)-source X the support of Dsp(Ud; X) coversat least (1� ") � 2m points. Alternatively, for every set S � f0; 1gm of size greaterthan "2m it holds that Pr[Dsp(Ud; X) 2 S] > 0.Dispersers can be used for the reduction of one-sided error analogously to theuse of extractors for the reduction of two-sided error. Speci�cally, regarding theaforementioned function fx (and assuming that Pr[fx(U`(jxj))=1] > "), we may useany (k; ")-disperser Dsp : f0; 1gd � f0; 1gn ! f0; 1g`(jxj) towards �nding a point zsuch that fx(z) = 1. Indeed, if Pr[fx(U`(jxj)) = 1] > " then there are less than 2kpoints z such that (8s2f0; 1gd) fx(Dsp(s; z)) = 0, and thus the one-sided error canbe reduced from 1� " to 2�(n�k) while using n random bits. (Note that dispersersare closely related to hitters (cf. Appendix D.3.3), analogously to the relation ofextractors and averaging samplers.)D.4.1.4 Other perspectivesExtractors and dispersers have an appealing interpretation in terms of bipartitegraphs. Starting with dispersers, we view any (k; ")-disperser Dsp : f0; 1gd �f0; 1gn ! f0; 1gm as a bipartite graph G = ((f0; 1gn; f0; 1gm); E) such that E =f(x;Dsp(s; x)) : x 2 f0; 1gn; s 2 f0; 1gdg. This graph has the property that anysubset of 2k vertices on the left (i.e., in f0; 1gn) has a neighborhood that containsat least a 1 � " fraction of the vertices of the right, which is remarkable in thetypical case where d is small (e.g., d = O(log n=")) and n � k � m whereasm =
(k) (or at least m = k
(1)). Furthermore, if Dsp is e�ciently computablethen this bipartite graph is strongly constructible in the sense that, given a vertexon the left, one can e�ciently �nd each of its neighbors. Any (k; ")-extractorExt : f0; 1gd � f0; 1gn ! f0; 1gm yields an analogous graph with an even strongerproperty: the neighborhood multi-set of any subset of 2k vertices on the left coversthe vertices on the right in an almost uniform manner.An odd perspective. In addition to viewing extractors as averaging samplers,which in turn may be viewed within the scope of the pseudorandomness paradigm,we mention here an even more odd perspective. Speci�cally, randomness extractorsmay be viewed as randomized algorithms (distinguishers) designed on purpose suchthat to be fooled by any weak random source (but not by an even worse source).Speci�cally, for any (k; ")-extractor Ext : f0; 1gd � f0; 1gn ! f0; 1gm, where " �1=100, m = k = !(logn=") and d = O(log n="), consider the following class of

D.4. RANDOMNESS EXTRACTORS 597distinguishers (or tests), parameterized by subsets of f0; 1gm: for S � f0; 1gm, thetest TS satis�es Pr[TS(x)=1] = Pr[Ext(Ud; x) 2 S] (i.e., on input x 2 f0; 1gn, thetest uniformly selects s 2 f0; 1gd and outputs 1 if and only if Ext(s; x) 2 S). Then,as shown next, any (n; k)-source is \pseudorandom" with respect to this class ofdistinguishers, but su�ciently \non-(n; k)-sources" are not \pseudorandom" withrespect to this class of distinguishers.1. For every (n; k)-source X and every S � f0; 1gm, the test TS does not dis-tinguish X from Un (i.e., Pr[TS(X) = 1] = Pr[TS(Un) = 1] � 2"), becauseExt(Ud; X) is 2"-close to Ext(Ud; Un) (since each is "-close to Um).2. On the other hand, for every (n; k � d � 4)-at source Y there exists a setS such that TS distinguish Y from Un with gap at least 0:9 (e.g., for Sthat equals the support of Ext(Ud; Y), it holds that Pr[TS(Y) = 1] = 1 butPr[TS(Un)=1] � Pr[Um 2 S] + " = 2d+(k�d�4)�m + " < 0:1). Furthermore,any source that has entropy below (k=4)� d will be detected as defected bythis class (with probability at least 2=3).9Thus, this weird class of tests deems each (n; k)-source as \pseudorandom" whiledeeming sources of signi�cantly lower entropy (e.g., entropy lower than (k=4)� d)as non-pseudorandom. Indeed, this perspective stretches the pseudorandomnessparadigm quite far.D.4.2 ConstructionsRecall that we seek explicit constructions of extractors; that is, functions Ext :f0; 1gd � f0; 1gn ! f0; 1gm that can be computed in polynomial-time. The ques-tion, of course, is of parameters; that is, having explicit (k; ")-extractors with m aslarge as possible and d as small as possible. We �rst note that, except in \patholog-ical" cases10, both m � k+d�(2 log2(1=")�O(1)) and d � log2((n�k)="2)�O(1)must hold, regardless of the explicitness requirement. The aforementioned boundsare in fact tight; that is, there exists (non-explicit) (k; ")-extractors with m =k + d � 2 log2(1=")� O(1) and d = log2((n � k)="2) + O(1). The obvious goal ismeeting these bounds via explicit constructions.D.4.2.1 Some known resultsDespite tremendous progress on this problem (and occasional claims regarding \op-timal" explicit constructions), the ultimate goal was not reached yet. Nevertheless,the known explicit constructions are pretty close to being optimal.Theorem D.10 (explicit constructions of extractors): Explicit (k; ")-extractors ofthe form Ext : f0; 1gd�f0; 1gn ! f0; 1gm exist for the following cases (i.e., settingsof the parameters d and m):9For any such source Y , the distribution Z = Ext(Ud; Y) has entropy at most k=4 = m=4,and thus is 0:7-far from Um (and 2=3-far from Ext(Ud; Un)). The lower-bound on the statisticaldistance between Z and Um can be proved by the contra-positive: if Z is �-close to Um then itsentropy is at least (1 � �) �m� 1 (e.g., by using Fano's inequality, see [63, Thm. 2.11.1]).10That is, for " < 1=2 and m > d.

598APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION1. For d = O(log n=") and m = (1��) �(k�O(d)), where � > 0 is an arbitrarilysmall constant and provided that " > exp(�k1��).2. For d = (1+�) � log2 n and m = k=poly(logn), where "; � > 0 are arbitrarilysmall constants.Proofs of Part 1 and Part 2 can be found in [113] and [201], respectively. We notethat, for sake of simplicity, we did not quote the best possible bounds. Furthermore,we did not mention additional incomparable results (which are relevant for di�erentranges of parameters).We refrain from providing an overview of the proof of Theorem D.10, but ratherreview the proof of a weaker result that provides explicit (n ; poly(1=n))-extractorsfor the case of d = O(log n) and m = n
(), where > 0 is an arbitrarily smallconstant. Indeed, in xD.4.2.2, we review the conceptual insight that underlies thisresult (as well as much of the subsequent developments in the area).D.4.2.2 The pseudorandomness connectionWe conclude this section with an overview of a fruitful connection between extrac-tors and certain pseudorandom generators. The connection, discovered by Tre-visan [222], is surprising in the sense that it goes in a non-standard direction: ittransforms certain pseudorandom generators into extractors. As argued throughoutthis book (most conspicuously at the end of Section 7.1.2), computational objectsare typically more complex than the corresponding information theoretical objects.Thus, if pseudorandom generators and extractors are at all related (which was notsuspected before [222]) then this relation should not be expected to help in the con-struction of extractors, which seem an information theoretic object. Nevertheless,the discovery of this relation did yield a breakthrough in the study of extractors.11Teaching note: The current text assumes familiarity with pseudorandom generatorsand in particular with the Nisan{Wigderson Generator (presented in x8.3.2.1).But before describing the connection, let us wonder for a moment. Just lookingat the syntax, we note that pseudorandom generators have a single input (i.e., theseed), while extractors have two inputs (i.e., the n-bit long source and the d-bitlong seed). But taking a second look at the Nisan{Wigderson Generator (i.e., thecombination of Construction 8.17 with an ampli�cation of worst-case to average-case hardness), we note that this construction can be viewed as taking two inputs:a d-bit long seed and a \hard" predicate on d0-bit long strings (where d0 =
(d)).12Now, an appealing idea is to use the n-bit long source as a (truth-table) descriptionof a (worse-case) hard predicate (which indeed means setting n = 2d0). The keyobservation is that even if the source is only weakly random then it is likely torepresent a predicate that is hard on the worst-case.11We note that once the connection became better understood, inuence started going in the\right" direction: from extractors to pseudorandom generators.12Indeed, to �t the current context, we have modi�ed some notations. In Construction 8.17 thelength of the seed is denoted by k and the length of the input for the predicate is denoted by m.

D.4. RANDOMNESS EXTRACTORS 599Recall that the aforementioned construction is supposed to yield a pseudoran-dom generator whenever it starts with a hard predicate. In the current context,where there are no computational restrictions, pseudorandomness is supposed tohold against any (computationally unbounded) distinguisher, and thus here pseudo-randomness means being statistically close to the uniform distribution (on stringsof the adequate length, denoted `). Intuitively, this makes sense only if the ob-served sequence is shorter that the amount of randomness in the source (and seed),which is indeed the case (i.e., ` < k + d, where k denotes the min-entropy of thesource). Hence, there is hope to obtain a good extractor this way.To turn the hope into a reality, we need a proof (which is sketched next). Look-ing again at the Nisan{Wigderson Generator, we note that the proof of indistin-guishability of this generator provides a black-box procedure for computing the un-derlying predicate when given oracle access to any potential distinguisher. Specif-ically, in the proofs of Theorems 7.19 and 8.18 (which holds for any ` = 2
(d0))13,this black-box procedure was implemented by a relatively small circuit (whichdepends on the underlying predicate). Hence, this procedure contains relativelylittle information (regarding the underlying predicate), on top of the observed `-bit long output of the extractor/generator. Speci�cally, for some �xed polynomialp, the amount of information encoded in the procedure (and thus available to it) isupper-bound by b def= p(`), while the procedure is suppose to compute the underly-ing predicate correctly on each input. That is, b bits of information are supposedto fully determine the underlying predicate, which in turn is identical to the n-bitlong source. However, if the source has min-entropy exceeding b, then it cannot befully determine using only b bits of information. It follows that the foregoing con-struction constitutes a (b+O(1); 1=6)-extractor (outputting ` = b
(1) bits), wherethe constant 1=6 is the one used in the proof of Theorem 8.18 (and the argumentholds provided that b = n
(1)). Note that this extractor uses a seed of lengthd = O(d0) = O(log n). The argument can be extended to obtain (k; poly(1=k))-extractors that output k
(1) bits using a seed of length d = O(log n), provided thatk = n
(1).We note that the foregoing description has only referred to two abstract prop-erties of the Nisan{Wigderson Generator: (1) the fact that this generator usesany worst-case hard predicate as a black-box, and (2) the fact that its analysisuses any distinguisher as a black-box. In particular, we viewed the ampli�cationof worst-case hardness to inapproximability (performed in Theorem 7.19) as partof the construction of the pseudorandom generator. An alternative presentation,which is more self-contained, replaces the ampli�cation step of Theorem 7.19 by adirect argument in the current (information theoretic) context and plugs the result-ing predicate directly into Construction 8.17. The advantages of this alternativeinclude using a simpler ampli�cation (since ampli�cation is simpler in the informa-tion theoretic setting than in the computational setting), and deriving transparentconstruction and analysis (which mirror Construction 8.17 and Theorem 8.18, re-spectively).13Recalling that n = 2d0 , the restriction ` = 2
(d0) implies ` = n
(1).

600APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONThe alternative presentation. The foregoing analysis transforms a generic dis-tinguisher into a procedure that computes the underlying predicate correctly oneach input, which fully determines this predicate. Hence, an upper-bound on theinformation available to this procedure yields an upper-bound on the number ofpossible outcomes of the source that are bad for the extractor. In the alternativepresentation, we transforms a generic distinguisher into a procedure that only ap-proximates the underlying predicate; that is, the procedure yields a function thatis relatively close to the underlying predicate. If the potential underlying pred-icates are far apart, then this yields the desired bound (on the number of badsource-outcomes that correspond to such predicates). Thus, the idea is to encodethe n-bit long source by an error correcting code of length n0 = poly(n) and rel-ative distance 0:5 � (1=n)2, and use the resulting codeword as a truth-table of apredicate for Construction 8.17.14 Such codes (coupled with e�cient encoding al-gorithms) do exist (see xE.1.2.5), and the bene�t in using them is that each n0-bitlong string (determined by the information available to the aforementioned ap-proximation procedure) may be (0:5� (1=n))-close to at most O(n2) codewords15(which correspond to potential predicates). Thus, each approximation procedurerules out at most O(n2) potential predicates (i.e., source outcomes). In summary,the resulting extractor converts the n-bit input x into a codeword x0 2 f0; 1gn0,viewed as a predicate over f0; 1gd0 (where d0 = log2 n0), and evaluates this predicateat the ` projections of the d-bit long seed, where these projections (to d0 bits) aredetermined by the corresponding set system (i.e., the `-long sequence of d0-subsetsof [d] that is used in Construction 8.17). The analysis mirrors the proof of Theo-rem 8.18, and yields a bound of 2O(`2) � O(n2) on the number of bad outcomes forthe source, where O(`2) upper-bounds the amount of information encoded in (andavailable to) the approximation procedure, and O(n2) upper-bounds the numberof source-outcomes that correspond to codewords that are each (0:5� (1=n))-closeto any �xed approximation procedure.D.4.2.3 Recommended readingThe interested reader is referred to a survey of Shaltiel [200]. This survey con-tains a comprehensive introduction to the area, including an overview of the ideasthat underly the various constructions. In particular, the survey describes the ap-proaches used before the discovery of the pseudorandomness connection, the con-nection itself (and the constructions that arise from it), and the \third generation"of constructions that followed.The aforementioned survey predates the most recent constructions (of extrac-tors) that extract a constant fraction of the min-entropy using a logarithmicallylong seed (cf. Part 1 of Theorem D.10). Such constructions were �rst presentedin [159] and improved (using di�erent ideas) in [113]. Indeed, we refer to readerto [113], which provides a self-contained description of the best known extractor(for almost all settings of the relevant parameters).14Indeed, the use of this error correcting code replaces the hardness-ampli�cation step of The-orem 7.19.15See Appendix E.1.4.

Appendix EExplicit ConstructionsIt is easier for a camel to go through the eye of a needle, thanfor a rich man to enter into the kingdom of God.Matthew, 19:24.Complexity theory provides a clear de�nition of the intuitive notion of an explicitconstruction. Furthermore, it also suggests a hierarchy of di�erent levels of explic-itness, referring to the ease of constructing the said object.The basic levels of explicitness are provided by considering the complexity offully constructing the object (e.g., the time it takes to print the truth-table ofa �nite function). In this context, explicitness often means outputting a full de-scription of the object in time that is polynomial in the length of that description.Stronger levels of explicitness emerge when considering the complexity of answeringnatural queries regarding the object (e.g., the time it takes to evaluate a �xed func-tion at a given input). In this context, (strong) explicitness often means answeringsuch queries in polynomial-time.The aforementioned themes are demonstrated in our brief review of explicitconstructions of error correcting codes and expander graphs. These constructionsare, in turn, used in various parts of the main text.Summary: This appendix provides a brief overview of aspects of cod-ing theory and expander graphs that are most relevant to complexitytheory. Starting with coding theory, we review several popular con-structions of error correcting codes, culminating in the construction of a\good" binary code (i.e., a code that achieves constant relative distanceand constant rate). The latter code is obtained by \concatenating" aReed-Solomon code with a \mildly explicit" construction of a \good"binary code (which is applied to small pieces of information). We alsobriey review the notions of locally testable and locally decodable codes,and present a useful \list decoding bound" (i.e., an upper-bound on thenumber of codewords that are close to any single sequence).601

602 APPENDIX E. EXPLICIT CONSTRUCTIONSTurning to expander graphs, we review two standard de�nitions of ex-pansion (representing combinatorial and algebraic perspectives), andtwo properties of expanders that are related to (single-step and multi-step) random walks on them. We also spell-out two levels of explicitnessof graphs, which correspond to the aforementioned notions of basic andstrong explicitness. Finally, we review two explicit constructions ofexpander graphs.E.1 Error Correcting CodesIn this section we highlight some issues and aspects of coding theory that are mostrelevant to the current book. The interested reader is referred to [217] for a morecomprehensive treatment of the computational aspects of coding theory. Structuralaspects of coding theory, which are at the traditional focus of that �eld, are coveredin standard textbook such as [163].E.1.1 Basic NotionsLoosely speaking, an error correcting code is a mapping of strings to longer stringssuch that any two di�erent strings are mapped to a corresponding pair of stringsthat are far apart (and not merely di�erent). Speci�cally, C : f0; 1gk ! f0; 1gnis a (binary) code of distance d if for every x 6= y 2 f0; 1gk it holds that C(x) andC(y) di�er on at least d bit positions. Indeed, the relation between k, n and d is ofmajor concern: typically, the aim is having a large distance (i.e., large d) withoutintroducing too much redundancy1 (i.e., have n as small as possible with respect tok (and d)).It will be useful to extend the foregoing de�nition to sequences over an arbitrary(�nite) alphabet �, and to use some notations. Speci�cally, for x 2 �m, we denotethe ith symbol of x by xi (i.e., x = x1 � � �xm), and consider codes over � (i.e.,mappings of �-sequences to �-sequences). The mapping (code) C : �k ! �n hasdistance d if for every x 6= y 2 �k it holds that jfi : C(x)i 6= C(y)igj � d. Themembers of fC(x) : x 2 �kg are called codewords (and in some texts this set itselfis called a code).In general, we de�ne a metric, called Hamming distance, over the set of n-longsequences over �. The Hamming distance between y and z, where y; z 2 �n, isde�ned as the number of locations on which they disagree (i.e., jfi : yi 6= zigj). TheHamming weight of such sequences is de�ned as the number of non-zero elements(assuming that one element of � is viewed as zero). Typically, � is associatedwith an additive group, and in this case the distance between y and z equals theHamming weight of w = y � z, where wi = yi � zi (for every i).1Note that a trivial way of obtaining distance d is to duplicate each symbol d times. This(\repetition") code satis�es n = d � k, while we shall seek n� d � k. Indeed, as we shall see, onecan obtain simultaneously n = O(k) and d =
(k).

E.1. ERROR CORRECTING CODES 603Asymptotics. We will actually consider in�nite families of codes; that is, fCk :�kk ! �n(k)k gk2S , where S � N (and typically S = N). (N.B., we allow �kto depend on k.) We say that such a family has distance d : N ! N if forevery k 2 S it holds that Ck has distance d(k). Needless to say, both n = n(k)(called the block-length) and d(k) depend on k, and the aim is having a lineardependence (i.e., n(k) = O(k) and d(k) =
(n(k))). In such a case, one talks of therelative rate of the code (i.e., the constant k=n(k)) and its relative distance (i.e., theconstant d(k)=n(k)). In general, we will often refer to relative distances betweensequences. For example, for y; z 2 �n, we say that y and z are "-close (resp., "-far)if jfi : yi 6= zigj � " � n (resp., jfi : yi 6= zigj � " � n).Explicitness. A mild notion of explicitness refers to constructing the list of allcodewords in time that is polynomial in its length (which is exponential in k).A more standard notion of explicitness refers to generating a speci�c codeword(i.e., producing C(x) when given x), which coincides with the encoding task men-tioned next. Stronger notions of explicitness refer to other computational problemsconcerning codes (e.g., various decoding tasks).Computational problems. The most basic computational tasks associated withcodes are encoding and decoding (under noise). The de�nition of the encoding taskis straightforward (i.e., map x 2 �kk to Ck(x)), and an e�cient algorithm is requiredto compute each symbol in Ck(x) in poly(k; log j�kj)-time.2 When de�ning the de-coding task we note that \minimum distance decoding" (i.e., given w 2 �n(k)k ,�nd x such that Ck(x) is closest to w (in Hamming distance)) is just one naturalpossibility. Two related variants, regarding a code of distance d, are:Unique decoding: Given w 2 �n(k)k that is at Hamming distance less than d(k)=2from some codeword Ck(x), retrieve the corresponding decoding of Ck(x)(i.e., retrieve x).Needless to say, this task is well-de�ned because there cannot be two di�erentcodewords that are each at Hamming distance less than d(k)=2 from w.List decoding: Given w 2 �n(k)k and a parameter d0 (which may be greater thand(k)=2), output a list of all codewords (or rather their decoding) that are atHamming distance at most d0 from w. (That is, the task is outputting thelist of all x 2 �kk such that Ck(x) is at distance at most d0 from w.)Typically, one considers the case that d0 < d(k). See Section E.1.4 for adiscussion of upper-bounds on the number of codewords that are within acertain distance from a generic sequence.Two additional computational tasks are considered in Section E.1.3.2The foregoing formulation is not the one that is common in coding theory, but it is the mostnatural one for our applications. On one hand, this formulation is applicable also to codes withsuper-polynomial block-length. On the other hand, this formulation does not support a discussionof practical algorithms that compute the codeword faster than is possible when computing eachof the codeword's bits separately.

604 APPENDIX E. EXPLICIT CONSTRUCTIONSLinear codes. Associating �k with some �nite �eld, we call a code Ck : �kk !�n(k)k linear if it satis�es Ck(x + y) = Ck(x) + Ck(y), where x and y (resp., Ck(x)and Ck(y)) are viewed as k-dimensional (resp., n(k)-dimensional) vectors over �k,and the arithmetic is of the corresponding vector space. A useful property of linearcodes is that their distance equals the Hamming weight of the lightest codewordother than Ck(0k) (= 0n(k)); that is, minx 6=yfjfi : Ck(x)i 6= Ck(y)igjg equalsminx 6=0kfjfi : Ck(x)i 6= 0gjg. Another useful property of linear codes is thatthe code is fully speci�ed by a k-by-n(k) matrix, called the generating matrix,that consists of the codewords of some �xed basis of �kk. That is, the set of allcodewords is obtained by taking all j�kjk di�erent linear combination of the rowsof the generating matrix.E.1.2 A Few Popular CodesOur focus will be on explicitly constructible codes; that is, (families of) codes of theform fCk : �kk ! �n(k)k gk2S that are coupled with e�cient encoding and decodingalgorithms. But before presenting several such codes, let us consider a non-explicitcode (having \good parameters"); that is, the following result asserts the existenceof certain codes without pointing to any speci�c code (let alone an explicit one).Proposition E.1 (on the distance of random linear codes): Let n; d; t : N ! Nbe such that, for all su�ciently large k, it holds thatn(k) � max�2d(k); k + t(k)1�H2(d(k)=n(k))�; (E.1)where H2(�) def= � log2(1=�) + (1 � �) log2(1=(1 � �)). Then, for all su�cientlylarge k, with probability greater than 1� 2�t(k), a random linear transformation off0; 1gk to f0; 1gn(k) constitutes a code of distance d(k).Indeed, for asserting that most random linear codes are good it su�ces to set t = 1,while for merely asserting the existence of a good linear code even setting t = 0will do. Also, for every constant � 2 (0; 0:5) there exists a constant � > 0 andan in�nite family of codes fCk : f0; 1gk ! f0; 1gk=�gk2N of relative distance �.Speci�cally, any constant � � (1�H2(�)) will do.Proof: We consider a uniformly selected k-by-n(k) generating matrix over GF(2),and upper-bound the probability that it yields a linear code of distance less thand(k). We use a union bound on all possible 2k � 1 linear combinations of therows of the generating matrix, where for each such combination we compute theprobability that it yields a codeword of Hamming weight less than d(k). Ob-serve that the result of each such linear combination is uniformly distributed overf0; 1gn(k), and thus this codeword has Hamming weight less than d(k) with prob-ability p def= Pd(k)�1i=0 �n(k)i � � 2�n(k). Clearly, for d(k) � n(k)=2, it holds thatp < d(k) � 2�(1�H2(d(k)=n(k)))�n(k)), but actually p � 2�(1�H2(d(k)=n(k)))�n(k)) holdsas well (e.g., use [11, Cor. 14.6.3]). Using (1 � H2(d(k)=n(k))) � n(k) � k + t(k),the proposition follows.

E.1. ERROR CORRECTING CODES 605E.1.2.1 A mildly explicit version of Proposition E.1Note that Proposition E.1 yields a deterministic algorithm that �nds a linear codeof distance d(k) by conducting an exhaustive search over all possible generatingmatrices; that is, a good code can be found in time exp(k � n(k)). The timebound can be improved to exp(k + n(k)), by constructing the generating matrixin iterations such that, at each iteration, the current set of rows is augmentedwith a single row while maintaining the natural invariance (i.e., all non-emptylinear combinations of the current rows have weight at least d(k)). Thus, at eachiteration, we conduct an exhaustive search over all possible values of the next (n(k)-bit long) row, and for each such candidate value we check whether the foregoinginvariance holds (by considering all linear combinations of the previous rows andthe current candidate).Note that the proof of Proposition E.1 can be adapted to assert that, as longas we have less than k rows, a random choice of the next row will do with positiveprobability. Thus, the foregoing iterative algorithm �nds a good code in timePki=1 2n(k) � 2i�1 � poly(n(k)) = exp(n(k) + k). In the case that n(k) = O(k), thisyields an algorithm that runs in time that is polynomial in the size of the code (i.e.,the number of codewords (i.e., 2k)). Needless to say, this mild level of explicitness isinadequate for most coding applications; however, it will be useful to us in xE.1.2.5.E.1.2.2 The Hadamard CodeThe Hadamard code is the longest (non-repetitive) linear code over f0; 1g � GF(2).That is, x 2 f0; 1gk is mapped to the sequence of all n(k) = 2k possible linearcombinations of its bits; that is, bit locations in the codewords are associated withk-bit strings such that location � 2 f0; 1gk in the codeword of x holds the valuePki=1 �ixi. It can be veri�ed that each non-zero codeword has weight 2k�1, andthus this code has relative distance d(k)=n(k) = 1=2 (albeit its block-length n(k)is exponential in k).Turning to the computational aspects, we note that encoding is very easy. Asfor decoding, the warm-up discussion at the beginning of the proof of Theorem 7.7provides a very fast probabilistic algorithm for unique decoding, whereas Theo-rem 7.8 itself provides a very fast probabilistic algorithm for list decoding.We mention that the Hadamard code has played a key role in the proof of thePCP Theorem (Theorem 9.16); see x9.3.2.1.A propos long codes. We mention that the longest (non-repetitive) binarycode (called the Long-Code and introduced in [29]) is extensively used in the de-sign of \advanced" PCP systems (see, e.g., [116, 117]). In this code, a k-bit longstring x is mapped to the sequence of n(k) = 22k values, each corresponding tothe evaluation of a di�erent Boolean function at x; that is, bit locations in thecodewords are associated with Boolean functions such that the location associatedwith f :f0; 1gk!f0; 1g in the codeword of x holds the value f(x).

606 APPENDIX E. EXPLICIT CONSTRUCTIONSE.1.2.3 The Reed{Solomon CodeReed-Solomon codes can be de�ned for any adequate non-binary alphabet, wherethe alphabet is associated with a �nite �eld of n elements, denoted GF(n). Forany k < n, the code maps univariate polynomials of degree k � 1 over GF(n)to their evaluation at all �eld elements. That is, p 2 GF(n)k (viewed as sucha polynomial), is mapped to the sequence (p(�1); :::; p(�n)), where �1; :::; �n is acanonical enumeration of the elements of GF(n).3 This mapping is called a Reed-Solomon code with parameters k and n, and its distance is n� k+1 (because anynon-zero polynomials of degree k�1 evaluates to zero at less than k points). Indeed,this code is linear (over GF(n)), since p(�) is a linear combination of p0; :::; pk�1,where p(�) =Pk�1i=0 pi�i.The Reed-Solomon code yields in�nite families of codes with constant rate andconstant relative distance (e.g., by taking n(k) = 3k and d(k) = 2k), but thealphabet size grows with k (or rather with n(k) > k). E�cient algorithms forunique decoding and list decoding are known (see [216] and references therein).These computational tasks correspond to the extrapolation of polynomials basedon a noisy version of their values at all possible evaluation points.E.1.2.4 The Reed{Muller CodeReed-Muller codes generalize Reed-Solomon codes by considering multi-variatepolynomials rather than univariate polynomials. Consecutively, the alphabet maybe any �nite �eld, and in particular the two-element �eld GF(2). Reed-Muller codes(and variants of them) are extensively used in complexity theory; for example, theyunderly Construction 7.11 and the PCP constructed at the end of x9.3.2.2. Therelevant property of these (non-binary) codes is that, under a suitable setting ofparameters that satis�es n(k) = poly(k), they allow super fast \codeword testing"and \self-correction" (see discussion in Section E.1.3).For any prime power q and parameters m and r, we consider the set, denotedPm;r, of all m-variate polynomials of total degree at most r over GF(q). Eachpolynomial in Pm;r is represented by the k = logq jPm;rj coe�cients of all relevantmonomials, where in the case that r < q it holds that k = �m+rm �. We considerthe code C : GF(q)k ! GF(q)n, where n = qm, mapping m-variate polynomials oftotal degree at most r to their values at all qm evaluation points. That is, the m-variate polynomial p of total degree at most r is mapped to the sequence of values(p(�1); :::; p(�n)), where �1; :::; �n is a canonical enumeration of all the m-tuplesof GF(q). The relative distance of this code is lower-bounded by (q � r)=q (cf.,Lemma 6.8).In typical applications one sets r = �(m2 logm) and q = poly(r), which yieldsk > mm and n = poly(r)m = poly(mm). Thus we have n(k) = poly(k) but notn(k) = O(k). As we shall see in Section E.1.3, the advantage (in comparison to theReed-Solomon code) is that codeword testing and self-correction can be performed3Alternatively, we may map (v1; :::; vk) 2 GF(n)k to (p(�1); :::; p(�n)), where p is the uniqueunivariate polynomial of degree k � 1 that satis�es p(�i) = vi for i = 1; :::; k. Note that thismodi�cation amounts to a linear transformation of the generating matrix.

E.1. ERROR CORRECTING CODES 607at complexity related to q = poly(logn). Actually, most complexity applicationsuse a variant in which only m-variate polynomials of individual degree r0 = r=m areencoded. In this case, an alternative presentation (analogous to the one presented inFootnote 3) is preferred: The information is viewed as a function f : Hm ! GF(q),where H � GF(q) is of size r0+1, and is encoded by the evaluation at all points inGF(q)m of the (unique) m-variate polynomial of individual degree r0 that extendsthe function f (see Construction 7.11).E.1.2.5 Binary codes of constant relative distance and constant rateRecall that we seek binary codes of constant relative distance and constant rate.Proposition E.1 asserts that such codes exists, but does not provide an explicitconstruction. The Hadamard code is explicit but does not have a constant rate (tosay the least (since n(k) = 2k)).4 The Reed-Solomon code has constant relativedistance and constant rate but uses a non-binary alphabet (which grows at leastlinearly with k). Thus, all codes we have reviewed so far fall short of providingan explicit construction of binary codes of constant relative distance and constantrate. We achieve the desired construction by using the paradigm of concatenatedcodes [78], which is of independent interest. (Concatenated codes may be viewedas a simple analogue of the proof composition paradigm presented in x9.3.2.2.)Intuitively, concatenated codes are obtained by �rst encoding information, viewedas a sequence over a large alphabet, by some code and next encoding each resultingsymbol, which is viewed as a sequence of over a smaller alphabet, by a second code.Formally, consider �1 � �k22 and two codes, C1 : �k11 ! �n11 and C2 : �k22 ! �n22 .Then, the concatenated code of C1 and C2, maps (x1; :::; xk1) 2 �k11 � �k1k22 to(C2(y1); :::; C2(yn1)), where (y1; :::; yn1) = C1(x1; :::; xk1).Note that the resulting code C : �k1k22 ! �n1n22 has constant rate and con-stant relative distance if both C1 and C2 have these properties. Encoding inthe concatenated code is straightforward. To decode a corrupted codeword ofC, we view the input as an n1-long sequence of blocks, where each block is ann2-long sequence over �2. Applying the decoder of C2 to each block, we obtainn1 sequences (each of length k2) over �2, and interpret each such sequence asa symbol of �1. Finally, we apply the decoder of C1 to the resulting n1-longsequence (over �1), and interpret the resulting k1-long sequence (over �1) as ak1k2-long sequence over �2. The key observation is that if w 2 �n1n22 is "1"2-closeto C(x1; :::; xk1) = (C2(y1); :::; C2(yn1)) then at least (1� "1) � n1 of the blocks of ware "2-close to the corresponding C2(yi).5We are going to consider the concatenated code obtained by using the Reed-Solomon Code C1 : GF(n1)k1 ! GF(n1)n1 as the large code, setting k2 = log2 n1,and using the mildly explicit version of Proposition E.1 (see also xE.1.2.1) C2 :f0; 1gk2 ! f0; 1gn2 as the small code. We use n1 = 3k1 and n2 = O(k2), and so the4Binary Reed-Muller codes also fail to simultaneously provide constant relative distance andconstant rate.5This observation o�ers unique decoding from a fraction of errors that is the product of thefractions (of error) associated with the two original codes. Stronger statements regarding uniquedecoding of the concatenated code can be made based on more re�ned analysis (cf. [78]).

608 APPENDIX E. EXPLICIT CONSTRUCTIONSconcatenated code is C : f0; 1gk ! f0; 1gn, where k = k1k2 and n = n1n2 = O(k).The key observation is that C2 can be constructed in exp(k2)-time, whereas hereexp(k2) = poly(k). Furthermore, both encoding and decoding with respect to C2can be performed in time exp(k2) = poly(k). Thus, we get:Theorem E.2 (an explicit good code): There exists constants �; � > 0 and anexplicit family of binary codes of rate � and relative distance at least �. That is,there exists a polynomial-time (encoding) algorithm C such that jC(x)j = jxj=� (forevery x) and a polynomial-time (decoding) algorithm D such that for every y thatis �=2-close to some C(x) it holds that D(y) = x. Furthermore, C is a linear code.The linearity of C is justi�ed by using a Reed-Solomon code over the extension �eldF = GF(2k2), and noting that this code induces a linear transformation over GF(2).Speci�cally, the value of a polynomial p over F at a point � 2 F can be obtainedas a linear transformation of the coe�cient of p, when viewed as k2-dimensionalvectors over GF(2).Relative distance approaching one half. Note that starting with a Reed-Solomon code of relative distance �1 and a smaller code C2 of relative distance�2, we obtain a concatenated code of relative distance �1�2. Recall that, for anyconstant �1 < 1, there exists a Reed-Solomon code C1 : GF(n1)k1 ! GF(n1)n1 ofrelative distance �1 and constant rate (i.e., 1� �1). Thus, for any constant " > 0,we may obtain an explicit code of constant rate and relative distance (1=2) � "(e.g., by using �1 = 1 � ("=2) and �2 = (1 � ")=2). Furthermore, giving up onconstant rate, we may start with a Reed-Solomon code of block-length n1(k1) =poly(k1) and distance n1(k1)�k1 over [n1(k1)], and use a Hadamard code (encoding[n1(k1)] � f0; 1glog2 n1(k1) by f0; 1gn1(k1)) in the role of the small code C2. Thisyields a (concatenated) binary code of block length n(k) = n1(k)2 = poly(k) anddistance (n1(k)�k) �n1(k)=2. Thus, the resulting explicit code has relative distance12 � k2pn(k) = 12 � o(1), provided that n(k) = !(k2).E.1.3 Two Additional Computational ProblemsIn this section we briey review relaxations of two traditional coding theoretic tasks.The purpose of these relaxations is enabling the design of super-fast (randomized)algorithms that provide meaningful information. Speci�cally, these algorithms mayrun in sub-linear (e.g., poly-logarithmic) time, and thus cannot possibly solve theunrelaxed version of the corresponding problem.Local testability. This task refers to testing whether a given word is a codeword(in a predetermine code), based on (randomly) inspecting few locations in theword. Needless to say, we can only hope to make an approximately correctdecision; that is, accept each codeword and reject with high probability eachword that is far from the code. (Indeed, this task is within the framework ofproperty testing; see Section 10.1.2.)

E.1. ERROR CORRECTING CODES 609Local decodability. Here the task is to recover a speci�ed bit in the plaintext by(randomly) inspecting few locations in a mildly corrupted codeword. Thistask is somewhat related to the task of self-correction (i.e., recovering a spec-i�ed bit in the codeword itself, by inspecting few locations in the mildlycorrupted codeword).Note that the Hadamard code is both locally testable and locally decodable as wellas self-correctable (based on a constant number of queries into the word); these factswere demonstrated and extensively used in x9.3.2.1. However, the Hadamard codehas an exponential block-length (i.e., n(k) = 2k), and the question is whether onecan achieve analogous results with respect to a shorter code (e.g., n(k) = poly(k)).As hinted in xE.1.2.4, the answer is positive (when we refer to performing theseoperations in time that is poly-logarithmic in k):Theorem E.3 For some constant � > 0 and polynomials n; q : N ! N , thereexists an explicit family of codes fCk : [q(k)]k ! [q(k)]n(k)gk2N of relative distance� that can be locally testable and locally decodable in poly(log k)-time. That is, thefollowing three conditions hold.1. Encoding: There exists a polynomial time algorithm that on input x 2 [q(k)]kreturns Ck(x).2. Local Testing: There exists a probabilistic polynomial-time oracle machineT that given k (in binary)6 and oracle access to w 2 [q(k)]n(k) (viewed asw : [n(k)]! [q(k)]) distinguishes the case that w is a codeword from the casethat w is �=2-far from any codeword. Speci�cally:(a) For every x 2 [q(k)]k it holds that Pr[TCk(x)(k)=1] = 1.(b) For every w 2 [q(k)]n(k) that is �=2-far from any codeword of Ck it holdsthat Pr[Tw(k)=1] � 1=2.As usual, the error probability can be reduced by repetitions.3. Local Decoding: There exists a probabilistic polynomial-time oracle machineD that given k and i 2 [k] (in binary) and oracle access to any w 2 [q(k)]n(k)that is �=2-close to Ck(x) returns xi; that is, Pr[Dw(k; i)=xi] � 2=3.Self correction holds too: there exists a probabilistic polynomial-time oraclemachine M that given k and i 2 [n(k)] (in binary) and oracle access to anyw 2 [q(k)]n(k) that is �=2-close to Ck(x) returns Ck(x)i; that is, Pr[Dw(k; i)=Ck(x)i] � 2=3.We stress that all these oracle machines work in time that is polynomial in the bi-nary representation of k, which means that they run in time that is poly-logarithmicin k. The code asserted in Theorem E.3 is a (small modi�cation of a) Reed-Mullercode, for r = m2 logm < q(k) = poly(r) and [n(k)] � GF(q(k))m (see xE.1.2.4).76Thus, the running time of T is poly(jkj) = poly(log k).7The modi�cation is analogous to the one presented in Footnote 3: For a suitable choice ofk points �1; :::; �k 2 GF(q(k))m, we map v1; :::; vk to (p(�1); :::; p(�n)), where p is the uniquem-variate polynomial of degree at most r that satis�es p(�i) = vi for i = 1; :::; k.

610 APPENDIX E. EXPLICIT CONSTRUCTIONSThe aforementioned oracle machines queries the oracle w : [n(k)] ! GF(q(k))at a non-constant number of locations. Speci�cally, self-correction for locationi 2 GF(q(k))m is performed by selecting a random line (over GF(q(k))m) thatpasses through i, recovering the values assigned by w to all q(k) points on thisline, and performing univariate polynomial extrapolation (under mild noise). Lo-cal testability is easily reduced to self-correction, and (under the aforementionedmodi�cation) local decodability is a special case of self-correction.Constant number of (binary) queries. The local testing and decoding al-gorithms asserted in Theorem E.3 make a polylogarithmic number of queries intothe oracle. Furthermore, these queries (which refer to a non-binary code) arenon-binary (i.e., they are each answered by a non-binary value). In contrast, theHadamard code has local testing and decoding algorithms that use a constant num-ber of binary queries. Can this be obtained with much shorter (binary) codewords?That is, rede�ning local testability and decodability as requiring a constant numberof queries, we ask whether binary codes of signi�cantly shorter block-length can belocally testable and decodable. For local testability the answer is de�nitely positive:one can construct such (locally testable and binary) codes with block-length thatis nearly linear (i.e., linear up to polylogarithmic factors; see [36, 67]). For localdecodability, the shortest known code has super-polynomial length (see [241]). Inlight of this state of a�airs, we advocate natural relaxations of the local decodabilitytask (e.g., the one studied in [35]).The interested reader is referred to [93], which includes more details on locallytestable and decodable codes as well as a wider perspective. (Note, however, thatthis survey was written prior to [67] and [241], which resolve two major openproblems discussed in [93].)E.1.4 A List Decoding BoundA necessary condition for the feasibility of the list decoding task is that the listof codewords that are close to the given word is short. In this section we presentan upper-bound on the length of such lists, noting that this bound has foundseveral applications in complexity theory (and speci�cally to studies related to thecontents of this book). In contrast, we do not present far more famous bounds(which typically refer to the relation among the main parameters of codes (i.e.,k; n and d)), because they seem less relevant to the contents of this book.We start with a general statement that refers to any alphabet � � [q], and laterspecialize it to the case that q = 2. Especially in the general case, it is natural andconvenient to consider the agreement (rather than the distance) between sequencesover [q]. Furthermore, it is natural to focus on agreement rate of at least 1=q, andit is convenient to state the following result in terms of the \excessive agreementrate" (i.e., the excess beyond 1=q).8 Loosely speaking, the following result upper-bounds the number of codewords that have a (su�cient) large agreement rate with8Indeed, we only consider codes with distance d � (1� 1=q) �n (i.e., agreement rate of at least1=q) and words that are at distance at most d from the code. Note that a random sequence isexpected to agree with any �xed sequence on a 1=q fraction of the locations.

E.2. EXPANDER GRAPHS 611any �xed sequence, where the upper-bound depends only on this agreement rateand the agreement rate between codewords (as well as on the alphabet size, butnot on k and n).Lemma E.4 (Part 2 of [105, Thm. 15]): Let C : [q]k ! [q]n be an arbitrarycode of distance d � n � (n=q), and let �C def= (1 � (d=n)) � (1=q) � 0 denotethe corresponding upper-bound on the excessive agreement rate between codewords.Suppose that � 2 (0; 1) satis�es� > s�1� 1q� � �C: (E.2)Then, for any w 2 [q]n, the number of codewords that agree with w on at least((1=q) + �) � n positions (i.e., are at distance at most (1� ((1=q) + �)) � n from w)is upper-bounded by (1� (1=q))2 � (1� (1=q)) � �C�2 � (1� (1=q)) � �C : (E.3)In the binary case (i.e., q = 2), Eq. (E.2) requires � >p�C=2 and Eq. (E.3) yieldsthe upper-bound (1� 2�C)=(4�2 � 2�C). We highlight two speci�c cases:1. At the end of xD.4.2.2, we refer to this bound (for the binary case) whilesetting �C = (1=k)2 and � = 1=k. Indeed, in this case (1�2�C)=(4�2�2�C) =O(k2).2. In the case of the Hadamard code, we have �C = 0. Thus, for every w 2f0; 1gn and every � > 0, the number of codewords that are (0:5� �)-close tow is at most 1=4�2.In the general case (and speci�cally for q � 2) it is useful to simplify Eq. (E.2) by� > minfp�C; (1=q) +p�C � (1=q)g and Eq. (E.3) by 1�2��C .E.2 Expander GraphsIn this section we review basic facts regarding expander graphs that are mostrelevant to the current book. For a wider perspective, the interested reader isreferred to [124].Loosely speaking, expander graphs are regular graphs of small degree that ex-hibit various properties of cliques.9 In particular, we refer to properties such as therelative sizes of cuts in the graph (i.e., relative to the number of edges), and therate at which a random walk converges to the uniform distribution (relative to thelogarithm of the graph size to the base of its degree).9Another useful intuition is that expander graphs exhibit various properties of random regulargraphs of the same degree.

612 APPENDIX E. EXPLICIT CONSTRUCTIONSSome technicalities. Typical presentations of expander graphs refer to one ofseveral variants. For example, in some sources, expanders are presented as bipartitegraphs, whereas in others they are presented as ordinary graphs (and are in factvery far from being bipartite). We shall follow the latter convention. Furthermore,at times we implicitly consider an augmentation of these graphs where self-loopsare added to each vertex. For simplicity, we also allow parallel edges.We often talk of expander graphs while we actually mean an in�nite collectionof graphs such that each graph in this collection satis�es the same property (whichis informally attributed to the collection). For example, when talking of a d-regularexpander (graph) we actually refer to an in�nite collection of graphs such that eachof these graphs is d-regular. Typically, such a collection (or family) contains a singleN -vertex graph for every N 2 S, where S is an in�nite subset of N . Throughoutthis section, we denote such a collection by fGNgN2S, with the understanding thatGN is a graph with N vertices and S is an in�nite set of natural numbers.E.2.1 De�nitions and PropertiesWe consider two de�nitions of expander graphs, two di�erent notions of explicitconstructions, and two useful properties of expanders.E.2.1.1 Two mathematical de�nitionsWe start with two di�erent de�nitions of expander graphs. These de�nitions arequalitatively equivalent and even quantitatively related. We start with an algebraicde�nition, which seems technical in nature but is actually the de�nition typicallyused in complexity theoretic applications, since it directly implies various \mixingproperties" (see xE.2.1.3). We later present a very natural combinatorial de�nition(which is the source of the term \expander").The algebraic de�nition (eigenvalue gap). Identifying graphs with their ad-jacency matrix, we consider the eigenvalues (and eigenvectors) of a graph (or ratherof its adjacency matrix). Any d-regular graph G = (V;E) has the uniform vectoras an eigenvector corresponding to the eigenvalue d, and if G is connected andnon-bipartite then the absolute values of all other eigenvalues are strictly smallerthan d. The eigenvalue bound, denoted �(G) < d, of such a graph G is de�ned asa tight upper-bound on the absolute value of all the other eigenvalues. (In fact,in this case it holds that �(G) < d �
(1=djV j2).)10 The algebraic de�nition ofexpanders refers to an in�nite family of d-regular graphs and requires the existenceof a constant eigenvalue bound that holds for all the graphs in the family.De�nition E.5 An in�nite family of d-regular graphs, fGNgN2S, where S � N ,satis�es the eigenvalue bound � if for every N 2 S it holds that �(GN) � �. In10This follows from the connection to the combinatorial de�nition (see Theorem E.7). Specif-ically, the square of this graph, denoted G2, is jV j�1-expanding and thus it holds that �(G)2 =�(G2) < d2 �
(jV j�2).

E.2. EXPANDER GRAPHS 613such a case, we say that fGNgN2S is a family of (d; �)-expanders, and call d � �its eigenvalue gap.It will be often convenient to consider relative (or normalized) versions of theforegoing quantities, obtained by division by d.The combinatorial de�nition (expansion). Loosely speaking, expansion re-quires that any (not too big) set of vertices of the graph has a relatively large setof neighbors. Speci�cally, a graph G = (V;E) is c-expanding if, for every set S � Vof cardinality at most jV j=2, it holds that�G(S) def= fv : 9u2S s.t. fu; vg2Eg (E.4)has cardinality at least (1 + c) � jSj. Assuming the existence of self-loops on allvertices, the foregoing requirement is equivalent to requiring that j�G(S) n Sj �c � jSj. In this case, every connected graph G = (V;E) is (1=jV j)-expanding.11The combinatorial de�nition of expanders refers to an in�nite family of d-regulargraphs and requires the existence of a constant expansion bound that holds for allthe graphs in the family.De�nition E.6 An in�nite family of d-regular graphs, fGNgN2S is c-expanding iffor every N 2 S it holds that GN is c-expanding.The two de�nitions of expander graphs are related (see [11, Sec. 9.2] or [124,Sec. 4.5]). Speci�cally, the \expansion bound" and the \eigenvalue bound" arerelated as follows.Theorem E.7 Let G be a d-regular graph having a self-loop on each vertex.121. The graph G is c-expanding for c � (d� �(G))=2d.2. If G is c-expanding then d� �(G) � c2=(4 + 2c2).Thus, any non-zero bound on the combinatorial expansion of a family of d-regulargraphs yields a non-zero bound on its eigenvalue gap, and vice versa. Note, how-ever, that the back-and-forth translation between these measures is not tight. Wenote that the applications presented in the main text (see, e.g., Section 8.5.3 andx9.3.2.3) refer to the algebraic de�nition, and that the loss incurred in Theorem E.7is immaterial for them.11In contrast, a bipartite graph G = (V;E) is not expanding, because it always contains a setS of size at most jV j=2 such that j�G(S)j � jSj (although it may hold that j�G(S) n Sj � jSj).12Recall that in such a graph G = (V;E) it holds that �G(S) � S for every S � V , and thusj�G(S)j = j�G(S) n Sj + jSj. Furthermore, in such a graph all eigenvalues are greater than orequal to �d + 1, and thus if d � �(G) < 1 then this is due to a positive eigenvalue of G. Thesefacts are used for bridging the gap between Theorem E.7 and the more standard versions (see,e.g., [11, Sec. 9.2]) that refer to variants of both de�nitions. Speci�cally, [11, Sec. 9.2] refers to�+G(S) = �G(S) n S and �2(G), where �2(G) is the second largest eigenvalue of G, rather thanreferring to �G(S) and �(G). Note that, in general, �G(S) may be attained by the di�erencebetween the smallest eigenvalue of G (which may be negative) and �d.

614 APPENDIX E. EXPLICIT CONSTRUCTIONSAmpli�cation. The \quality of expander graphs improves" by raising thesegraphs to any power t > 1 (i.e., raising their adjacency matrix to the tth power),where this operation corresponds to replacing t-paths (in the original graphs)by edges (in the resulting graphs). Speci�cally, when considering the algebraicde�nition, it holds that �(Gt) = �(G)t, but indeed the degree also gets raisedto the power t. Still, the ratio �(Gt)=dt deceases with t. An analogous phe-nomenon occurs also under the combinatorial de�nition, provided that some suit-able modi�cations are applied. For example, if for every S � V it holds thatj�G(S)j � min((1 + c) � jSj; jV j=2), then for every S � V it holds that j�Gt(S)j �min((1 + c)t � jSj; jV j=2).The optimal eigenvalue bound. For every d-regular graphG = (V;E), it holdsthat �(G) � 2G � pd� 1, where G = 1 � O(1= logd jV j). Thus, for any in�nitefamily of (d; �)-expanders, it must holds that � � 2pd� 1.E.2.1.2 Two levels of explicitnessTowards discussing various notions of explicit constructions of graphs, we need to�x a representation of such graphs. Speci�cally, throughout this section, whenreferring to an in�nite family of graphs fGNgN2S, we shall assume that the vertexset of GN equals [N]. Indeed, at times, we shall consider vertex sets having adi�erent structure (e.g., [m] � [m] for some m 2 N), but in all these cases thereexists a simple isomorphism of these sets to the canonical representation (i.e., thereexists an e�ciently computable and invertible mapping of the vertex set of GN to[N]).Recall that a mild notion of explicit constructiveness refers to the complexity ofconstructing the entire object (i.e., the graph). Applying this notion to our setting,we say that an in�nite family of graphs fGNgN2S is explicitly constructible if thereexists a polynomial-time algorithm that, on input 1N (where N 2 S), outputs thelist of the edges in the N-vertex graph GN . That is, the entire graph is constructedin time that is polynomial in its size (i.e., in poly(N)-time).The foregoing (mild) level of explicitness su�ces when the application requiresholding the entire graph and/or when the running-time of the application is lower-bounded by the size of the graph. In contrast, other applications refer to a hugevirtual graph (which is much bigger than their running time), and only requirethe computation of the neighborhood relation in such a graph. In this case, thefollowing stronger level of explicitness is relevant.A strongly explicit construction of an in�nite family of (d-regular) graphs fGNgN2Sis a polynomial-time algorithm that on input N 2 S (in binary), a vertex v in theN-vertex graph GN (i.e., v 2 [N]), and an index i 2 [d], returns the ith neighborof v. That is, the \neighbor query" is answered in time that is polylogarithmic inthe size of the graph. Needless to say, this strong level of explicitness implies thebasic (mild) level.An additional requirement, which is often forgotten but is very important, refersto the \tractability" of the set S. Speci�cally, we require the existence of ane�cient algorithm that given any n 2 N �nds an s 2 S such that n � s < 2n.

E.2. EXPANDER GRAPHS 615Corresponding to the two foregoing levels of explicitness, \e�cient" may meaneither running in time poly(n) or running in time poly(logn). The requirementthat n � s < 2n su�ces in most applications, but in some cases a smaller interval(e.g., n � s < n +pn) is required, whereas in other cases a larger interval (e.g.,n � s < poly(n)) su�ces.Greater exibility. In continuation to the foregoing paragraph, we commentthat expanders can be combined in order to obtain expanders for a wider range ofgraph sizes. For example, given two d-regular c-expanding graphs, G1 = (V1; E1)and G2 = (V2; E2) where jV1j � jV2j and c � 1, we can obtain a (d + 1)-regularc=2-expanding graph on jV1j + jV2j vertices by connecting the two graphs using aperfect matching of V1 and jV1j of the vertices of V2 (and adding self-loops to theremaining vertices of V2). More generally, combining the d-regular c-expandinggraphs G1 = (V1; E1) through Gt = (Vt; Et), where N 0 def= Pt�1i=1 jVij � jVtj, yieldsa (d + 1)-regular c=2-expanding graph on Pti=1 jVij vertices (by using a perfectmatching of [t�1i=1Vi and N 0 of the vertices of Vt).E.2.1.3 Two propertiesThe following two properties provide a quantitative interpretation to the statementthat expanders approximate the complete graph (or behave approximately likea complete graph). When referring to (d; �)-expanders, the deviation from thebehavior of a complete graph is represented by an error term that is linear in �=d.The mixing lemma. Loosely speaking, the following (folklore) lemma assertsthat in expander graphs (for which � � d) the fraction of edges connecting twolarge sets of vertices approximately equals the product of the densities of these sets.This property is called mixing.Lemma E.8 (Expander Mixing Lemma): For every d-regular graph G = (V;E)and for every two subsets A;B � V it holds that����� j(A�B) \ ~Ejj ~Ej � jAjjV j � jBjjV j ����� � �(G)pjAj � jBjd � jV j � �(G)d (E.5)where ~E denotes the set of directed edges (i.e., vertex pairs) that correspond to theundirected edges of G (i.e., ~E = f(u; v) : fu; vg2Eg and j ~Ej = djV j).In particular, j(A � A) \ ~Ej = (�(A) � d � �(G)) � jAj, where �(A) = jAj=jV j. Itfollows that j(A � (V nA)) \ ~Ej = ((1� �(A)) � d� �(G)) � jAj.Proof: Let N def= jV j and � def= �(G). For any subset of the vertices S � V , wedenote its density in V by �(S) def= jSj=N . Hence, Eq. (E.5) is restated as����� j(A�B) \ ~Ejd �N � �(A) � �(B)����� � �p�(A) � �(B)d :

616 APPENDIX E. EXPLICIT CONSTRUCTIONSWe proceed by providing bounds on the value of j(A�B)\ ~Ej. To this end we leta denote the N -dimensional Boolean vector having 1 in the ith component if andonly if i 2 A. The vector b is de�ned similarly. Denoting the adjacency matrix ofthe graph G by M = (mi;j), we note that j(A � B) \ ~Ej equals a>Mb (because(i; j) 2 (A � B) \ ~E if and only if it holds that i 2 A, j 2 B and mi;j = 1).We consider the orthogonal eigenvector basis, e1; :::; eN , where e1 = (1; :::; 1)> andei>ei = N for each i, and write each vector as a linear combination of the vectorsin this basis. Speci�cally, we denote by ai the coe�cient of a in the direction of ei;that is, ai = (a>ei)=N and a =Pi aiei. Note that a1 = (a>e1)=N = jAj=N = �(A)and PNi=1 a2i = (a>a)=N = jAj=N = �(A). Similarly for b. It now follows thatj(A�B) \ ~Ej = a>M NXi=1 biei= NXi=1 bi�i � a>eiwhere �i denotes the ith eigenvalue of M . Note that �1 = d and for every i � 2 itholds that j�ij � �. Thus,j(A�B) \ ~EjdN = NXi=1 bi�i � aid= �(A)�(B) + NXi=2 �iaibid2 "�(A)�(B) � �d � NXi=2 aibi#Using PNi=1 a2i = �(A) and PNi=1 b2i = �(B), and applying Cauchy-Schwartz In-equality, we bound PNi=2 aibi by p�(A)�(B). The lemma follows.The random walk lemma. Loosely speaking, the �rst part of the followinglemma asserts that, as far as remaining \trapped" in some subset of the vertex setis concerned, a random walk on an expander approximates a random walk on thecomplete graph.Lemma E.9 (Expander Random Walk Lemma): Let G = ([N]; E) be a d-regulargraph, and consider walks on G that start from a uniformly chosen vertex and take`�1 additional random steps, where in each such step we uniformly selects one outof the d edges incident at the current vertex and traverses it.Theorem 8.28 (restated): Let W be a subset of [N] and � def= jW j=N . Then theprobability that such a random walk stays in W is at most� ���+ (1� �) � �(G)d �`�1: (E.6)

E.2. EXPANDER GRAPHS 617Exercise 8.43 (restated): For any W0; :::;W`�1 � [N], the probability that a randomwalk of length ` intersects W0 �W1 � � � � �W`�1 is at mostp�0 � `�1Yi=1q�i + (�=d)2; (E.7)where �i def= jWij=N .The basic principle underlying Lemma E.9 was discovered by Ajtai, Komlos, andSzemer�edi [4], who proved a bound as in Eq. (E.7). The better analysis yieldingTheorem 8.28 is due to [135, Cor. 6.1]. A more general bound that refer to theprobability of visiting W for a number of times that approximates jW j=N is givenin [120], which actually considers an even more general problem (i.e., obtainingCherno�-type bounds for random variables that are generated by a walk on anexpander).Proof of Equation (E.7): The basic idea is viewing events occuring during therandom walk as an evolution of a corresponding probability vector under suitabletransformations. The transformations correspond to taking a random step in Gand to passing through a \sieve" that keeps only the entries that correspond tothe current set Wi. The key observation is that the �rst transformation shrinksthe component that is orthogonal to the uniform distribution, whereas the sec-ond transformation shrinks the component that is in the direction of the uniformdistribution. Details follow.Let A be a matrix representing the random walk on G (i.e., A is the adjacencymatrix of G divided by d), and let �̂ def= �(G)=d (i.e., �̂ upper-bounds the abso-lute value of every eigenvalue of A except the �rst one). Note that the uniformdistribution, represented by the vector u = (N�1; :::; N�1)>, is the eigenvector ofA that is associated with the largest eigenvalue (which is 1). Let Pi be a 0-1 ma-trix that has 1-entries only on its diagonal such that entry (j; j) is set to 1 if andonly if j 2 Wi. Then, the probability that a random walk of length ` intersectsW0 �W1 � � � � �W`�1 is the sum of the entries of the vectorv def= P`�1A � � �P2AP1AP0u: (E.8)We are interested in upper-bounding kvk1, and use kvk1 � pN � kvk, where kzk1and kzk denote the L1-norm and L2-norm of z, respectively (e.g., kuk1 = 1 andkuk = N�1=2). The key observation is that the linear transformation PiA shrinksevery vector.Main Claim. For every z, it holds that kPiAzk � (�i + �̂2)1=2 � kzk.Proof. Intuitively, A shrinks the component of z that is orthogonal to u, whereas Pishrinks the component of z that is in the direction of u. Speci�cally, we decomposez = z1 + z2 such that z1 is the projection of z on u and z2 is the componentorthogonal to u. Then, using the triangle inequality and other obvious facts (which

618 APPENDIX E. EXPLICIT CONSTRUCTIONSimply kPiAz1k = kPiz1k and kPiAz2k � kAz2k), we havekPiAz1 + PiAz2k � kPiAz1k+ kPiAz2k� kPiz1k+ kAz2k� p�i � kz1k+ �̂ � kz2kwhere the last inequality uses the fact that Pi shrinks any uniform vector by elimi-nating 1��i of its elements, whereas A shrinks the length of any eigenvector exceptu by a factor of at least �̂. Using the Cauchy-Schwartz inequality13, we getkPiAzk � q�i + �̂2 �pkz1k2 + kz2k2= q�i + �̂2 � kzkwhere the equality is due to the fact that z1 is orthogonal to z2.Recalling Eq. (E.8) and using the Main Claim (and kvk1 � pN � kvk), we getkvk1 � pN � kP`�1A � � �P2AP1AP0uk� pN � `�1Yi=1q�i + �̂2! � kP0uk:Finally, using kP0uk =p�0N � (1=N)2 =p�0=N , we establish Eq. (E.7).Rapid mixing. A property related to Lemma E.9 is that a random walk startingat any vertex converges to the uniform distribution on the expander vertices after alogarithmic number of steps. Speci�cally, we claim that starting at any distributions (including a distribution that assigns all weight to a single vertex) after ` stepson a (d; �)-expander G = ([N]; E) we reach a distribution that is pN � (�=d)`-closeto the uniform distribution over [N]. Using notation as in the proof of Eq. (E.7),the claim asserts that kA`s � uk1 � pN � �̂`, which is meaningful only for ` >0:5 � log1=�̂N . The claim is proved by recalling that kA`s� uk1 � pN � kA`s� ukand using the fact that s� u is orthogonal to u (because the former is a zero-sumvector). Thus, kA`s � uk = kA`(s � u)k � �̂`ks � uk and using ks � uk < 1 theclaim follows.E.2.2 ConstructionsMany explicit constructions of (d; �)-expanders are known. The �rst such con-struction was presented in [164] (where � < d was not explicitly bounded), and anoptimal construction (i.e., an optimal eigenvalue bound of � = 2pd� 1) was �rst13That is, we get p�ikz1k + �̂kz2k � p�i + �̂2 �pkz1k2 + kz2k2, by using Pni=1 ai � bi ��Pni=1 ai2�1=2 � �Pni=1 bi2�1=2, with n = 2, a1 = p�i, b1 = kz1k, etc.

E.2. EXPANDER GRAPHS 619provided in [160]. Most of these constructions are quite simple (see, e.g., xE.2.2.1),but their analysis is based on non-elementary results from various branches of math-ematics. In contrast, the construction of Reingold, Vadhan, and Wigderson [191],presented in xE.2.2.2, is based on an iterative process, and its analysis is based ona relatively simple algebraic fact regarding the eigenvalues of matrices.Before turning to these explicit constructions we note that it is relatively easyto prove the existence of 3-regular expanders, by using the Probabilistic Method(cf. [11]) and referring to the combinatorial de�nition of expansion.14E.2.2.1 The Margulis{Gabber{Galil ExpanderFor every natural number m, consider the graph with vertex set Zm�Zm and theedge set in which every hx; yi 2 Zm �Zm is connected to the vertices hx� y; yi,hx� (y + 1); yi, hx; y � xi, and hx; y � (x+ 1)i, where the arithmetic is modulo m.This yields an extremely simple 8-regular graph with an eigenvalue bound that isa constant � < 8 (which is independent of m). Thus, we get:Theorem E.10 There exists a strongly explicit construction of a family of (8; 7:9999)-expanders for graph sizes fm2 : m2Ng. Furthermore, the neighbors of a vertex inthese expanders can be computed in logarithmic-space.15An appealing property of Theorem E.10 is that, for every n 2 N , it directly yieldsexpanders with vertex set f0; 1gn. This is obvious in case n is even, but can beeasily achieved also for odd n (e.g., use two copies of the graph for n � 1, andconnect the two copies by the obvious perfect matching).Theorem E.10 is due to Gabber and Galil [84], building on the basic approachsuggested by Margulis [164]. We mention again that the (strongly explicit) (d; �)-expanders of [160] achieve the optimal eigenvalue bound (i.e., � = 2pd� 1), butthere are annoying restrictions on the degree d (i.e., d � 1 should be a primecongruent to 1 modulo 4) and on the graph sizes for which this construction works.1614This can be done by considering a 3-regular graph obtained by combining an N-cycle with arandom matching of the �rst N=2 vertices and the remaining N=2 vertices. It is actually easierto prove the related statement that refers to the alternative de�nition of combinatorial expansionthat refers to the relative size of �+G(S) = �G(S) n S (rather than to the relative size of �G(S)).In this case, for a su�ciently small " > 0 and all su�ciently large N , a random 3-regular N-vertex graph is \"-expanding" with overwhelmingly high probability. The proof proceeds byconsidering a (not necessarily simple) graph G obtained by combining three uniformly chosenperfect matchings of the elements of [N]. For every S � [N] of size at most N=2 and for every setT of size "jSj, we consider the probability that for a random perfect matching M it holds that�+M (S) � T . The argument is concluded by applying a union bound.15In fact, for m that is a power of two (and under a suitable encoding of the vertices), theneighbors can be computed by a on-line algorithm that uses a constant amount of space. Thesame holds also for a variant in which each vertex hx; yi is connected to the vertices hx� 2y; yi,hx� (2y + 1); yi, hx; y � 2xi, and hx; y � (2x+ 1)i. This variant yields a better known bound on�, i.e., � � 5p2 � 7:071.16The construction in [160] allows graph sizes of the form (p3 � p)=2, where p � 1 (mod 4) isa prime such that d� 1 is a quadratic residue modulo p. As stated in [8, Sec. 2], the constructioncan be extended to graph sizes of the form (p3k � p3k�2)=2, for any k 2 N and p as in theforegoing.

620 APPENDIX E. EXPLICIT CONSTRUCTIONSE.2.2.2 The Iterated Zig-Zag ConstructionThe starting point of the following construction is a very good expander G ofconstant size, which may be found by an exhaustive search. The constructionof a large expander graph proceeds in iterations, where in the ith iteration thecurrent graph Gi and the �xed graph G are combined, resulting in a larger graphGi+1. The combination step guarantees that the expansion property of Gi+1 is atleast as good as the expansion of Gi, while Gi+1 maintains the degree of Gi andis a constant times larger than Gi. The process is initiated with G1 = G2 andterminates when we obtain a graph Gt of approximately the desired size (whichrequires a logarithmic number of iterations).
1

2

35

6
1

2

35

6

4

4

u v

In this example G0 is 6-regular and G is a 3-regular graph having sixvertices. In the graph G0 (not shown), the 2nd edge of vertex u isincident at v, as its 5th edge. The wide 3-segment line shows one ofthe corresponding edges of G0z G, which connects the vertices hu; 3iand hv; 2i.Figure E.1: Detail of the zig-zag product of G0 and G.The Zig-Zag product. The heart of the combination step is a new type of\graph product" called Zig-Zag product. This operation is applicable to any pairof graphs G = ([D]; E) and G0 = ([N]; E0), provided that G0 (which is typicallylarger than G) is D-regular. For simplicity, we assume that G is d-regular (wheretypically d� D). The Zig-Zag product of G0 and G, denoted G0z G, is de�ned asa graph with vertex set [N] � [D] and an edge set that includes an edge betweenhu; ii 2 [N]� [D] and hv; ji if and only if fi; kg; f`; jg 2 E and the kth edge incidentat u equals the `th edge incident at v. That is, hu; ii and hv; ji are connected inG0z G if there exists a \three step sequence" consisting of a G-step from hu; ii tohu; ki (according to the edge fi; kg of G), followed by a G0-step from hu; ki to hv; `i

E.2. EXPANDER GRAPHS 621(according to the kth edge of u in G0 (which is the `th edge of v)), and a �nal G-stepfrom hv; `i to hv; ji (according to the edge f`; jg of G). See Figure E.1 as well asfurther formalization (which follows).Teaching note: The following paragraph, which provides a formal description of thezig-zag product, can be ignored in �rst reading but is useful for more advanced discus-sion.It will be convenient to represent graphs like G0 by their edge-rotation function,denoted R0 : [N] � [D] ! [N] � [D], such that R0(u; i) = (v; j) if fu; vg is the ithedge incident at u as well as the jth edge incident at v. That is, R0 rotates thepair (u; i), which represents one \side" of the edge fu; vg (i.e., the side incident atu as its ith edge), resulting in the pair (v; j), which represents the other side of thesame edge (which is the jth edge incident at v). For simplicity, we assume thatthe (constant-size) d-regular graph G = ([D]; E) is edge-colorable with d colors,which in turn yields a natural edge-rotation function (i.e., R(i; �) = (j; �) if theedge fi; jg is colored �). We will denote by E�(i) the vertex reached from i 2 [D]by following the edge colored � (i.e., E�(i) = j i� R(i; �) = (j; �)). The Zig-Zagproduct of G0 and G, denoted G0z G, is then de�ned as a graph with the vertex set[N]� [D] and the edge-rotation function(hu; ii; h�; �i) 7! (hv; ji; h�; �i) if R0(u;E�(i)) = (v; E�(j)). (E.9)That is, edges are labeled by pairs over [d], and the h�; �ith edge out of vertexhu; ii 2 [N]�[D] is incident at the vertex hv; ji (as its h�; �ith edge) if R(u;E�(i)) =(v; E�(j)), where indeed E�(E�(j)) = j. Intuitively, based on h�; �i, we �rsttake a G-step from hu; ii to hu;E�(i)i, then viewing hu;E�(i)i � (u;E�(i)) asa side of an edge of G0 we rotate it (i.e., we e�ectively take a G0-step) reaching(v; j0) def= R0(u;E�(i)), and �nally we take a G-step from hv; j0i to hv; E�(j0)i.Clearly, the graph G0z G is d2-regular and has D � N vertices. The key fact,proved in [191] (using techniques as in xE.2.1.3), is that the relative eigenvalue-valueof the zig-zag product is upper-bounded by the sum of the relative eigenvalue-valuesof the two graphs; that is, ��(G0z G) � ��(G0)+��(G), where ��(�) denotes the relativeeigenvalue-bound of the relevant graph. The (qualitative) fact that G0z G is anexpander if both G0 and G are expanders is very intuitive (e.g., consider whathappens if G0 or G is a clique). Things are even more intuitive if one considers the(related) replacement product of G0 and G, denoted G0r G, where there is an edgebetween hu; ii 2 [N] � [D] and hv; ji if and only if either u = v and fi; jg 2 E orthe ith edge incident at u equals the jth edge incident at v.The iterated construction. The iterated expander construction uses the afore-mentioned zig-zag product as well as graph squaring. Speci�cally, the construc-tion starts17 with the d2-regular graph G1 = G2 = ([D]; E2), where D = d4 and��(G) < 1=4, and proceeds in iterations such thatGi+1 = G2iz G for i = 1; 2; :::; t�1,17Recall that, for a su�ciently large constant d, we �rst �nd a d-regular graph G = ([d4];E)satisfying ��(G) < 1=4, by exhaustive search.

622 APPENDIX E. EXPLICIT CONSTRUCTIONSwhere t is logarithmic in the desired graph size. That is, in each iteration, the cur-rent graph is �rst squared and then composed with the �xed (d-regular D-vertex)graph G via the zig-zag product. This process maintains the following two invari-ants:1. The graph Gi is d2-regular and has Di vertices.(The degree bound follows from the fact that a zig-zag product with a d-regular graph always yields a d2-regular graph.)2. The relative eigenvalue-bound of Gi is smaller than one half (i.e., ��(Gi) <1=2).(Here we use the fact that ��(G2i�1z G) � ��(G2i�1) + ��(G), which in turnequals ��(Gi�1)2 + ��(G) < (1=2)2 + (1=4). Note that graph squaring is usedto reduce the relative eigenvalue of Gi before increasing it by zig-zag productwith G.)In order to show that we can actually construct Gi, we show that we can com-pute the edge-rotation function that correspond to its edge set. This boils downto showing that, given the edge-rotation function of Gi�1, we can compute theedge-rotation function of G2i�1 as well as of its zig-zag product with G. Notethat this entire computation amounts to two recursive calls to computations re-garding Gi�1 (and two computations that correspond to the constant graph G).But since the recursion depth is logarithmic in the size of the �nal graph (i.e.,t = logD jvertices(Gt)j), the total number of recursive calls is polynomial in thesize of the �nal graph (and thus the entire computation is polynomial in the size ofthe �nal graph). This su�ces for the minimal (i.e., \mild") notion of explicitness,but not for the strong one.The strongly explicit version. To achieve a strongly explicit construction, weslightly modify the iterative construction. Rather than letting Gi+1 = G2iz G, welet Gi+1 = (Gi � Gi)2z G, where G0 � G0 denotes the tensor product of G0 withitself; that is, if G0 = (V 0; E0) then G0 �G0 = (V 0 � V 0; E00), whereE00 = ffhu1; u2i; hv1; v2ig : fu1; v1g; fu2; v2g2E0g(i.e., hu1; u2i and hv1; v2i are connected in G0 �G0 if for i = 1; 2 it holds that ui isconnected to vi in G0). The corresponding edge-rotation function isR00(hu1; u2i; hi1; i2i) = (hv1; v2i; hj1; j2i);where R0(u1; i1) = (v1; j1) and R0(u2; i2) = (v2; j2). We still use G1 = G2, where(as before) G is d-regular and ��(G) < 1=4, but here G has D = d8 vertices.18 Usingthe fact that tensor product preserves the relative eigenvalue-bound while squaringthe degree (and the number of vertices), we note that the modi�ed iteration Gi+1 =(Gi�Gi)2z G yields a d2-regular graph with (D2i�1)2 �D = D2i+1�1 vertices, and18The reason for the change is that (Gi �Gi)2 will be d8-regular, since Gi will be d2-regular.

E.2. EXPANDER GRAPHS 623that ��(Gi+1) < 1=2 (because ��((Gi �Gi)2z G) � ��(Gi)2+ ��(G)). Computing theneighbor of a vertex in Gi+1 boils down to a constant number of such computationsregarding Gi, but due to the tensor product operation the depth of the recursionis only double-logarithmic in the size of the �nal graph (and hence logarithmic inthe length of the description of vertices in this graph).Digest. In the �rst construction, the zig-zag product was used both in order toincrease the size of the graph and to reduce its degree. However, as indicated bythe second construction (where the tensor product of graphs is the main vehiclefor increasing the size of the graph), the primary e�ect of the zig-zag product isreducing the graph's degree, and the increase in the size of the graph is merely aside-e�ect.19 In both cases, graph squaring is used in order to compensate for themodest increase in the relative eigenvalue-bound caused by the zig-zag product. Inretrospect, the second construction is the \correct" one, because it decouples threedi�erent e�ects, and uses a natural operation to obtain each of them: Increasing thesize of the graph is obtained by tensor product of graphs (which in turn increasesthe degree), the desired degree reduction is obtained by the zig-zag product (whichin turn slightly increases the relative eigenvalue-bound), and graph squaring is usedin order to reduce the relative eigenvalue-bound.Stronger bound regarding the e�ect of the zig-zag product. In the fore-going description we relied on the fact, proved in [191], that the relative eigenvalue-bound of the zig-zag product is upper-bounded by the sum of the relative eigenvalue-bounds of the two graphs (i.e., ��(G0z G) � ��(G0) + ��(G))). Actually, a strongerupper-bound is proved in [191]: It holds that ��(G0z G) � f(��(G0); ��(G))), wheref(x; y) def= (1� y2) � x2 +s� (1� y2) � x2 �2 + y2 (E.10)Indeed, f(x; y) � (1� y2) � x+ y � x + y. On the other hand, for x � 1, we havef(x; y) � (1�y2)�x2 + 1+y22 = 1� (1�y2)�(1�x)2 , which implies��(G0z G) � 1� (1� ��(G)2) � (1� ��(G0))2 : (E.11)Thus, 1� ��(G0z G) � (1� ��(G)2) � (1� ��(G0))=2, and it follows that the zig-zagproduct has a positive eigenvalue-gap if both graphs have positive eigenvalue-gaps(i.e., �(G0z G) < 1 if both �(G) < 1 and �(G0) < 1). Furthermore, if ��(G) < 1=p3then 1� ��(G0z G) > (1� ��(G0))=3. This fact plays an important role in the proofof Theorem 5.6.19We mention that this side-e�ect may actually be undesired in some applications. For example,in Section 5.2.4 we would rather not have the graph grow in size, but we can tolerate the constantsize blow-up (caused by zig-zag product with a constant-size graph).

624 APPENDIX E. EXPLICIT CONSTRUCTIONS

Appendix FSome Omitted ProofsA word of a Gentleman is better than a proof,but since you are not a Gentleman { please provide a proof.Leonid A Levin (1986)The proofs presented in this appendix were not included in the main text for avariety of reasons (e.g., they were deemed too technical and/or out-of-pace for thecorresponding location). On the other hand, since our presentation of these proofsis su�ciently di�erent from the original and/or standard presentation, we see abene�t in including these proofs in the current book.Summary: This appendix contains proofs of the following results:1. PH is reducible to #P (and in fact to �P) via randomized Karp-reductions. The proof follows the underlying ideas of Toda's orig-inal proof, but the actual presentation is quite di�erent.2. For any integral function f that satis�es f(n) 2 f2; :::; poly(n)g, itholds that IP(f) � AM(O(f)) and AM(O(f)) � AM(f). Theproofs di�er from the original proofs (provided in [111] and [23],respectively) only in secondary details, but these details seem sig-ni�cant.F.1 Proving that PH reduces to #PRecall that Theorem 6.16 asserts that PH is Cook-reducible to #P (via determin-istic reductions). Here we prove a closely related result (also due to Toda [220]),which relaxes the requirement from the reduction (allowing it to be randomized)but uses an oracle to a seemingly weaker class. The latter class is denoted �Pand is the \modulo 2 analogue" of #P. Speci�cally, a Boolean function f isin �P if there exists a function g 2 #P such that for every x it holds that625

626 APPENDIX F. SOME OMITTED PROOFSf(x) = g(x) mod 2. Equivalently, f is in �P if there exists a search problemR 2 PC such that f(x) = jR(x)j mod 2, where R(x) = fy : (x; y)2Rg. Thus, forany R 2 PC, the set �R def= fx : jR(x)j � 1 (mod 2)g is in �P. (The � symbolin the notation �P actually represents parity, which is merely addition modulo 2.Indeed, a notation such as #2P would have been more appropriate.)Theorem F.1 Every set in PH is reducible to �P via a probabilistic polynomial-time reduction. Furthermore, the reduction is via a many-to-one randomized map-ping and it fails with negligible error probability.The proof follows the underlying ideas of the original proof [220], but the actualpresentation is quite di�erent. Alternative proofs of Theorem F.1 can be foundin [136, 212].Teaching note: It is quite easy to prove a non-uniform analogue of Theorem F.1, whichasserts that AC0 circuits can be approximated by circuits consisting of an unboundedparity of conjunctions, where each conjunction has polylogarithmic fan-in. Turning thisargument into a proof of Theorem F.1 requires a careful implementation as well as usingtransitions of the type presented in Exercise 3.8. Furthermore, such a presentation tendsto obscure the conceptual steps that underly the argument.Proof Outline: The proof uses three main ingredients. The �rst ingredient isthe fact that NP is reducible to �P via a probabilistic Karp-reduction, and thatthis reduction \relativizes" (i.e., reduces NPA to �PA for any oracle A).1 Thesecond ingredient is the fact that error-reduction is available in the current context(of randomized reductions to �P), resulting in reductions that have exponentiallyvanishing error probability.2 The third ingredient is the extension of the �rstingredient to �k, which relies on Proposition 3.9 as well as on the aforementionederror-reduction. These ingredients correspond to the three main steps of the proof,which are outlined next:Step 1: Present a randomized Karp-reduction of NP to �P.Step 2: Decrease the error probability of the foregoing Karp-reduction such thatthe error probability becomes exponentially vanishing. Such a low error prob-ability is crucial as a starting point for the next step.1Indeed, the \relativization" requirement presumes that both NP and �P are each asso-ciated with a class of (standard) machines that generalizes to a class of corresponding oraclemachines (see comment at Section 3.2.2). This presumption holds for both classes, by virtueof a (deterministic polynomial-time) machine that decide membership in the corresponding rela-tion that belongs to PC. Alternatively, one may use the fact that the aforementioned reductionis \highly structured" in the sense that for some polynomial-time computable predicate thisreduction maps x to hx; si such that for every non-empty set Sx � f0; 1gp(jxj) it holds thatPrs[jfy2Sx : (x; s; y)gj � 1 (mod 2)] > 1=3.2We comment that such an error-reduction is not available in the context of reductions tounique solution problems. This comment is made in view of the similarity between the reductionof NP to �P and the reduction of NP to problems of unique solution.

F.1. PROVING THAT PH REDUCES TO #P 627Step 3: Prove that �2 is randomly reducible to �P by extending the reductionof Step 1 (while using Step 2). Intuitively, for any oracle A, the reductionof Step 1 o�ers a reduction of NPA to �PA, whereas a reduction of A toB having exponentially vanishing error probability allows reducing �PA to�PB (or, similarly, reduce NPA to NPB). Observing that �P�P = �P,we obtain a randomized Karp-reduction of �2 (viewed as NPNP) to �P.When completing the third step, we shall have all the ingredients needed for thegeneral case (of randomly reducing �k to �P, for any k � 2). We shall �nish theproof by sketching the extension of the case of �2 (treated in Step 3) to the generalcase of �k (for any k � 2). The actual extension is quite cumbersome, but theideas are all present in the case of �2. Furthermore, we believe that the case of �2is of signi�cant interest per se.Teaching note: The foregoing sketch of Step 3 suggests an abstract treatment thatevolves around de�nitions such as NPA and �PB . We prefer a concrete presentationthat performs Step 3 as an extension of Step 1 (while using Step 2). This is onereason for explicitly performing Step 1 (i.e., present a randomized Karp-reduction ofNP to �P). We note that Step 1 (i.e., a reduction of NP to �P) follows immediatelyfrom the NP-hardness of deciding unique solution for some relations R 2 PC (i.e.,Theorem 6.29), because the promise problem (USR; SR), where USR = fx : jR(x)j=1gand SR = fx : jR(x)j = 0g, is reducible to �R = fx : jR(x)j � 1 (mod 2)g by theidentity mapping. However, for the sake of self-containment and conceptual rightness,we present an alternative proof.Step 1: a direct proof for the case of NP. As in the proof of Theorem 6.29,we start with any R 2 PC and our goal is reducing SR = fx : jR(x)j�1g to �P by arandomized Karp-reduction.3 The standard way of obtaining such a reduction (e.g.,in [136, 178, 212, 220]) consists of just using the reduction (to \unique solution")that was presented in the proof of Theorem 6.29, but we believe that this way isconceptually wrong. Let us explain.Recall that the proof of Theorem 6.29 consists of implementing a randomizedsieve that has the following property. For any x 2 SR, with noticeable probability,a single element of R(x) passes the sieve (and this event can be detected by anoracle to a unique solution problem). Indeed, an adequate oracle in �P correctlydetects the case in which a single element of R(x) passes the sieve. However, byde�nition, this oracle correctly detects the more general case in which any oddnumber of elements of R(x) pass the sieve. Thus, insisting on a random sieve thatallows the passing of a single element of R(x) seems an over-kill (or at least isconceptually wrong). Instead, we should just apply a less stringent random sievethat, with noticeable probability, allows the passing of an odd number of elements3As in Theorem 6.29, if any search problem in PC is reducible to R via a parsimonious reduc-tion, then we can reduce SR to �R. Speci�cally, we shall show that SR is randomly reducibleto �R2, for some R2 2 PC, and a reduction of SR to �R follows (by using the parsimoniousreduction of R2 to R).

628 APPENDIX F. SOME OMITTED PROOFSof R(x). The adequate tool for such a random sieve is a small-bias generator (seeSection 8.5.2).Indeed, we randomly reduce SR to �P by sieving potential solutions via a small-bias generator. Intuitively, we randomly map x to hx; si, where s is a random seedfor such a generator, and y is considered a solution to the instance hx; si if andonly if y 2 R(x) and the yth bit of G(s) equals 1. (Indeed, if jR(x)j � 1 then, withprobability approximately 1/2, the instance hx; si has an odd number of solutions,whereas if jR(x)j = 0 then hx; si has no solutions.) Speci�cally, we use a stronglye�cient generator (see x8.5.2.1), denoted G : f0; 1gk ! f0; 1g`(k), where G(Uk) hasbias at most 1=6 and `(k) = exp(
(k)). That is, given a seed s 2 f0; 1gk and indexi 2 [`(k)], we can produce the ith bit of G(s), denoted G(s; i), in polynomial-time.Assuming, without loss of generality, that R(x) � f0; 1gp(jxj) for some polynomialp, we consider the relationR2 def= f(hx; si; y) : (x; y)2R ^G(s; y)=1g (F.1)where y 2 f0; 1gp(jxj) � [2p(jxj)] and s 2 f0; 1gO(jyj) such that `(jsj) = 2jyj. Inother words, R2(hx; si) = fy : y 2 R(x) ^ G(s; y) = 1g. Then, for every x 2SR, with probability at least 1=3, a uniformly selected s 2 f0; 1gO(jyj) satis�esjR2(hx; si)j � 1 (mod 2), whereas for every x 62 SR and every s 2 f0; 1gO(jyj) itholds that jR2(hx; si)j = 0. A key observation is that R2 2 PC (and thus �R2 isin �P). Thus, deciding membership in SR is randomly reducible to �R2 (by themany-to-one randomized mapping of x to hx; si, where s is uniformly selected inf0; 1gO(p(jxj))). Since the foregoing holds for any R 2 PC, it follows that NP isreducible to �P via randomized Karp-reductions.Dealing with coNP. We may Cook-reduce coNP to NP and thus prove thatcoNP is randomly reducible to �P, but we wish to highlight the fact that arandomized Karp-reduction will also do. Starting with the reduction presented forthe case of sets in NP , we note that for S 2 coNP (i.e., S = fx : R(x)= ;g) weobtain a relation R2 such that x 2 S is indicated by jR2(hx; �i)j � 0 (mod 2). Wewish to ip the parity such that x 2 S will be indicated by jR2(hx; �i)j � 1 (mod 2),and this can be done by augmenting the relation R2 with a single dummy solutionper each x. For example, we may rede�ne R2(hx; si) as f0y : y 2 R2(hx; si)g [f10p(jxj)g. Indeed, we have just demonstrated and used the fact that �P is closedunder complementation.We note that dealing with the cases of NP and coNP is of interest only becausewe reduced these classes to �P rather than to #P . In contrast, even a reductionof �2 to #P is of interest, and thus the reduction of �2 to �P (presented inStep 3) is interesting. This reduction relies heavily on the fact that error-reductionis applicable to the context of randomized Karp-reductions to �P.Step 2: error reduction. An important observation, towards the core of theproof, is that it is possible to drastically decrease the (one-sided) error probabilityin randomized Karp-reductions to �P. Speci�cally, let R2 be as in Eq. (F.1) and

F.1. PROVING THAT PH REDUCES TO #P 629t be any polynomial. Then, a binary relation R(t)2 that satis�esjR(t)2 (hx; s1; :::; st(jxj)i)j = 1 + t(jxj)Yi=1 (1 + jR2(hx; sii)j) (F.2)o�ers such an error-reduction, because jR(t)2 (hx; s1; :::; st(jxj)i)j is odd if and only iffor some i 2 [t(jxj)] it holds that jR2(hx; sii)j is odd. Thus,Prs1;:::;st(jxj) [jR(t)2 (hx; s1; :::; st(jxj)i)j � 0 (mod 2)]= Prs[jR2(hx; si)j � 0 (mod 2)]t(jxj)where s; s1; ::::; st(jxj) are uniformly and independently distributed in f0; 1gO(p(jxj))(and p is such that R(x) � f0; 1gp(jxj)). This means that the one-sided errorprobability of a randomized reduction of SR to �R2 (which maps x to hx; si) canbe drastically decreased by reducing SR to �R(t)2 , where the reduction maps x tohx; s1; :::; st(jxj)i. Speci�cally, an error probability of " (e.g., " = 2=3) in the casethat we desire an \odd outcome" (i.e., x 2 SR) is decreased to error probability"t, whereas the zero error probability in the case of a desired \even outcome" (i.e.,x 2 SR) is preserved.A key question is whether �R(t)2 is in �P; that is, whether R(t)2 (as postulated inEq. (F.2)) can be implemented in PC. The answer is positive, and this can be shownby using a Cartesian product construction (and adding some dummy solutions).For example, let R(t)2 (hx; s1; :::; st(jxj)i) consists of tuples h�0; y1; :::; yt(jxj)i such thateither �0 = 1 and y1 = � � � = yt(jxj) = 0p(jxj)+1 or �0 = 0 and for every i 2 [t(jxj)]it holds that yi 2 (f0g�R2(hx; sii))[f10p(jxj)g (i.e., either yi = 10p(jxj) or yi = 0y0iand y0i 2 R2(hx; sii)).We wish to stress that, when starting with R2 as in Eq. (F.1), the forgoingprocess of error-reduction can be used for obtaining error probability that is upper-bounded by exp(�q(jxj)) for any desired polynomial q. The importance of thiscomment will become clear shortly.Step 3: the case of �2. With the foregoing preliminaries, we are now ready tohandle the case of S 2 �2. By Proposition 3.9, there exists a polynomial p and aset S0 2 �1 = coNP such that S = fx : 9y 2 f0; 1gp(jxj) s.t. (x; y) 2 S0g. UsingS0 2 coNP , we apply the forgoing reduction of S0 to �P as well as an adequateerror-reduction that yields an upper-bound of " � 2�p(jxj) on the error probability,where " � 1=7 is unspeci�ed at this point. (For the case of �2 the setting " = 1=7will do, but for the dealing with �k we will need a much smaller value of " > 0.)Thus, for an adequate polynomial t (i.e., t(n+p(n)) = O(p(n) log(1="))), we obtaina relation R(t)2 2 PC such that the following holds: for every x and y2f0; 1gp(jxj) ,with probability at least 1� " � 2�p(jxj) over the random choice of s02f0; 1gpoly(jxj),it holds that x0 def= (x; y)2S0 if and only if jR(t)2 (hx0; s0i)j is odd.44Recall that js0j = t(jx0j) � O(p0(jx0j)), where R0(x0) � f0; 1gp0(jx0j) is the \witness-relation"corresponding to S0 (i.e., x0 2 S0 if and only if R0(x0) = f0; 1gp0(jx0j)). Thus, R2(hx0; s0i) �

630 APPENDIX F. SOME OMITTED PROOFSUsing a union bound (over all possible y 2 f0; 1gp(jxj)), it follows that, withprobability at least 1�" over the choice of s0, it holds that x 2 S if and only if thereexists a y such that jR(t)2 (h(x; y); s0i)j is odd. Now, as in the treatment of NP , wewish to reduce the latter \existential problem" to �P. That is, we wish to de�ne arelation R3 2 PC such that for a randomly selected s the value jR3(hx; s; s0i)j mod 2provides an indication to whether or not x 2 S (by indicating whether or not thereexists a y such that jR(t)2 (h(x; y); s0i)j is odd). Analogously to Eq. (F.1), considerthe binary relationI3 def= n(hx; s; s0i; y) : jR(t)2 (h(x; y); s0ij � 1(mod 2) ^G(s; y)=1o: (F.3)In other words, I3(hx; s; s0i) = fy : jR(t)2 (h(x; y); s0ij � 1(mod 2) ^ G(s; y) = 1g.Indeed, if x 2 S then, with probability at least 1�" over the random choice of s0 andprobability at least 1=3 over the random choice of s, it holds that jI3(hx; s; s0i)j isodd, whereas for every x 62 S and every choice of s it holds that Prs0 [jI3(hx; s; s0i)j =0] � 1 � ".5 Note that, for " � 1=7, it follows that for every x 2 S we havePrs;s0 [jI3(hx; s; s0i)j � 1 (mod 2)] � (1 � ")=3 � 2=7, whereas for every x 62 Swe have Prs;s0 [jI3(hx; s; s0i)j � 1 (mod 2)] � " � 1=7. Thus, jI3(hx; �; �i)j mod 2provides a randomized indication to whether or not x 2 S, but it is not clearwhether I3 is in PC (and in fact I3 is likely not to be in PC). The key observationis that there exists R3 2 PC such that �R3 = �I3. Speci�cally, considerR3 def= n(hx; s; s0i; hy; zi) : (h(x; y); s0i; z)2R(t)2 ^G(s; y)=1o; (F.4)where hy; zi 2 f0; 1gp(jxj) � f0; 1gpoly(jxj). (That is, hy; zi is in R3(hx; s; s0i) if(h(x; y); s0i; z)2R(t)2 and G(s; y) = 1.) Clearly R3 2 PC, and so it is left to showthat jR3(hx; s; s0i)j � jI3(hx; s; s0i)j (mod 2). The claim follows by letting �y;z(resp., �y) indicate the event (h(x; y); s0i; z) 2 R(t)2 (resp., the event G(s; y) = 1),noting that jR3(hx; s; s0i)j mod 2 � �y;z(�y;z ^ �y)jI3(hx; s; s0i)j mod 2 � �y((�z�y;z) ^ �y)f0; 1gp0(jx0j)+1 and R(t)2 (hx0; s0i) is a subset of f0; 1g1+t(jx0j)�(p0(jx0j)+2). Note that (since westarted with S0 2 coNP) the error probability occurs on no-instances of S0, whereas yes-instancesare always accepted. However, to simplify the exposition, we allow possible errors also on yes-instances of S0. This does not matter because we will anyhow have an error probability onyes-instances of S (see Footnote 5).5In continuation to Footnote 4, we note that actually, if x 2 S then there exists a y such that(x; y) 2 S0 and consequently for every choice of s0 it holds that jR(t)2 (h(x; y); s0i)j is odd (becausethe reduction from S0 2 coNP to �P has zero error on yes-instances). Thus, for every x 2 S ands0, with probability at least 1=3 over the random choice of s, it holds that jI3(hx; s; s0i)j is odd(because the reduction from S 2 NPS0 to �PS0 has non-zero error on yes-instances). On theother hand, if x 62 S then Prs0 [(8y) jR(t)2 (h(x; y); s0i)j � 0 (mod 2)] � 1� " (because for every y itholds that (x; y) 62 S0 and the reduction from coNP to �P has non-zero error on no-instances).Thus, for every x 62 S and s, it holds that Prs0 [jI3(hx; s; s0i)j = 0] � 1� " (because the reductionfrom S 2 NPS0 to �PS0 has zero error on no-instances). To sum-up, the combined reduction hastwo-sided error, because each of the two reductions introduces an error in a di�erent direction.

F.2. PROVING THAT IP(F) � AM(O(F)) � AM(F) 631and using the equivalence of the two corresponding Boolean expressions. Thus, S israndomly Karp-reducible to �R3 2 �P (by the many-to-one randomized mappingof x to hx; s; s0i, where (s; s0) is uniformly selected in f0; 1gO(p(jxj))�f0; 1gpoly(jxj)).Since this holds for any S 2 �2, we conclude that �2 is randomly Karp-reducibleto �P .Again, error-reduction may be applied to this reduction (of �2 to �P) suchthat the resulting reduction can be used for dealing with �3 (viewed as NP�2). Atechnical di�culty arises since the foregoing reduction has two-sided error proba-bility, where one type (or \side") of error is due to the error in the reduction ofS0 2 coNP to �R(t)2 (which occurs on no-instances of S0) and the second type(or \side") of error is due to the (new) reduction of S to �R3 (and occurs on theyes-instances of S). However, the error probability in the �rst reduction is (or canbe made) very small and thus can be ignored when applying error-reduction to thesecond reduction. See following comments.The general case. First note that, as in the case of coNP , we can obtaina similar reduction (to �P) for sets in �2 = co�2. It remains to extend thetreatment of �2 to �k, for every k � 2. Indeed, we show how to reduce �k to�P by using a reduction of �k�1 (or rather �k�1) to �P . Speci�cally, S 2 �kis treated by considering a polynomial p and a set S0 2 �k�1 such that S = fx :9y 2 f0; 1gp(jxj) s.t. (x; y) 2 S0g. Relying on the treatment of �k�1, we use arelation R(tk)k such that, with overwhelmingly high probability over the choice ofs0, the value jR(tk)k (h(x; y); s0i)j mod 2 indicates whether or not (x; y) 2 S0. Usingthe ideas underlies the treatment of NP (and �2) we check whether there existsy 2 f0; 1gp(jxj) such that jR(tk)k (h(x; y); s0i)j � 1 (mod 2). This yields a relationRk+1 such that for random s; s0 the value jRk+1(hx; s; s0i)j mod 2 indicates whetheror not x 2 S. Finally, we apply error reduction, while ignoring the probability thats0 is bad, and obtain the desired relation R(tk+1)k+1 .We comment that the foregoing inductive process should be implemented withsome care. Speci�cally, if we wish to upper-bound the error probability in thereduction (of S) to �R(tk+1)k+1 by "k+1, then the error probability in the reduction(of S0) to �R(tk)k should be upper-bounded by "k � "k+1 �2�p(jxj) (and tk should beset accordingly). Thus, the proof that PH is randomly reducible to �P actuallyproceed \top down" (at least partially); that is, starting with an arbitrary S 2 �k,we �rst determine the auxiliary sets (as per Proposition 3.9) as well as the error-bounds that should be proved for the reductions of these sets (which reside in lowerlevels of PH), and only then we establish the existence of such reductions. Indeed,this latter (and main) step is done \bottom up" using the reduction (to �P) ofthe set in the ith level when reducing (to �P) the set in the i+ 1st level.F.2 Proving that IP(f) � AM(O(f)) � AM(f)Using the notations presented in x9.1.4.3, we restate two results mentioned there.

632 APPENDIX F. SOME OMITTED PROOFSTheorem F.2 (round-e�cient emulation of IP by AM): Let f : N!N be apolynomially bounded function. Then IP(f) � AM(f + 3).We comment that, in light of the following linear speed-up in round-complexity forAM, it su�ces to establish IP(f) � AM(O(f)).Theorem F.3 (linear speed-up forAM): Let f : N!N be a polynomially boundedfunction. Then AM(2f) � AM(f + 1).Combining these two theorems, we obtain a linear speed-up for IP ; that is, for anypolynomially bounded f : N ! (N n f1g), it holds that IP(O(f)) � AM(f) �IP(f). In this appendix we prove both theorems.Note: The proof of Theorem F.2 relies on the fact that, for every f , error-reduction is possible for IP(f). Speci�cally, error-reduction can be obtained viaparallel repetitions (see [90, Apdx. C.1]). We mention that error-reduction (in thecontext of AM(f)) is implicit also in the proof of Theorem F.3 (and is explicit inthe original proof of [23]).F.2.1 Emulating general interactive proofs by AM-gamesIn this section we prove Theorem F.2. Our proof di�ers from the original proof ofGoldwasser and Sipser [111] only in the conceptualization and implementation ofthe iterative emulation process.F.2.1.1 OverviewOur aim is to transform a general interactive proof system (P; V) into a public-coin interactive proof system for the same set. Suppose, without loss of generality,that P constitutes an optimal prover with respect to V (i.e., P maximizes theacceptance probability of V on any input). Then, for any yes-instance x, the setAx of coin sequences that make V accept when interacting with this optimal provercontains all possible outcomes, whereas for a no-instance x (of equal length) the setAx is signi�cantly smaller. The basic idea is having a public-coin system in which,on common input x, the prover proves to the veri�er that the said set Ax is big.Such a proof system can be constructed using ideas as in the case of approximatecounting (see the proof of Theorem 6.27), while replacing the NP-oracle with aprover that is required to prove the correctness of its answers. Implementing thisidea requires taking a closer look at the set of coin sequences that make V acceptan input.A very restricted case. Let us �rst demonstrate the implementation of theforegoing approach by considering a restricted type of two-message interactive proofsystems. Recall that in a two-message interactive proof system the veri�er, denotedV , sends a single message (based on the common input and its internal coin tosses)to which the prover, denoted P , responds with a single message and then V decides

F.2. PROVING THAT IP(F) � AM(O(F)) � AM(F) 633whether to accept or reject the input. We further restrict our attention by assumingthat each possible message of V is equally likely and that the number of possibleV -messages is easy to determine from the input. Thus, on input x, the veri�er Vtosses ` = `(jxj) coins and sends one out of N = N(x) possible messages. Note thatif x is a yes-instance then for each possible V -message there exists a P -response thatis accepted by the 2`=N corresponding coin sequences of V (i.e., the coin sequencesthat lead V to send this V -message). On the other hand, if x is a no-instancethen, in expectation, for a uniformly selected V -message, the optimal P -responseis accepted by a signi�cantly smaller number of corresponding coin sequences. Wenow show how such an interactive proof system can be emulated by a public-coinsystem.In the public-coin system, on input x, the prover will attempt to prove thatfor each possible V -message (in the original system) there exists a response (bythe original prover) that is accepted by 2`=N corresponding coin sequences of V .Recall that N = N(x) and ` = `(jxj) are easily determined by both parties, andso if the foregoing claim holds then x must be a yes-instance. The new interactionitself proceeds as follows: First, the veri�er selects uniformly a coin sequence forV , denoted r, and sends it to the prover. The coin sequence r determines a V -message, denoted �. Next, the prover sends back an adequate P -message, denoted�, and interactively proves to the veri�er that � would have been accepted by2`=N possible coin sequences of V that correspond to the V -message � (i.e., �should be accepted not only by r but rather by the 2`=N coin sequences of V thatcorrespond to the V -message �). The latter interactive proof follows the idea ofthe proof of Theorem 6.27: The veri�er applies a random sieve that lets only a(2`=N)�1 fraction of the elements pass, and the prover shows that some adequatesequence of V -coins has passed this sieve (by merely presenting such a sequence).6We stress that the foregoing interaction (and in particular the random sieve) canbe implemented in the public-coin model.Waiving one restriction. Next, we waive the restriction that the number ofpossible V -messages is easy to determine from the input, but still assume thatall possible V -messages are equally likely. In this case, the prover should providethe number N of possible V -messages and should prove that indeed there exist atleast N possible V -messages (and that, as in the prior case, for each V -messagethere exists a P -response that is accepted by 2`=N corresponding coin sequencesof V). That is, the prover should prove that for at least N possible V -messagesthere exists a P -response that is accepted by 2`=N corresponding coin sequencesof V . This calls for a double (or rather nested) application of the aforementioned\lower-bound" protocol. That is, �rst the parties apply a random sieve to the setof possible V -messages such that only a N�1 fraction of these messages pass, andnext the parties apply a random sieve to the set coin sequences that �t a passingV -message such that only a (2`=N)�1 fraction of these sequences pass.6Indeed, the veri�er can easily check whether a coin sequence r0 passes the sieve as well as �tsthe initial message � and would have made V accept when the prover responds with � (i.e., Vwould have accepted the input, on coins r0, when receiving the prover message �).

634 APPENDIX F. SOME OMITTED PROOFSThe general case of IP(2). Treating general two-message interactive proofs re-quires waiving also the restriction that all possible V -messages are equally likely. Inthis case, the prover may cluster the V -messages into few (say `) clusters such thatthe messages in each cluster are sent (by V) with roughly the same probability (say,up to a factor of two). Then, focusing on the cluster having the largest probabilityweight, the prover can proceed as in the previous case (i.e., send i and claim thatthere are 2`=` possible V -messages that are each supported by 2i coin sequences).This has a potential of cutting the probabilistic gap between yes-instances andno-instances by a factor related to the number of clusters times the approximationlevel within clusters (e.g., a factor of O(`))7, but this loss is negligible in comparisonto the initial gap (which can be obtained via error-reduction).Dealing with all levels of IP. So far, we only dealt with two-message systems(i.e., IP(2)). We shall see that the general case of IP(f) can be dealt by recursion(or rather by iterations), where each level of recursion (resp., each iteration) isanalogous to the (general) case of IP(2). Recall that our treatment of the caseof IP(2) boils down to selecting a random V -message, �, and having the proversend a P -response, �, and prove that � is acceptable by many V -coins. In otherwords, the prover should prove that in the conditional probability space de�nedby a V -message �, the original veri�er V accepts with high probability. In thegeneral case (of IP(f)), the latter claim refers to the probability of accepting inthe residual interaction, which consists of f � 2 messages, and thus the very sameprotocol can be applied iteratively (until we get to the last message, which is dealtas in the case of IP(2)). The only problem is that, in the residual interactions, itmay not be easy for the veri�er to select a random V -message (as done in the veryrestricted case). However, as already done when waiving the �rst restriction, thethe veri�er can be assisted by the prover, while making sure that it is not beingfooled by the prover. This process is made explicit in xF.2.1.2, where we de�ne anadequate notion of a \random selection" protocol (which need to be implemented inthe public-coin model). For simplicity, we may consider the problem of uniformlyselecting a sequence of coins in the corresponding (residual) probability space,because such a sequence determines the desired random V -message.F.2.1.2 Random selectionVarious types of \random selection" protocols have appeared in the literature (see,e.g., [227, Sec. 6.4]). The common theme in these protocols is that they allowfor a probabilistic polynomial-time player (called the veri�er) to sample a set,denoted S � f0; 1g`, while being assisted by a second player (called the prover)that is powerful but not trustworthy. These nicknames �t the common conventionsregarding interactive proofs and are further justi�ed by the typical applications ofsuch protocols as subroutines within an interactive proof system (where indeed the7The loss is due to the fact that the distribution of (probability) weights may not be identicalon all instances. For example, in one case (e.g., of some yes-instance) all clusters may have equalweight, and thus a corresponding factor is lost, while in another case (e.g., of some no-instance)all the probability mass may be concentrated in a single cluster.

F.2. PROVING THAT IP(F) � AM(O(F)) � AM(F) 635�rst party is played by the higher-level veri�er while the second party is played bythe higher-level prover). The various types of random selection protocols di�er bywhat is known about the set S and what is required from the protocol.Here we will assume that the veri�er is given a parameter N , which is supposedto equal jSj, and the performance guarantee of the protocol will be meaningfulonly for sets of size at most N . We seek a constant-round (preferably two-message)public-coin protocol (for this setting) such that the following two conditions hold,with respect to a security parameter " � 1=poly(`).1. If both players follow the protocol and N = jSj then the veri�er's output is"-close to the uniform distribution over S. Furthermore, the veri�er alwaysoutputs an element of S.2. For any set S0 � f0; 1g` if the veri�er follows the protocol then, no matterhow the prover behaves, the veri�er's output resides in S0 with probabilityat most poly(`=") � (jS0j=N).Indeed, the second property is meaningful only for sets S0 having size that is (sig-ni�cantly) smaller than N . We shall be using such a protocol while setting " to bea constant (say, " = 1=2).A three-message public-coin protocol that satis�es the foregoing properties canbe obtained by using the ideas that underly Construction 6.32. Speci�cally, weset m = max(0; log2N � O(log `=")) in order to guarantee that if jSj = N then,with overwhelmingly high probability, each of the 2m cells de�ned by a uniformlyselected hashing function contains (1� ") � jSj=2m elements of S. In the protocol,the prover arbitrarily selects a good hashing function (i.e., one de�ning such a goodpartition of S) and sends it to the veri�er, which answers with a uniformly selectedcell, to which the prover responds with a uniformly selected element of S that residesin this cell.8We stress that the foregoing protocol is indeed in the public-coin model, andcomment that the fact that it uses three messages rather than two will have aminor e�ect on our application (see xF.2.1.3). Indeed, this protocol satis�es thetwo foregoing properties. In particular, the second property follows because forevery possible hashing function, the fraction of cells containing an element of S0 isat most jS0j=2m, which is upper-bounded by poly(`=") � jS0j=N .8We mention that the foregoing protocol is but one out of several possible implementations ofthe ideas that underly Construction 6.32. Firstly, note that an alternative implementation maydesignate the task of selecting a hashing function to the veri�er, who may do so by selecting afunction at random. Although this seems more natural, it actually o�ers no advantage with respectto the \soundness-like" property (i.e., the second property). Furthermore, in this case, it mayhappen (rarely) that the hashing function selected by the veri�er is not good, and consequentlythe furthermore clause of the �rst property (i.e., requiring that the output always resides inS) is not satis�ed. Secondly, recall that in the foregoing protocol the last step consists of theprover selecting a random element of S that resides in the selected (by the veri�er) cell. Analternative implementation may replace this step by two steps such that �rst the prover sends alist of (1� ") �N=2m elements (of S) that resides in the said cell, and then the veri�er outputs auniformly selected element of this list. This alternative yields an improvement in the \soundness-like" property (i.e., the veri�er's output resides in S0 with probability at most (jS0j=N) + "), butrequires an additional message (which we prefer to avoid, although this not that crucial).

636 APPENDIX F. SOME OMITTED PROOFSF.2.1.3 The iterated partition protocolUsing the random selection protocol of xF.2.1.2, we now present a public-coinemulation of an arbitrary interactive proof system, (P; V). We start with somenotations.Fixing any input x to (P; V), we denote by t = t(jxj) the number of pairsof messages exchanged in the corresponding interaction, while assuming that theveri�er takes the �rst move in (P; V).9 We denote by ` = `(jxj) the number of coinstossed by V , and assume that ` > t. Recall that we assume that P is an optimalprover (with respect to V), and that (without loss of generality) P is deterministic.Let us denote by hP; V (r)i(x) the full transcript of the interaction of P and Von input x, when V uses coins r; that is, hP; V (r)i(x) = (�1; �1; :::; �t; �t; �) if� = V (x; r; �1; :::; �t) 2 f0; 1g is V 's �nal verdict and for every i = 1; :::; t it holdsthat �i = V (x; r; �1; :::; �i�1) and �i = P (x; �1; :::; �i). For any partial transcriptending with a P-message, = (�1; �1; :::; �i�1; �i�1), we denote by ACCx() theset of coin sequences that are consistent with the partial transcript and lead Vto accept x when interacting with P ; that is, r 2 ACCx() if and only if for some0 2 f0; 1g2(t�i)�poly(jxj) it holds that hP; V (r)i(x) = (�1; �1; :::; �i�1; �i�1; 0; 1).The same notation is also used for a partial transcript ending with a V-message;that is, r 2 ACCx(�1; �1; :::; �i) if and only if hP; V (r)i(x) = (�1; �1; :::; �i; 0; 1)for some 0.Motivation. By suitable error reduction, we may assume that (P; V) has sound-ness error � = �(jxj) that is smaller than poly(`)�t. Thus, for any yes-instance x itholds that jACCx(�)j = 2`, whereas for any no-instance x it holds that jACCx(�)j �� � 2`. Indeed, the gap between the initial set sizes is huge, and we can maintain agap between the sizes of the corresponding residual sets (i.e., ACCx(�1; �1; :::; �i))provided that we lose at most a factor of poly(`) per each round. The key ob-servations is that, for any partial transcript = (�1; �1; :::; �i�1; �i�1), it holdsthat jACCx()j =X� jACCx(; �)j; (F.5)whereas jACCx(; �)j = max�fjACCx(; �; �)jg. Clearly, we can prove that jACCx(; �)jis big by providing an adequate � and proving that jACCx(; �; �)j is big. Likewise,proving that jACCx()j is big reduces to proving that the sumP� jACCx(; �)j isbig. The problem is that this sum may contain exponentially many terms, and so wecannot even a�ord reading the value of each of these terms.10 As hinted in xF.2.1.1,we may cluster these terms into ` clusters, such that the jth cluster contains sets ofcardinality approximately 2j (i.e., �'s such that 2j � jACCx(; �)j < 2j+1). Oneof these clusters must account for a 1=2` fraction of the claimed size of jACCx()j,9We note if the prover takes the �rst move in (P;V) then its �rst message can be emulatedwith no cost (in the number of rounds).10Furthermore, we cannot a�ord verifying more than a single claim regarding the value of oneof these terms, because examining at least two values per round will yield an exponential blow-up(i.e., time complexity that is exponential in the number of rounds).

F.2. PROVING THAT IP(F) � AM(O(F)) � AM(F) 637and so we focus on this cluster; that is, the prover we construct will identify a suit-able j (i.e., such that there are at least jACCx()j=2` elements in the sets of thejth cluster), and prove that there are at least N = jACCx()j=(2` � 2j+1) sets (i.e.,ACCx(; �)'s) each of size at least 2j . Note that this establishes that jACCx()jis bigger than N � 2j = jACCx()j=O(`), which means that we lost a factor of O(`)of the size of ACCx(). But as stated previously, we may a�ord such a lost.Before we turn to the actual protocol, let us discuss the method of proving thatthat there are at least N sets (i.e., ACCx(; �)'s) each of size at least 2j . Thisclaim is proved by employing the random selection protocol (while setting the sizeparameter to N) with the goal of selecting such a set (or rather its index �). Ifindeed N such sets exists then the �rst property of the protocol guarantees thatsuch a set is always chosen, and we will proceed to the next iteration with this set,which has size at least 2j (and so we should be able to establish a correspondinglower-bound there). Thus, entering the current iteration with a valid claim, weproceed to the next iteration with a new valid claim. On the other hand, supposethat jACCx()j � N �2j . Then, the second property of the protocol implies11 that,with probability at least 1 � (1=3t), the selected � is such that jACCx(; �)j <poly(`) � jACCx()j=N � 2j , whereas at the next iteration we will need to provethat the selected set has size at least 2j . Thus, entering the current iteration witha false claim that is wrong by a factor F � poly(`), with probability at least1� (1=3t), we proceed to the next iteration with a false claim that is wrong by afactor of at least F=poly(`).We note that, although the foregoing motivational discussion refers to provinglower-bounds on various set sizes, the actual implementation refers to randomlyselecting elements in such sets. If the sets are smaller than claimed, the selectedelements are likely to reside outside these sets, which will be eventually detected.Construction F.4 (the actual protocol). On common input x, the 2t-messageinteraction of P and V is \quasi-emulated" in t iterations, where t = t(jxj). Theith iteration starts with a partial transcript i�1 = (�1; �1; :::; �i�1; �i�1) and aclaimed bound Mi�1, where in the �rst iteration 0 is the empty sequence andM0 = 2`. The ith iteration proceeds as follows.1. The prover determines an index j such that the cluster Cj = f� : 2j �jACCx(i�1; �)j < 2j+1g has size at least N def= Mi�1=(2j+2`), and sends jto the veri�er. Note that if jACCx(i�1)j �Mi�1 then such a j exists.2. The prover invokes the random selection protocol with size parameter N inorder to select � 2 Cj , where for simplicity we assume that Cj � f0; 1g`.Recall that this public-coin protocol involves three messages with the �rst andlast message being sent by the prover. Let us denote the outcome of thisprotocol by �i.11For a loss factor L = poly(`), consider the set S0 = f� : jACCx(; �)j � L � jACCx()j=Ng.Then jS0j � N=L, and it follows that an element in S0 is selected with probability at mostpoly(`)=L, which is upper-bounded by 1=3t when using a suitable choice of L.

638 APPENDIX F. SOME OMITTED PROOFS3. The prover determines �i such that ACCx(i�1; �i; �i) = ACCx(i�1; �i) andsends �i to the veri�er.Towards the next iterationMi 2j and i = (�1; �1; :::; �i; �i) � (i�1; �i; �i).After the last iteration,12 the prover invokes the random selection protocol with sizeparameter N = Mt in order to select r 2 ACCx(�1; �1; :::; �t; �t). Upon obtain-ing this r, the veri�er accepts if and only if V (x; r; �1; :::; �t) = 1 and for everyi = 1; :::; t it holds that �i = V (x; r; �1; :::; �i�1), where the �i's and �i's are asdetermined in the foregoing iterations.Note that the three steps of each iteration involve a single message by the (public-coin) veri�er, and thus the foregoing protocol can be implemented using 2t + 3messages.Clearly, if x is a yes-instance then the prover can make the veri�er acceptwith probability one (because an adequately large cluster exists at each iteration,and the random selection protocol guarantees that the selected �i will reside in thiscluster).13 On the other hand, if x is a no-instance then by using the low soundnesserror of (P; V) we can establish the soundness of Construction F.4. This is provedin the following claim, which refers to a polynomial p that is su�ciently large.Proposition F.5 Suppose that jACCx(�)j < �t+1 � 2`, where � = 1=p(`). Then,the veri�er of Construction F.4 accepts x with probability smaller than 1=2.Proof Sketch: We �rst prove that, for every i = 1; :::; t, if jACCx(i�1)j <�t+1�(i�1)�Mi�1 then, with probability at least 1�(1=3t), it holds that jACCx(i)j <�t+1�i �Mi. Fixing any i, let j be the value selected by the prover in Step 1 ofiteration i, and de�ne S0 = f� : jACCx(i�1; �)j � �t+1�i � 2jg. ThenjS0j � �t+1�i2j � jACCx(i�1)j < �t+1�(i�1) �Mi�1;where the second inequality represents the claim's hypothesis. LettingN =Mi�1=(2j+2`)(as in Step 1 of this iteration), it follows that jS0j < 4`� �N . By the second prop-erty of the random selection protocol (invoked in Step 2 of this iteration with sizeparameter N), it follows thatPr[�i 2 S0] � poly(`) � jS0jN � poly(`) � �;which is smaller than 1=3t (provided that the polynomial p that determines � =1=p(`) is su�ciently large). Thus, with probability at least 1� (1=3t), it holds thatjACCx(i�1; �i)j < �t+1�i �2j . The claim regarding jACCx(i)j follows by recallingthat Mi = 2j (in Step 3) and that for every � it holds that jACCx(i�1; �i; �)j �jACCx(i�1; �i)j.12Alternatively, we may modify (P; V) by adding a last V -message in which V sends its internalcoin tosses (i.e., r). In this case, the additional invocation of the random selection protocol occursas a special case of handling the added t + 1st iteration.13Thus, at the last invocation of the random selection protocol, the veri�er always obtainsr 2 ACCx(t) and accepts.

F.2. PROVING THAT IP(F) � AM(O(F)) � AM(F) 639Using the hypothesis jACCx(0)j < �t+1 �M0 and the foregoing claim, it followsthat, with probability at least 2=3, the execution of the aforementioned t iterationsyields values t andMt such that jACCx(t)j < � �Mt. In this case, the last invoca-tion of the random selection protocol (invoked with size parameterMt) produces anelement of ACCx(t) with probability at most poly(`) � � < 1=6, and otherwise theveri�er rejects (because the conditions that the veri�er checks regarding the outputr of the random selection protocol are logically equivalent to r 2 ACCx(t)). Theproposition follows.F.2.2 Linear speed-up for AMIn this section we prove Theorem F.3. Our proof di�ers from the original proof ofBabai and Moran [23] in the way we analyze the basic switch (of MA to AM).We adopt the standard terminology of public-coin (a.k.a Arthur-Merlin) inter-active proof systems, where the veri�er is called Arthur and the prover is calledMerlin. More importantly, we view the execution of such a proof system, on any�xed common input x, as a (full-information) game (indexed by x) between anhonest Arthur and powerful Merlin. These parties alternate in taking moves suchthat Arthur takes random moves and Merlin takes optimal moves with respect toa �xed (polynomial-time computable) predicate vx that is evaluated on the fulltranscript of the game's execution. We stress that (in contrast to general inter-active proof systems), each of Arthur's moves is uniformly distributed in a set ofpossible values that is predetermined independently of prior moves (e.g., the setf0; 1g`(jxj)). The value of the game is de�ned as the expected value of an executionof the game, where the expectation is taken over Arthur's moves (and Merlin'smoves are assumed to be optimal).We shall assume, without loss of generality, that all messages of Arthur areof the same length, denoted ` = `(jxj). Similarly, each of Merlin's messages is oflength m = m(jxj).Recall that AM = AM(2) denotes a two-message system in which Arthurmoves �rst and does not toss coins after receiving Merlin's answer, whereasMA =AM(1) denotes a one-message system in which Merlin sends a single message andArthur tosses additional coins after receiving this message. Thus, both AM andMA are viewed as two-move games, and di�er in the order in which the two partiestake these moves. As we shall shortly see (in xF.2.2.1), the \MA order" can beemulated by the \AM order" (i.e.,MA � AM). This fact will be the basis of the\round speed-up" transformation (presented in xF.2.2.2).F.2.2.1 The basic switch (from MA to AM)The basic idea is transforming an MA-game (i.e., a two-move game in which Merlinmoves �rst and Arthur follows) into an AM-game (in which Arthur moves �rst andMerlin follows). In the original game (on input x), �rst Merlin sends a message� 2 f0; 1gm, then Arthur responds with a random � 2 f0; 1g`, and Arthur's verdict(i.e., the value of this execution of the game) is given by vx(�; �) 2 f0; 1g. In thenew game (see Figure F.1), the order of these moves will be switched, but to limit

640 APPENDIX F. SOME OMITTED PROOFSMerlin's potential gain from the switch we require it to provide a single answerthat should \�t" several random messages of Arthur. That is, for a parameter t tobe speci�ed, �rst Arthur send a random sequence (�(1); :::; �(t)) 2 f0; 1gt�`, thenMerlin responds with a string � 2 f0; 1gm, and Arthur accepts if and only if forevery i 2 f1; :::tg it holds that vx(�; �(i)) = 1 (i.e., the value of this transcript ofthe new game is de�ned asQti=1 vx(�; �(i))). Intuitively, Merlin gets the advantageof choosing its move after seeing Arthur's move(s), but Merlin's choice must �t thet choices of Arthur's move, which leaves Merlin with little gain (if t is su�cientlylarge).
ArthurMerlin

β

α

ArthurMerlin

β

αα . . .(1) (t)

The original MA game The new AM game

The value of the transcript (�; �) of the original MA-game is givenby vx(�; �), whereas the value of the transcript ((�(1); :::; �(t)); �) ofthe new AM-game is given by Qti=1 vx(�; �(i)).Figure F.1: The transformation of an MA-game into an AM-game.Recall that the value, v0x, of the transcript (�; �) of the new game, where � =(�(1); :::; �(t)), is de�ned as Qti=1 vx(�; �(i)). Thus, the value of the new game isde�ned as E� "max� (tYi=1 vx(�; �(i)))#; (F.6)which is upper-bounded byE� "max� (1t tXi=1 vx(�; �(i)))#: (F.7)Note that the upper-bound provided in Eq. (F.7) is tight in the case that the valueof the original MA-game equals one (i.e., if x is a yes-instance), and that in this casethe value of the new game is one (because in this case there exists a move � suchthat vx(�; �) = 1 holds for every �). However, the interesting case, where Merlinmay gain something by the switch, is when the value of the original MA-game isstrictly smaller than one (i.e., when x is a no-instance). The main observation isthat, for a suitable choice of t, it is highly improbable that Merlin's gain from theswitch is signi�cant.Recall that in the original MA-game Merlin selects � obliviously of Arthur'schoice of �, and thus Merlin's \pro�t" (i.e., the value of the game) is representedby max�fE�(vx(�; �))g. In the new AM-game, Merlin selects � based on the

F.2. PROVING THAT IP(F) � AM(O(F)) � AM(F) 641sequence � chosen by Arthur, and we have upper-bounded its \pro�t" (in the newAM-game) by Eq. (F.7). Merlin's gain from the switch is thus the excess pro�t (ofthe new AM-game as compared to the original MA-game). We upper-bound theprobability that Merlin's gain from the switch exceeds a parameter, denoted �, asfollows.px;� def= Pr(�(1);:::;�(t)) "max� (1t � tXi=1 vx(�; �(i))) > max� fE�(vx(�; �))g+ �#� Pr(�(1);:::;�(t)) "9�2f0; 1gm s.t. �����1t � tXi=1 vx(�; �(i))� E�(vx(�; �))����� > �#� 2m � exp(�
(�2 � t));where the last inequality is due to combining the Union Bound with the Cherno�Bound. Denoting by Vx = max�fE�(vx(�; �))g the value of the original game,we upper-bound Eq. (F.7) by px;� + Vx + �. Using t = O((m + k)=�2) we havepx;� � 2�k, and thusV 0x def= E� "max� (1t tXi=1 vx(�; �(i)))# � max� fE�(vx(�; �))g+ � + 2�k: (F.8)Needless to say, Eq. (F.7) is lower-bounded by Vx (since Merlin may just use theoptimal move of the MA-game). In particular, using � = 2�k = 1=8 and assumingthat Vx � 1=4, we obtain V 0x < 1=2. Thus, starting from an MA proof system forsome set, we obtain an AM proof system for the same set; that is, we just provedthatMA � AM.Extension. We note that the foregoing transformation as well as its analysisdoes not refer to the fact that vx(�; �) is e�ciently computable from (�; �). Fur-thermore, the analysis remain valid for arbitrary vx(�; �) 2 [0; 1], because for anyv1; :::; vt 2 [0; 1] it holds that Qti=1 vi � (Qti=1 vi)1=t � Pti=1 vi=t. Thus, we mayapply the foregoing transformation to any two consecutive Merlin-Arthur movesin any public-coin interactive proof, provided that all the subsequent moves areperformed in t copies, where each copy corresponds to a di�erent �(i) used in theswitch. That is, if the jth move is by Merlin then we can switch the players in thej and j+1 moves, by letting Arthur take the jth move, sending (�(1); :::; �(t)), fol-lowed by Merlin's move, answering �. Subsequent moves will be played in t copiessuch that the ith copy corresponds to the moves �(i) and �. The value of the newgame may increase by at most 2�k + � < 1=4, and so we obtain an \equivalent"game with the two steps switched. Schematically, acting on the middle MA (in-dicated in bold font), we can replace [AM]j1AMA[MA]j2 by [AM]j1AAM[MA]j2 ,which in turn allows the collapse of two consecutive A-moves (and two consec-utive M-moves if j2 � 1). In particular (using only the case j1 = 0), we getA[MA]j+1 = A[MA]j = � � � = AMA = AM. Thus, for any constant f , we getAM(f) = AM(2).

642 APPENDIX F. SOME OMITTED PROOFSWe stress that the foregoing switching process can be applied only a constantnumber of times, because each time we apply the switch the length of messagesincreases by a factor of t =
(m). Thus, a di�erent approach is required to dealwith a non-constant number of messages (i.e., unbounded function f).F.2.2.2 The augmented switch (from [MAMA]j to [AMA]jA)Sequential applications of the \MA-to-AM switch" allows for reducing the numberof rounds by any additive constant. However, each time this switch is applied,all subsequent moves are performed t times (in parallel). That is, the \MA-to-AM switch" splits the rest of the game to t independent copies, and thus thisswitch cannot be performed more than a constant number of times. Fortunately,Eq. (F.7) suggests a way of shrinking the game back to a single copy: just haveArthur select i 2 [t] uniformly and have the parties continue with the ith copy.14 Inorder to avoid introducing an Arthur-Merlin alternation, the extra move of Arthuris postpone to after the following move of Merlin (see Figure F.2). Schematically(indicating the action by bold font), we replace MAMA by AMMAA=AMA(rather than replacing MAMA by AMAMA and obtaining no reduction in thenumber of move-alternations).
ArthurMerlin ArthurMerlin

. . .

The MAMA game The AMA game

(1)α1 α1
(t)

1

α1

α

β

β2

2

1β
(1)β β

α2

i

(t)
2 2

The value of the transcript (�1; �1; �2; �2) of the original MAMA-game is given by vx(�1; �1; �2; �2), whereas the value of the tran-script ((�(1)1 ; :::; �(t)1); (�1; �(1)2 ; :::; �(t)2); (i; �2)) of the new AMA-gameis given by vx(�1; �(i)1 ; �(i)2 ; �2).Figure F.2: The transformation of MAMA into AMA.The value of game obtained via the aforementioned augmented switch is givenby Eq. (F.7), which can be written asE�(1);:::;�(t) [max� fEi2[t](vx(�; �(i)))g];14Indeed, the relaxed form of Eq. (F.7) plays a crucial role here (in contrast to Eq. (F.6)).

F.2. PROVING THAT IP(F) � AM(O(F)) � AM(F) 643which in turn is upper-bounded (in Eq. (F.8)) by max�fE�(vx(�; �))g + � + 2�k.As in xF.2.2.1, the argument applies to any two consecutive Merlin-Arthur movesin any public-coin interactive proof. Recall that in order to avoid the introduc-tion of an extra Arthur move, we actually postpone the last move of Arthur toafter the next move of Merlin. Thus, we may apply the augmented switch to the�rst two moves in any block of four consecutive moves that start with a Merlinmove, transforming the schematic sequence MAMA into AMMAA=AMA (see Fig-ure F.2). The key point is that the moves that take place after the said block,remain intact. Hence, we may apply the augmented \MA-to-AM switch" (whichis actually an \MAMA-to-AMA switch") concurrently to disjoint segments of thegame. Schematically, we can replace [MAMA]j by [AMA]j = A[MA]j . Note thatMerlin's gain from each such switch is upper-bounded by � + 2�k, but selectingt = eO(f(jxj)2 �m(jxj)) = poly(jxj) allows to upper-bound the total gain by a con-stant (using, say, � = 2�k = 1=8f(jxj)). We thus obtain AM(4f) � AM(2f + 1),and Theorem F.3 follows.

644 APPENDIX F. SOME OMITTED PROOFS

Appendix GSome ComputationalProblemsAlthough we view speci�c (natural) computational problems as secondary to (nat-ural) complexity classes, we do use the former for clari�cation and illustration ofthe latter. This appendix provides de�nitions of such computational problems,grouped according to the type of objects to which they refer (e.g., graphs, Booleanformula, etc.).We start by addressing the central issue of the representation of the variousobjects that are referred to in the aforementioned computational problems. Thegeneral principle is that elements of all sets are \compactly" represented as binarystrings (without much redundancy). For example, the elements of a �nite set S(e.g., the set of vertices in a graph or the set of variables appearing in a Booleanformula) will be represented as binary strings of length log2 jSj.G.1 GraphsGraph theory has long become recognized as one of the moreuseful mathematical subjects for the computer science student tomaster. The approach which is natural in computer science is thealgorithmic one; our interest is not so much in existence proofs orenumeration techniques, as it is in �nding e�cient algorithms forsolving relevant problems, or alternatively showing evidence thatno such algorithms exist. Although algorithmic graph theory wasstarted by Euler, if not earlier, its development in the last tenyears has been dramatic and revolutionary.Shimon Even, Graph Algorithms [71]A simple graph G= (V;E) consists of a �nite set of vertices V and a �nite set ofedges E, where each edge is an unordered pair of vertices; that is, E � ffu; vg :645

646 APPENDIX G. SOME COMPUTATIONAL PROBLEMSu; v2V ^u 6=vg. This formalism does not allow self-loops and parallel edges, whichare allowed in general (i.e., non-simple) graphs, where E is a multi-set that maycontain (in addition to two-element subsets of V also) singletons (i.e., self-loops).The vertex u is called an end-point of the edge fu; vg, and the edge fu; vg is saidto be incident at v. In such a case we say that u and v are adjacent in the graph,and that u is a neighbor of v. The degree of a vertex in G is de�ned as the numberof edges that are incident at this vertex.We will consider various sub-structures of graphs, the simplest one being paths.A path in a graph G=(V;E) is a sequence of vertices (v0; :::; v`) such that for everyi 2 [`] def= f1; :::; `g it holds that vi�1 and vi are adjacent in G. Such a path is saidto have length `. A simple path is a path in which each vertex appears at mostonce, which implies that the longest possible simple path in G has length jV j � 1.The graph is called connected if there exists a path between each pair of verticesin it.A cycle is a path in which the last vertex equals the �rst one (i.e., v` = v0).The cycle (v0; :::; v`) is called simple if ` > 2 and jfv0; :::; v`gj = ` (i.e., if vi = vjthen i � j (mod `), and the cycle (u; v; u) is not considered simple). A graph iscalled acyclic (or a forest) if it has no simple cycles, and if it is also connected thenit is called a tree. Note that G=(V;E) is a tree if and only if it is connected andjEj = jV j � 1, and that there is a unique simple path between each pair of verticesin a tree.A subgraph of the graph G=(V;E) is any graph G0=(V 0; E0) satisfying V 0 � Vand E0 � E. Note that a simple cycle in G is a connected subgraph of G in whicheach vertex has degree exactly two. An induced subgraph of the graph G=(V;E)is any subgraph G0=(V 0; E0) that contain all edges of E that are contained in V 0.In such a case, we say that G0 is the subgraph induced by V 0.Directed graphs. We will also consider (simple) directed graphs (a.k.a digraphs),where edges are ordered pairs of vertices. In this case the set of edges is a subsetof V � V n f(v; v) : v 2 V g, and the edges (u; v) and (v; u) are called anti-parallel.General (i.e., non-simple) directed graphs are de�ned analogously. The edge (u; v)is viewed as going from u to v, and thus is called an outgoing edge of u (resp.,incoming edge of v). The out-degree (resp., in-degree) of a vertex is the number ofits outgoing edges (resp., incoming edges). Directed paths and the related objectsare de�ned analogously; for example, v0; :::; v` is a directed path if for every i 2 [`]it holds that (vi�1; vi) is a directed edge (which is directed from vi�1 to vi). It iscommon to consider also a pair of anti-parallel edges as a simple directed cycle.A directed acyclic graph (DAG) is a digraph that has no directed cycles. EveryDAG has at least one vertex having out-degree (resp., in-degree) zero, called a sink(resp., a source). A simple directed acyclic graph G = (V;E) is called an inward(resp., outward) directed tree if jEj = jV j � 1 and there exists a unique vertex,called the root, having out-degree (resp., in-degree) zero. Note that each vertexin an inward (resp., outward) directed tree can reach the root (resp., is reachablefrom the root) by a unique directed path.11Note that in any DAG, there is a directed path from each vertex v to some sink (resp., from

G.1. GRAPHS 647Representation. Graphs are commonly represented by their adjacency matrixand/or their incidence lists. The adjacency matrix of a simple graph G=(V;E) is ajV j-by-jV j Boolean matrix in which the (i; j)-th entry equals 1 if and only if i andj are adjacent in G. The incidence list representation of G consists of jV j sequencessuch that the ith sequence is an ordered list of the set of edges incident at vertex i.Computational problems. Simple computational problems regarding graphsinclude determining whether a given graph is connected (and/or acyclic) and �nd-ing shortest paths in a given graph. Another simple problem is determining whethera given graph is bipartite, where a graph G=(V;E) is bipartite (or 2-colorable) ifthere exists a 2-coloring of its vertices that does not assign neighboring vertices thesame color. All these problems are easily solvable by BFS.Moving to more complicated tasks that are still solvable in polynomial-time, wemention the problem of �nding a perfect matching (or a maximum matching) in agiven graph, where a matching is a subgraph in which all vertices have degree 1, aperfect matching is a matching that contains all the graph's vertices, and a maximummatching is a matching of maximum cardinality (among all matching of the saidgraph).Turning to seemingly hard problems, we mention that the problem of deter-mining whether a given graph is 3-colorable (i.e., G3C) is NP-complete. A fewadditional NP-complete problems follow.� A Hamiltonian path (resp., Hamiltonian cycle) in the graph G = (V;E) is asimple path (resp., cycle) that passes through all the vertices of G. Such apath (resp., cycle) has length jV j�1 (resp., jV j). The problem is to determinewhether a given graph contains a Hamiltonian path (resp., cycle).� An independent set (resp., clique) of the graph G=(V;E) is a set of verticesV 0 � V such that the subgraph induced by V 0 contains no edges (resp.,contains all possible edges). The problem is to determine whether a givengraph has an independent set (resp., a clique) of a given size.A vertex cover of the graph G=(V;E) is a set of vertices V 0 � V such thateach edge in E has at least one end-point in V 0. Note that V 0 is a vertexcover of G if and only if V n V 0 is an independent set of V .A natural computational problem which is believed to be neither in P nor NP-complete is the graph isomorphism problem. The input consists of two graphs,G1=(V1; E1) and G2=(V2; E2), and the question is whether there exist a 1-1 andonto mapping � : V1 ! V2 such that fu; vg is in E1 if and only if f�(u); �(v)g is inE2. (Such a mapping is called an isomorphism.)some source to each vertex v). In an inward (resp., outward) directed tree this sink (resp., source)must be unique. The condition jEj = jV j � 1 enforces the uniqueness of these paths, because(combined with the reachability condition) it implies that the underlying graph (obtained bydisregarding the orientation of the edges) is a tree.

648 APPENDIX G. SOME COMPUTATIONAL PROBLEMSG.2 Boolean FormulaeIn x1.2.4.3, Boolean formulae are de�ned as a special case of Boolean circuits(x1.2.4.1). Here we take the more traditional approach, and de�ne Boolean for-mulae as structured sequences over an alphabet consisting of variable names andvarious connectives. It is most convenient to de�ne Boolean formulae recursivelyas follows:� A variable is a Boolean formula.� If �1; :::; �t are Boolean formulae and is a t-ary Boolean operation then (�1; :::; �t) is a Boolean formula.Typically, we consider three Boolean operations: the unary operation of negation(denoted neg or :), and the (bounded or unbounded) conjunction and disjunction(denoted ^ and _, respectively). Furthermore, the convention is to shorthand :(�)by :�, and to write (^ti=1�i) or (�1^� � �^�t) instead of ^(�1; :::; �t), and similarlyfor _.Two important special cases of Boolean formulae are CNF and DNF formulae.A CNF formula is a conjunction of disjunctions of variables and/or their negation;that is, ^ti=1�i is a CNF if each �i has the form (_tij=1�i;j), where each �i;j is eithera variable or a negation of a variable (and is called a literal). If for every i it holdsthat ti � 3 then we say that the formula is a 3CNF. Similarly, DNF formulae arede�ned as disjunctions of conjunctions of literals.The value of a Boolean formula under a truth assignment to its variables isde�ned recursively along its structure. For example, ^ti=1�i has the value trueunder an assignment � if and only if every �i has the value true under � . We saythat a formula � is satis�able if there exists a truth assignment � to its variablessuch that the value of � under � is true.The set of satis�able CNF (resp., 3CNF) formulae is denoted SAT (resp., 3SAT),and the problem of deciding membership in it is NP-complete. The set of tau-tologies (i.e., formula that have the value true under any assignment) is coNP-complete, even when restricted to 3DNF formulae.Quanti�ed Boolean Formulae. In contrast to the foregoing that refers to un-quanti�ed Boolean formulae, a quanti�ed Boolean formula is a formula augmentedwith quanti�ers that refer to each variable appearing in it. That is, if � is a for-mula in the Boolean variables x1; :::; xn and Q1; :::; Qn are Boolean quanti�ers (i.e.,each Qi is either 9 or 8) then Q1 x1 � � �Qn xn �(x1; :::; xn) is a quanti�ed Booleanformula. A k-alternating quanti�ed Boolean formula is a quanti�ed Boolean for-mula with up to k alternating sequences of existential and universal quanti�ers,starting with an existential quanti�er. For example, 9x19x28x3�(x1; x2; x3) is a 2-alternating quanti�ed Boolean formula. (We say that a quanti�ed Boolean formulais satis�able if it evaluates to true.)The set of satis�able k-alternating quanti�ed Boolean formulae is denoted kQBFand is �k-complete, whereas the set of all satis�able quanti�ed Boolean formulaeis denoted QBF and is PSPACE-complete.

G.3. FINITE FIELDS, POLYNOMIALS AND VECTOR SPACES 649The foregoing de�nition refers to the canonical form of quanti�ed Boolean for-mulae, in which all the quanti�ers appear at the leftmost side of the formula.A more general de�nition allows each variable to be quanti�ed at an arbitraryplace to the left of its leftmost occurrence in the formula (e.g., (8x1)(9x2) (x1 =x2) ^ (9x3)(x3 = x1)). Note that such generalized formulae (used in the proof ofTheorems 5.15 and 9.4) can be transformed to the canonical form by \pulling" allquanti�ers to the left of the formula (e.g., 8x19x29x3 ((x1 = x2) ^ (x3 = x1))).G.3 Finite Fields, Polynomials and Vector SpacesVarious algebraic objects, computational problems and techniques play an impor-tant role in complexity theory. The most dominant such objects are �nite �elds aswell as vector spaces and polynomials over such �elds.Finite Fields. We denote by GF(q) the �nite �eld of q elements and note thatq may be either a prime or a prime power. In the �rst case, GF(q) is viewedas consisting of the elements f0; :::; q � 1g with addition and multiplication beingde�ned modulo q. Indeed, GF(2) is an important special case. In the case thatq = pe, where p is a prime and e > 1, the standard representation of GF(pe)refers to an irreducible polynomial of degree e over GF(p). Speci�cally, if f isan irreducible polynomial of degree e over GF(p) then GF(pe) can be representedas the set of polynomials of degree at most e � 1 over GF(p) with addition andmultiplication de�ned modulo the polynomial f .We mention that �nding representations of large �nite �elds is a non-trivialcomputational problem, where in both cases we seek an e�cient algorithm that�nds a representation (i.e., either a large prime or an irreducible polynomial) intime that is polynomial in the length of the representation. In the case of a �eldof prime cardinality, this calls for generating a prime number of adequate size,which can be done e�ciently by a randomized algorithm (while a correspondingdeterministic algorithm is not known). In the case of GF(pe), where p is a primeand e > 1, we need to �nd an irreducible polynomial of degree e over GF(p).Again, this task is e�ciently solvable by a randomized algorithm (see [24]), buta corresponding deterministic algorithm is not known for the general case (i.e.,for arbitrary prime p and e > 1). Fortunately, for e = 2 � 3e0 (with e0 being aninteger), the polynomial xe + xe=2 +1 is irreducible over GF(2), which means that�nding a representation of GF(2e) is easy in this case. Thus, there exists a stronglyexplicit construction of an in�nite family of �nite �elds (i.e., fGF(2e)ge2L, whereL = f2 � 3e0 : "0 2 Ng).Polynomials and Vector Spaces. The set of degree d� 1 polynomials over a�nite �eld F (of cardinality at least d) forms a d-dimensional vector space over F(e.g., consider the basis f1; x; :::; xd�1g). Indeed, the standard representation of thisvector space refers to the basis 1; x; :::; xd�1, and (when referring to this basis) thepolynomial Pd�1i=0 cixi is represented as the vector (c0; c1; :::; cd�1). An alternative

650 APPENDIX G. SOME COMPUTATIONAL PROBLEMSbasis is obtained by considering the evaluation at d distinct points �1; :::; �d 2 F ;that is, the degree d � 1 polynomial p is represented by the sequence of values(p(�1); :::; p(�d)). Needless to say, moving between such representations (i.e., rep-resentations with respect to di�erent bases) amounts to applying an adequate lineartransformation; that is, for p(x) =Pd�1i=0 cixi, we have0BBB@ p(�1)p(�2)...p(�d) 1CCCA = 0BBB@ 1 �1 � � � �d�111 �2 � � � �d�12... ... � � � ...1 �d � � � �d�1d 1CCCA0BBB@ c0c1...cd�1 1CCCA (G.1)where the (full rank) matrix in Eq. (G.1) is called a Vandermonde matrix. Theforegoing transformation (or rather its inverse) is closely related to the task ofpolynomial interpolation (i.e., given the values of a degree d � 1 polynomial at dpoints, �nd the polynomial itself).G.4 The Determinant and the PermanentRecall that the permanent of an n-by-n matrix M = (ai;j) is de�ned as the sumP�Qni=1 ai;�(j) taken over all permutations � of the set f1; :::; ng. This is relatedto the de�nition of the determinant in which the same sum is used except thatsome elements are negated; that is, the determinant of M = (ai;j) is de�ned asP�(�1)�(�)Qni=1 ai;�(j), where �(�) = 1 if � is an even permutation (i.e., can beexpressed by an even number of transpositions) and �(�) = �1 otherwise.The corresponding computational problems (i.e., computing the determinantor permanent of a given matrix) seem to have vastly di�erent complexities. Thedeterminant can be computed in polynomial-time; moreover, it can be computedin uniform NC2. In contrast, computing the permanent is #P-complete, even inthe special case of matrices with entries in f0; 1g (see Theorem 6.20).G.5 Primes and Composite NumbersA prime is a natural number that is not divisible by any natural number other thanitself and 1. A natural number that is not a prime is called composite, and its primefactorization is the set of primes that divide it; that is, if N =Qti=1 P eii , where thePi's are distinct primes (greater than 1) and ei � 1, then fPi : i = 1; :::; tg is theprime factorization of N . (If t = 1 then N is a prime power.)Two famous computational problems, identi�ed by Gauss as fundamental ones,are testing primality (i.e., given a natural number, determine whether it is prime orcomposite) and factoring composite integers (i.e., given a composite number, �nd itsprime factorization). Needless to say, in both cases, the input is presented in binaryrepresentation. Although testing primality is reducible to integer factorization,the problems seem to have di�erent complexities: While testing primality is in P(see [3] (and x6.1.2.2 showing that the problem is in BPP)), it is conjectured that

G.5. PRIMES AND COMPOSITE NUMBERS 651factoring composite integers is intractable. In fact, many popular candidates forvarious cryptographic systems are based on this conjecture.Extracting modular square roots. Two related computational problems areextracting (modular) square roots with respect to prime and composite moduli.Speci�cally, a quadratic residue modulo a prime P is an integer s such that thereexists an integer r satisfying s � r2 (mod P). The corresponding search problem(i.e., given such P and s, �nd r) can be solved in probabilistic polynomial-time(see Exercise 6.16). The corresponding problem for composite moduli is compu-tationally equivalent to factoring (see [183]); furthermore, extracting square rootsmodulo N is easily reducible to factoring N , and factoring N is randomly reducibleto extracting square roots modulo N (even in a typical-case sense). We mentionthat even the problem of deciding whether or not a given integer has a modularsquare root modulo a given composite is conjectured to be hard (but is not knownto be computationally equivalent to factoring).

652 APPENDIX G. SOME COMPUTATIONAL PROBLEMS

Bibliography[1] S. Aaronson. Complexity Zoo. A continueously updated web-site athttp://qwiki.caltech.edu/wiki/Complexity Zoo/.[2] L.M. Adleman and M. Huang. Primality Testing and Abelian Varieties OverFinite Fields. Springer-Verlag Lecture Notes in Computer Science (Vol. 1512),1992. Preliminary version in 19th STOC, 1987.[3] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathe-matics, Vol. 160 (2), pages 781{793, 2004.[4] M. Ajtai, J. Komlos, E. Szemer�edi. Deterministic Simulation in LogSpace.In 19th ACM Symposium on the Theory of Computing, pages 132{140, 1987.[5] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lov�asz and C. Racko�. Randomwalks, universal traversal sequences, and the complexity of maze problems. In20th IEEE Symposium on Foundations of Computer Science, pages 218{223,1979.[6] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithmfor the Maximal Independent Set Problem. J. of Algorithms, Vol. 7, pages567{583, 1986.[7] N. Alon and R. Boppana. The monotone circuit complexity of Boolean func-tions. Combinatorica, Vol. 7 (1), pages 1{22, 1987.[8] N. Alon, J. Bruck, J. Naor, M. Naor and R. Roth. Construction of Asymp-totically Good, Low-Rate Error-Correcting Codes through Pseudo-RandomGraphs. IEEE Transactions on Information Theory, Vol. 38, pages 509{516,1992.[9] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Charac-terization of the Testable Graph Properties: It's All About Regularity. In38th ACM Symposium on the Theory of Computing, pages 251{260, 2006.[10] N. Alon, O. Goldreich, J. H�astad, R. Peralta. Simple Constructions of Almostk-wise Independent Random Variables. Journal of Random Structures andAlgorithms, Vol. 3, No. 3, pages 289{304, 1992. Preliminary version in 31stFOCS, 1990. 653

654 BIBLIOGRAPHY[11] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons,Inc., 1992. Second edition, 2000.[12] R. Armoni. On the derandomization of space-bounded computations. Inthe proceedings of Random98, Springer-Verlag, Lecture Notes in ComputerScience (Vol. 1518), pages 49{57, 1998.[13] S. Arora. Approximation schemes for NP-hard geometric optimization prob-lems: A survey. Math. Programming, Vol. 97, pages 43{69, July 2003.[14] S. Arora abd B. Barak. Complexity Theory: A Modern Approach. CambridgeUniversity Press, to appear.[15] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cationand Intractability of Approximation Problems. Journal of the ACM, Vol. 45,pages 501{555, 1998. Preliminary version in 33rd FOCS, 1992.[16] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characteriza-tion of NP. Journal of the ACM, Vol. 45, pages 70{122, 1998. Preliminaryversion in 33rd FOCS, 1992.[17] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulationsand Advanced Topics. McGraw-Hill, 1998.[18] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposiumon the Theory of Computing, pages 421{429, 1985.[19] L. Babai. Random oracles separate PSPACE from the Polynomial-TimeHierarchy. Information Processing Letters, Vol. 26, pages 51{53, 1987.[20] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time hasTwo-Prover Interactive Protocols. Computational Complexity, Vol. 1, No. 1,pages 3{40, 1991. Preliminary version in 31st FOCS, 1990.[21] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations inPolylogarithmic Time. In 23rd ACM Symposium on the Theory of Computing,pages 21{31, 1991.[22] L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponen-tial Time Simulations unless EXPTIME has Publishable Proofs. ComplexityTheory, Vol. 3, pages 307{318, 1993.[23] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof Systemand a Hierarchy of Complexity Classes. Journal of Computer and SystemScience, Vol. 36, pp. 254{276, 1988.[24] E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: E�cientAlgorithms). MIT Press, 1996.[25] B. Barak. Non-Black-Box Techniques in Crypptography. PhD Thesis, Weiz-mann Institute of Science, 2004.

BIBLIOGRAPHY 655[26] W. Baur and V. Strassen. The Complexity of Partial Derivatives. Theor.Comput. Sci. 22, pages 317{330, 1983.[27] P. Beame and T. Pitassi. Propositional Proof Complexity: Past, Present, andFuture. In Bulletin of the European Association for Theoretical ComputerScience, Vol. 65, June 1998, pp. 66{89.[28] M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-witnesses using an NP-oracle. Information and Computation, Vol. 163, pages510{526, 2000.[29] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability { Towards Tight Results. SIAM Journal on Computing,Vol. 27, No. 3, pages 804{915, 1998. Extended abstract in 36th FOCS, 1995.[30] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of AverageCase Complexity. Journal of Computer and System Science, Vol. 44 (2), pages193{219, 1992.[31] A. Ben-Dor and S. Halevi. In 2nd Israel Symp. on Theory of Computing andSystems, IEEE Computer Society Press, pages 108-117, 1993.[32] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micaliand P. Rogaway. Everything Provable is Probable in Zero-Knowledge. InCrypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),pages 37{56, 1990[33] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Inter-active Proofs: How to Remove Intractability. In 20th ACM Symposium onthe Theory of Computing, pages 113{131, 1988.[34] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems forNon-Cryptographic Fault-Tolerant Distributed Computation. In 20th ACMSymposium on the Theory of Computing, pages 1{10, 1988.[35] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. RobustPCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM Jour-nal on Computing, Vol. 36 (4), 2006, pages 889{974. Extended abstract in36th STOC, 2004.[36] E. Ben-Sasson and M. Sudan. Simple PCPs with Poly-log Rate and QueryComplexity. In 37th ACM Symposium on the Theory of Computing, pages266{275, 2005.[37] L. Berman and J. Hartmanis. On isomorphisms and density of NP and othercomplete sets. SIAM Journal on Computing, Vol. 6 (2), 1977, pages 305{322.[38] M. Blum. A Machine-Independent Theory of the Complexity of RecursiveFunctions. Journal of the ACM, Vol. 14 (2), pages 290{305, 1967.

656 BIBLIOGRAPHY[39] M. Blum and S. Kannan. Designing Programs that Check their Work. In21st ACM Symposium on the Theory of Computing, pages 86{97, 1989.[40] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Appli-cations to Numerical Problems. Journal of Computer and System Science,Vol. 47, No. 3, pages 549{595, 1993.[41] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequencesof Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS, 1982.[42] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability in bounded-degree graphs. In 43rd IEEE Symposium on Foun-dations of Computer Science, pages 93{102, 2002.[43] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions forNP problems. SIAM Journal on Computing, Vol. 36 (4), 2006, pages 1119{1159. Extended abstract in 44th FOCS, 2003.[44] A. Bogdanov and L. Trevisan. Average-case complexity. Foundations andTrends in Theoretical Computer Science, Vol. 2:1, 2006.[45] R. Boppana, J. H�astad, and S. Zachos. Does Co-NP Have Short InteractiveProofs? Information Processing Letters, Vol. 25, May 1987, pages 127{132.[46] R. Boppana and M. Sipser. The complexity of �nite functions. In Handbookof Theoretical Computer Science: Volume A { Algorithms and Complexity,J. van Leeuwen editor, MIT Press/Elsevier, 1990, pages 757{804.[47] A. Borodin. Computational Complexity and the Existence of ComplexityGaps. Journal of the ACM, Vol. 19 (1), pages 158{174, 1972.[48] A. Borodin. On Relating Time and Space to Size and Depth. SIAM Journalon Computing, Vol. 6 (4), pages 733{744, 1977.[49] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs ofKnowledge. Journal of Computer and System Science, Vol. 37, No. 2, pages156{189, 1988. Preliminary version by Brassard and Cr�epeau in 27th FOCS,1986.[50] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computerand System Science, Vol. 18, 1979, pages 143{154.[51] G.J. Chaitin. On the Length of Programs for Computing Finite Binary Se-quences. Journal of the ACM, Vol. 13, pages 547{570, 1966.[52] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer. Alternation. Journal of theACM, Vol. 28, pages 114{133, 1981.

BIBLIOGRAPHY 657[53] D. Chaum, C. Cr�epeau and I. Damg�ard. Multi-party unconditionally SecureProtocols. In 20th ACM Symposium on the Theory of Computing, pages11{19, 1988.[54] B. Chor and O. Goldreich. On the Power of Two{Point Based Sampling.Jour. of Complexity, Vol 5, 1989, pages 96{106. Preliminary version dates1985.[55] A. Church. An Unsolvable Problem of Elementary Number Theory. Amer.J. of Math., Vol. 58, pages 345{363, 1936.[56] N. Creignou, S. Khanna, and M. Sudan. Complexity Classi�cations ofBoolean Constraint Satisfaction Problems. SIAM Monographs on DiscreteMathematics and Applications, 2001.[57] A. Cobham. The Intristic Computational Di�culty of Functions. In Proc.1964 Iternational Congress for Logic Methodology and Philosophy of Science,pages 24{30, 1964.[58] S.A. Cook. The Complexity of Theorem Proving Procedures. In 3rd ACMSymposium on the Theory of Computing, pages 151{158, 1971.[59] S.A. Cook. An Overview of Computational Complexity. Turing Award Lec-ture. CACM, Vol. 26 (6), pages 401{408, 1983.[60] S.A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Infor-mation and Control, Vol. 64, pages 2{22, 1985.[61] S.A. Cook and R.A. Reckhow. The Relative E�ciency of Propositional ProofSystems. J. of Symbolic Logic, Vol. 44 (1), pages 36{50, 1979.[62] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-gressions. Journal of Symbolic Computation, 9, pages 251{280, 1990.[63] T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley& Sons, Inc., New-York, 1991.[64] P. Crescenzi and V. Kann. A compendium of NP Optimization problems.Available at http://www.nada.kth.se/�viggo/wwwcompendium/[65] R.A. DeMillo and R.J. Lipton. A probabilistic remark on algebraic programtesting. Information Processing Letters, Vol. 7 (4), pages 193{195, June 1978.[66] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEE Trans-actions on Information Theory, IT-22 (Nov. 1976), pages 644{654.[67] I. Dinur. The PCP Theorem by Gap Ampli�cation. In 38th ACM Symposiumon the Theory of Computing, pages 241{250, 2006.[68] I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proofof the PCP-Theorem. SIAM Journal on Computing, Vol. 36 (4), 2006, pages975{1024. Extended abstract in 45th FOCS, 2004.

658 BIBLIOGRAPHY[69] I. Dinur and S. Safra. The importance of being biased. In 34th ACM Sym-posium on the Theory of Computing, pages 33{42, 2002.[70] J. Edmonds. Paths, Trees, and Flowers. Canad. J. Math., Vol. 17, pages449{467, 1965.[71] S. Even. Graph Algorithms. Computer Science Press, 1979.[72] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problemswith Applications to Public-Key Cryptography. Information and Control,Vol. 61, pages 159{173, 1984.[73] U. Feige, S. Goldwasser, L. Lov�asz and S. Safra. On the Complexity ofApproximating the Maximum Size of a Clique. Unpublished manuscript,1990.[74] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. ApproximatingClique is almost NP-complete. Journal of the ACM, Vol. 43, pages 268{292,1996. Preliminary version in 32nd FOCS, 1991.[75] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under General Assumptions. SIAM Journal on Com-puting, Vol. 29 (1), pages 1{28, 1999. Preliminary version in 31st FOCS,1990.[76] U. Feige and A. Shamir. Witness Indistinguishability and Witness HidingProtocols. In 22nd ACM Symposium on the Theory of Computing, pages416{426, 1990.[77] E. Fischer. The art of uninformed decisions: A primer to property test-ing. Bulletin of the European Association for Theoretical Computer Science,Vol. 75, pages 97{126, 2001.[78] G.D. Forney. Concatenated Codes. MIT Press, Cambridge, MA 1966.[79] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-space lowerbounds for satis�ability. Journal of the ACM, Vol. 52 (6), pages 835{865,November 2005.[80] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interac-tive protocols. In 3rd IEEE Symp. on Structure in Complexity Theory, pages156{161, 1988. See errata in 5th IEEE Symp. on Structure in ComplexityTheory, pages 318{319, 1990.[81] S. Fortune. A Note on Sparse Complete Sets. SIAM Journal on Computing,Vol. 8, pages 431{433, 1979.[82] M. F�urer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Complete-ness and Soundness in Interactive Proof Systems. Advances in ComputingResearch: a research annual, Vol. 5 (Randomness and Computation, S. Mi-cali, ed.), pages 429{442, 1989.

BIBLIOGRAPHY 659[83] M.L. Furst, J.B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy. Mathematical Systems Theory, Vol. 17 (1), pages 13{27,1984. Preliminary version in 22nd FOCS, 1981.[84] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-trators. Journal of Computer and System Science, Vol. 22, pages 407{420,1981.[85] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. W.H. Freeman and Company, New York, 1979.[86] J. von zur Gathen. Algebraic Complexity Theory. Ann. Rev. Comput. Sci.,Vol. 3, pages 317{347, 1988.[87] O. Goldreich. Foundation of Cryptography { Class Notes. Computer ScienceDept., Technion, Israel, Spring 1989. Superseded by [91, 92].[88] O. Goldreich. A Note on Computational Indistinguishability. InformationProcessing Letters, Vol. 34, pages 277{281, May 1990.[89] O. Goldreich. Notes on Levin's Theory of Average-Case Complexity. ECCC,TR97-058, Dec. 1997.[90] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandom-ness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.[91] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge Univer-sity Press, 2001.[92] O. Goldreich. Foundation of Cryptography: Basic Applications. CambridgeUniversity Press, 2004.[93] O. Goldreich. Short Locally Testable Codes and Proofs (Survey). ECCC,TR05-014, 2005.[94] O. Goldreich. On Promise Problems (a survey in memory of Shimon Even[1935-2004]). ECCC, TR05-018, 2005.[95] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct RandomFunctions. Journal of the ACM, Vol. 33, No. 4, pages 792{807, 1986.[96] O. Goldreich, S. Goldwasser, and A. Nussboim. On the Implementation ofHuge Random Objects. In 44th IEEE Symposium on Foundations of Com-puter Science, pages 68{79, 2002.[97] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connectionto learning and approximation. Journal of the ACM, pages 653{750, July1998. Extended abstract in 37th FOCS, 1996.[98] O. Goldreich and H. Krawczyk. On the Composition of Zero-KnowledgeProof Systems. SIAM Journal on Computing, Vol. 25, No. 1, February 1996,pages 169{192. Preliminary version in 17th ICALP, 1990.

660 BIBLIOGRAPHY[99] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-tion. In 21st ACM Symposium on the Theory of Computing, pages 25{32,1989.[100] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing buttheir Validity or All Languages in NP Have Zero-Knowledge Proof Systems.Journal of the ACM, Vol. 38, No. 3, pages 691{729, 1991. Preliminary versionin 27th FOCS, 1986.[101] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game {A Completeness Theorem for Protocols with Honest Majority. In 19th ACMSymposium on the Theory of Computing, pages 218{229, 1987.[102] O. Goldreich, N. Nisan and A. Wigderson. On Yao's XOR-Lemma. ECCC,TR95-050, 1995.[103] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algo-rithmica, pages 302{343, 2002. Extended abstract in 29th STOC, 1997.[104] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degreegraphs. Combinatorica, Vol. 19 (3), pages 335{373, 1999. Extended abstractin 30th STOC, 1998.[105] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries:the highly noisy case. SIAM J. Discrete Math., Vol. 13 (4), pages 535{570,2000.[106] O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with alaconic provers. Computational Complexity, Vol. 11, pages 1{53, 2002.[107] O. Goldreich and A. Wigderson. Computational Complexity. In The Prince-ton Companion to Mathematics, to appear.[108] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computerand System Science, Vol. 28, No. 2, pages 270{299, 1984. Preliminary versionin 14th STOC, 1982.[109] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity ofInteractive Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version in 17th STOC, 1985. Earlier versions date to1982.[110] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme SecureAgainst Adaptive Chosen-Message Attacks. SIAM Journal on Computing,April 1988, pages 281{308.[111] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in InteractiveProof Systems. Advances in Computing Research: a research annual, Vol. 5(Randomness and Computation, S. Micali, ed.), pages 73{90, 1989. Extendedabstract in 18th STOC, 1986.

BIBLIOGRAPHY 661[112] S.W. Golomb. Shift Register Sequences. Holden-Day, 1967. (Aegean ParkPress, revised edition, 1982.)[113] V. Guruswami, C. Umans, and S. Vadhan. Extractors and condensers fromunivariate polynomials. ECCC, TR06-134, 2006.[114] J. Hartmanis and R.E. Stearns. On the Computational Complexity of ofAlgorithms. Transactions of the AMS, Vol. 117, pages 285{306, 1965.[115] J. H�astad. Almost Optimal Lower Bounds for Small Depth Circuits. Ad-vances in Computing Research: a research annual, Vol. 5 (Randomness andComputation, S. Micali, ed.), pages 143{170, 1989. Extended abstract in18th STOC, 1986.[116] J. H�astad. Clique is hard to approximate within n1��. Acta Mathematica,Vol. 182, pages 105{142, 1999. Preliminary versions in 28th STOC (1996)and 37th FOCS (1996).[117] J. H�astad. Getting optimal in-approximability results. Journal of the ACM,Vol. 48, pages 798{859, 2001. Extended abstract in 29th STOC, 1997.[118] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Gen-erator from any One-way Function. SIAM Journal on Computing, Volume28, Number 4, pages 1364{1396, 1999. Preliminary versions by Impagliazzoet. al. in 21st STOC (1989) and H�astad in 22nd STOC (1990).[119] J. H�astad and S. Khot. Query e�cient PCPs with pefect completeness. In42nd IEEE Symposium on Foundations of Computer Science, pages 610{619,2001.[120] A. Healy. Randomness-E�cient Sampling within NC1. Computational Com-plexity, to appear. Preliminary version in 10th RANDOM, 2006.[121] A. Healy, S. Vadhan and E. Viola. Using nondeterminism to amplify hardness.SIAM Journal on Computing, Vol. 35 (4), pages 903{931, 2006.[122] D. Hochbaum (ed.). Approximation Algorithms for NP-Hard Problems. PWS,1996.[123] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languagesand Computation. Addison-Wesley, 1979.[124] S. Hoory, N. Linial, and A. Wigderson. Expander Graphs and their Applica-tions. Bull. AMS, Vol. 43 (4), pages 439{561, 2006.[125] N. Immerman. Nondeterministic Space is Closed Under Complementation.SIAM Journal on Computing, Vol. 17, pages 760{778, 1988.[126] R. Impagliazzo. Hard-core Distributions for Somewhat Hard Problems. In36th IEEE Symposium on Foundations of Computer Science, pages 538{545,1995.

662 BIBLIOGRAPHY[127] R. Impagliazzo and L.A. Levin. No Better Ways to Generate Hard NP In-stances than Picking Uniformly at Random. In 31st IEEE Symposium onFoundations of Computer Science, pages 812{821, 1990.[128] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits:Derandomizing the XOR Lemma. In 29th ACM Symposium on the Theoryof Computing, pages 220{229, 1997.[129] R. Impagliazzo and A. Wigderson. Randomness vs Time: Derandomizationunder a Uniform Assumption. Journal of Computer and System Science,Vol. 63 (4), pages 672-688, 2001.[130] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. InCrypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),pages 40{51, 1987.[131] M. Jerrum, A. Sinclair, and E. Vigoda. A Polynomial-Time ApproximationAlgorithm for the Permanent of a Matrix with Non-Negative Entries. Journalof the ACM, Vol. 51 (4), pages 671{697, 2004.[132] M. Jerrum, L. Valiant, and V.V. Vazirani. Random Generation of Combina-torial Structures from a Uniform Distribution. Theoretical Computer Science,Vol. 43, pages 169{188, 1986.[133] B. Juba and M. Sudan.Towards Universal Semantic Communication. Manuscript, February 2007.Available from http://theory.csail.mit.edu/�madhu/papers/juba.pdf[134] V. Kabanets and R. Impagliazzo. Derandomizing Polynomial Identity TestsMeans Proving Circuit Lower Bounds. Computational Complexity, Vol. 13,pages 1-46, 2004. Preliminary version in 35th STOC, 2003.[135] N. Kahale. Eigenvalues and Expansion of Regular Graphs. Journal of theACM, Vol. 42 (5), pages 1091{1106, September 1995.[136] R. Kannan, H. Venkateswaran, V. Vinay, and A.C. Yao. A Circuit-basedProof of Toda's Theorem. Information and Computation, Vol. 104 (2), pages271{276, 1993.[137] R.M. Karp. Reducibility among Combinatorial Problems. In Complexityof Computer Computations, R.E. Miller and J.W. Thatcher (eds.), PlenumPress, pages 85{103, 1972.[138] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uni-form complexity classes. In 12th ACM Symposium on the Theory of Com-puting, pages 302-309, 1980.[139] R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and re-liability problems. In 24th IEEE Symposium on Foundations of ComputerScience, pages 56-64, 1983.

BIBLIOGRAPHY 663[140] R.M. Karp and V. Ramachandran. Parallel Algorithms for Shared-MemoryMachines. In Handbook of Theoretical Computer Science, Vol A: Algorithmsand Complexity, 1990.[141] M. Karchmer and A. Wigderson. Monotone Circuits for Connectivity RequireSuper-logarithmic Depth. SIAM J. Discrete Math., Vol. 3 (2), pages 255{265,1990. Preliminary version in 20th STOC, 1988.[142] M.J. Kearns and U.V. Vazirani. An introduction to Computational LearningTheory. MIT Press, 1994.[143] S. Khot and O. Regev. Vertex Cover Might be Hard to Approximate towithin 2� ". In 18th IEEE Conference on Computational Complexity, pages379{386, 2003.[144] V.M. Khrapchenko. A method of determining lower bounds for the com-plexity of Pi-schemes. In Matematicheskie Zametki, Vol. 10 (1), pages 83{92,1971 (in Russian). English translation in Mathematical Notes of the Academyof Sciences of the USSR, Vol. 10 (1), pages 474{479, 1971.[145] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In24th ACM Symposium on the Theory of Computing, pages 723{732, 1992.[146] D.E. Knuth. The Art of Computer Programming, Vol. 2 (SeminumericalAlgorithms). Addison-Wesley Publishing Company, Inc., 1969 (�rst edition)and 1981 (second edition).[147] A. Kolmogorov. Three Approaches to the Concept of \The Amount Of In-formation". Probl. of Inform. Transm., Vol. 1/1, 1965.[148] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Uni-versity Press, 1996.[149] R.E. Ladner. On the Structure of Polynomial Time Reducibility. Journal ofthe ACM, Vol. 22, 1975, pages 155{171.[150] C. Lautemann. BPP and the Polynomial Hierarchy. Information ProcessingLetters, Vol. 17, pages 215{217, 1983.[151] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.[152] L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9,pages 115{116, 1973 (in Russian). English translation in Problems of Infor-mation Transmission 9, pages 265{266.[153] L.A. Levin. Randomness Conservation Inequalities: Information and Inde-pendence in Mathematical Theories. Information and Control, Vol. 61, pages15{37, 1984.

664 BIBLIOGRAPHY[154] L.A. Levin. Average Case Complete Problems. SIAM Journal on Computing,Vol. 15, pages 285{286, 1986.[155] L.A. Levin. Fundamentals of Computing. SIGACT News, Education Forum,special 100th issue, Vol. 27 (3), pages 89{110, 1996.[156] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and itsApplications. Springer Verlag, August 1993.[157] R.J. Lipton. New directions in testing. Distributed Computing and Cryp-tography, J. Feigenbaum and M. Merritt (ed.), DIMACS Series in DiscreteMathematics and Theoretical Computer Science, American Mathematics So-ciety, Vol. 2, pages 191{202, 1991.[158] N. Livne. All Natural NPC Problems Have Average-Case Complete Versions.ECCC, TR06-122, 2006.[159] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal upto constant factors. In 35th ACM Symposium on the Theory of Computing,pages 602{611, 2003.[160] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan Graphs. Combinatorica,Vol. 8, pages 261{277, 1988.[161] M. Luby and A. Wigderson. Pairwise Independence and Derandomization.Foundations and Trends in Theoretical Computer Science, Vol. 1:4, 2005.Preliminary version: TR-95-035, ICSI, Berkeley, 1995.[162] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods for In-teractive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages 859{868,1992. Preliminary version in 31st FOCS, 1990.[163] F. MacWilliams and N. Sloane. The theory of error-correcting codes. North-Holland, 1981.[164] G.A. Margulis. Explicit Construction of Concentrators. Prob. Per. Infor.,Vol. 9 (4), pages 71{80, 1973 (in Russian). English translation in Problemsof Infor. Trans., pages 325{332, 1975.[165] S. Micali. Computationally Sound Proofs. SIAM Journal on Computing,Vol. 30 (4), pages 1253{1298, 2000. Preliminary version in 35th FOCS, 1994.[166] G.L. Miller. Riemann's Hypothesis and Tests for Primality. Journal of Com-puter and System Science, Vol. 13, pages 300{317, 1976.[167] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-MerlinGames using Hitting Sets. Computational Complexity, Vol. 14 (3), pages256{279, 2005. Preliminary version in 40th FOCS, 1999.[168] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge UniversityPress, 1995.

BIBLIOGRAPHY 665[169] M. Naor. Bit Commitment using Pseudorandom Generators. Journal ofCryptology, Vol. 4, pages 151{158, 1991.[170] J. Naor and M. Naor. Small-bias Probability Spaces: E�cient Constructionsand Applications. SIAM Journal on Computing, Vol 22, 1993, pages 838{856.Preliminary version in 22nd STOC, 1990.[171] M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-graphic Application. In 21st ACM Symposium on the Theory of Computing,1989, pages 33{43.[172] M. Nguyen, S.J. Ong, S. Vadhan. Statistical Zero-Knowledge Arguments forNP from Any One-Way Function. In 47th IEEE Symposium on Foundationsof Computer Science, pages 3-14, 2006.[173] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,Vol. 11 (1), pages 63{70, 1991.[174] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Com-binatorica, Vol. 12 (4), pages 449{461, 1992. Preliminary version in 22ndSTOC, 1990.[175] N. Nisan. RL � SC. Computational Complexity, Vol. 4, pages 1-11, 1994.Preliminary version in 24th STOC, 1992.[176] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computerand System Science, Vol. 49, No. 2, pages 149{167, 1994. Preliminary versionin 29th FOCS, 1988.[177] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal ofComputer and System Science, Vol. 52 (1), pages 43{52, 1996. Preliminaryversion in 25th STOC, 1993.[178] C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.[179] C.H. Papadimitriou and M. Yannakakis. Optimization, Approximation, andComplexity Classes. In 20th ACM Symposium on the Theory of Computing,pages 229{234, 1988.[180] N. Pippenger and M.J. Fischer. Relations among complexity measures. Jour-nal of the ACM, Vol. 26 (2), pages 361{381, 1979.[181] E. Post. A Variant of a Recursively Unsolvable Problem. Bull. AMS, Vol. 52,pages 264{268, 1946.[182] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation(R.A. DeMillo et. al. eds.), Academic Press, 1977.[183] M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractableas Factoring. MIT/LCS/TR-212, 1979.

666 BIBLIOGRAPHY[184] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Num-ber Theory, Vol. 12, pages 128{138, 1980.[185] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,Vol. 27 (3), pages 763{803, 1998. Extended abstract in 27th STOC, 1995.[186] R. Raz and A. Wigderson. Monotone Circuits for Matching Require LinearDepth. Journal of the ACM, Vol. 39 (3), pages 736{744, 1992. Preliminaryversion in 22nd STOC, 1990.[187] A. Razborov. Lower bounds for the monotone complexity of some Booleanfunctions. In Doklady Akademii Nauk SSSR, Vol. 281, No. 4, 1985, pages798{801 (in Russian). English translation in Soviet Math. Doklady, 31, pages354{357, 1985.[188] A. Razborov. Lower bounds on the size of bounded-depth networks over acomplete basis with logical addition. In Matematicheskie Zametki, Vol. 41,No. 4, pages 598{607, 1987 (in Russian). English translation in MathematicalNotes of the Academy of Sci. of the USSR, Vol. 41 (4), pages 333{338, 1987.[189] A.R. Razborov and S. Rudich. Natural Proofs. Journal of Computer andSystem Science, Vol. 55 (1), pages 24{35, 1997. Preliminary version in 26thSTOC, 1994.[190] O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Sym-posium on the Theory of Computing, pages 376{385, 2005.[191] O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-ZagGraph Product, and New Constant-Degree Expanders and Extractors. An-nals of Mathematics, Vol. 155 (1), pages 157{187, 2001. Preliminary versionin 41st FOCS, pages 3{13, 2000.[192] H.G. Rice. Classes of Recursively Enumerable Sets and their Decision Prob-lems. Trans. AMS, Vol. 89, pages 25{59, 1953.[193] R.L. Rivest, A. Shamir and L.M. Adleman. A Method for Obtaining DigitalSignatures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978, pages120{126.[194] D. Ron. Property testing. In Handbook on Randomization, Volume II,pages 597{649, 2001. (Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reifand J.D.P. Rolim.)[195] R. Rubinfeld and M. Sudan. Robust characterization of polynomials withapplications to program testing. SIAM Journal on Computing, Vol. 25 (2),pages 252{271, 1996.[196] M. Saks and S. Zhou. BPHSPACE(S) � DSPACE(S3=2). Journal of Com-puter and System Science, Vol. 58 (2), pages 376{403, 1999. Preliminaryversion in 36th FOCS, 1995.

BIBLIOGRAPHY 667[197] W.J. Savitch. Relationships between nondeterministic and deterministic tapecomplexities. Journal of Computer and System Science, Vol. 4 (2), pages 177-192, 1970.[198] A. Selman. On the structure of NP. Notices Amer. Math. Soc., Vol. 21 (6),page 310, 1974.[199] J.T. Schwartz. Fast probabilistic algorithms for veri�cation of polynomialidentities. Journal of the ACM, Vol. 27 (4), pages 701{717, October 1980.[200] R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. InCurrent Trends in Theoretical Computer Science: The Challenge of the NewCentury, Vol 1: Algorithms and Complexity, World scieti�c, 2004. (Editors:G. Paun, G. Rozenberg and A. Salomaa.) Preliminary version in Bulletin ofthe EATCS 77, pages 67{95, 2002.[201] R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and aNew Pseudo-Random Generator. In 42nd IEEE Symposium on Foundationsof Computer Science, pages 648{657, 2001.[202] C.E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans.American Institute of Electrical Engineers, Vol. 57, pages 713{723, 1938.[203] C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech.Jour., Vol. 27, pages 623{656, 1948.[204] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.Jour., Vol. 28, pages 656{715, 1949.[205] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages869{877, 1992. Preliminary version in 31st FOCS, 1990.[206] A. Shpilka. Lower Bounds for Matrix Product. SIAM Journal on Computing,pages 1185-1200, 2003.[207] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th ACMSymposium on the Theory of Computing, pages 330{335, 1983.[208] M. Sipser. Introduction to the Theory of Computation. PWS PublishingCompany, 1997.[209] R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for BooleanCircuit Complexity. In 19th ACM Symposium on the Theory of Computingpages 77{82, 1987.[210] R.J. Solomono�. A Formal Theory of Inductive Inference. Information andControl, Vol. 7/1, pages 1{22, 1964.[211] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAMJournal on Computing, Vol. 6, pages 84{85, 1977. Addendum in SIAM Jour-nal on Computing, Vol. 7, page 118, 1978.

668 BIBLIOGRAPHY[212] D.A. Spielman. Advanced Complexity Theory, Lectures 10 and 11.Notes (by D. Lewin and S. Vadhan), March 1997. Availablefrom http://www.cs.yale.edu/homes/spielman/AdvComplexity/1998/aslect10.ps and lect11.ps.[213] L.J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical ComputerScience, Vol. 3, pages 1{22, 1977.[214] L. Stockmeyer. The Complexity of Approximate Counting. In 15th ACMSymposium on the Theory of Computing, pages 118{126, 1983.[215] V. Strassen. Algebraic Complexity Theory. In Handbook of Theoretical Com-puter Science: Volume A { Algorithms and Complexity, J. van Leeuwen edi-tor, MIT Press/Elsevier, 1990, pages 633{672.[216] M. Sudan. Decoding of Reed Solomon codes beyond the error-correctionbound. Journal of Complexity, Vol. 13 (1), pages 180{193, 1997.[217] M. Sudan. Algorithmic introduction to coding theory. Lecture notes, Avail-able from http://theory.csail.mit.edu/~madhu/FT01/, 2001.[218] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators withoutthe XOR Lemma. Journal of Computer and System Science, Vol. 62, No. 2,pages 236{266, 2001.[219] R. Szelepcsenyi. A Method of Forced Enumeration for Nondeterministic Au-tomata. Acta Informatica, Vol. 26, pages 279{284, 1988.[220] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal onComputing, Vol. 20 (5), pages 865{877, 1991.[221] B.A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute ForceSearch) Algorithms. Annals of the History of Computing, Vol. 6 (4), pages384{398, 1984.[222] L. Trevisan. Extractors and Pseudorandom Generators. Journal of the ACM,Vol. 48 (4), pages 860{879, 2001. Preliminary version in 31st STOC, 1999.[223] L. Trevisan. On uniform ampli�cation of hardness in NP. In 37th ACMSymposium on the Theory of Computing, pages 31{38, 2005.[224] V. Trifonov. An O(log n log logn) Space Algorithm for Undirected st-Connectivity. In 37th ACM Symposium on the Theory of Computing, pages623{633, 2005.[225] C.E. Turing. On Computable Numbers, with an Application to the Entschei-dungsproblem. Proc. Londom Mathematical Soceity, Ser. 2, Vol. 42, pages230{265, 1936. A Correction, ibid., Vol. 43, pages 544{546.[226] C. Umans. Pseudo-random generators for all hardness. Journal of Computerand System Science, Vol. 67 (2), pages 419{440, 2003.

BIBLIOGRAPHY 669[227] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhDThesis, Department of Mathematics, MIT, 1999. Available fromhttp://www.eecs.harvard.edu/�salil/papers/phdthesis-abs.html.[228] S. Vadhan. An Unconditional Study of Computational Zero Knowledge.SIAM Journal on Computing, Vol. 36 (4), 2006, pages 1160{1214. Extendedabstract in 45th FOCS, 2004.[229] S. Vadhan. Lecture Notes for CS 225: Pseudorandomness, Spring 2007.Available from http://www.eecs.harvard.edu/�salil.[230] L.G. Valiant. The Complexity of Computing the Permanent. TheoreticalComputer Science, Vol. 8, pages 189{201, 1979.[231] L.G. Valiant. A theory of the learnable. CACM, Vol. 27/11, pages 1134{1142,1984.[232] L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions.Theoretical Computer Science, Vol. 47 (1), pages 85{93, 1986.[233] J. von Neumann, First Draft of a Report on the EDVAC, 1945. Contract No.W-670-ORD-492, Moore School of Electrical Engineering, Univ. of Penn.,Philadelphia. Reprinted (in part) in Origins of Digital Computers: SelectedPapers, Springer-Verlag, Berlin Heidelberg, pages 383{392, 1982.[234] J. von Neumann, Zur Theorie der Gesellschaftsspiele. Mathematische An-nalen, 100, pages 295{320, 1928.[235] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.[236] I. Wegener. Branching Programs and Binary Decision Diagrams { Theory andApplications. SIAM Monographs on Discrete Mathematics and Applications,2000.[237] A. Wigderson. The amazing power of pairwise independence. In 26th ACMSymposium on the Theory of Computing, pages 645{647, 1994.[238] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEESymposium on Foundations of Computer Science, pages 80{91, 1982.[239] A.C. Yao. Separating the Polynomial-Time Hierarchy by Oracles. In 26thIEEE Symposium on Foundations of Computer Science, pages 1-10, 1985.[240] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposiumon Foundations of Computer Science, pages 162{167, 1986.[241] S. Yekhanin. New Locally Decodable Codes and Private Information Re-trieval Schemes. ECCC, TR06-127, 2006.

670 BIBLIOGRAPHY[242] R.E. Zippel. Probabilistic algorithms for sparse polynomials. In the Proceed-ings of EUROSAM '79: International Symposium on Symbolic and AlgebraicManipulation, E. Ng (Ed.), Lecture Notes in Computer Science (Vol. 72),pages 216{226, Springer, 1979.[243] D. Zuckerman. Linear-Degree Extractors and the Inapproximability of Max-Clique and Chromatic Number. In 38th ACM Symposium on the Theory ofComputing, 2006, pages 681{690.

IndexAuthor IndexAdleman, L.M., 250, 552Agrawal, M., 250Ajtai, M., 372Aleliunas, R., 250Arora, S., 446Babai, L., 445, 639Barak, B., 548Ben-Or, M., 445Blum, M., 153, 250, 305, 370Borodin, A., 153, 192Brassard, G., 447Chaitin, G.J., 315, 338Chaum, D., 447Church, A., 48Cobham, A., 48Cook, S.A., 108, 109, 252Cr�epeau, C., 447Di�e, W., 305, 552Dinur, I., 446Edmonds, J., 48Even, S., 109Feige, U., 445, 496Fortnow, L., 445Furst, M.L., 522Goldreich, O., 305, 370, 445, 497,542, 570Goldwasser, S., 370, 445, 496, 497,542, 553, 555, 557, 632H�astad, J., 370, 496, 522Hartmanis, J., 153Hellman, M.E., 305, 552Huang, M., 250Immerman, N., 193Impagliazzo, R., 305, 370, 371Jerrum, M., 252

Karchmer, M., 523Karlo�, H., 445Karp, R.M., 108, 109, 133, 250Kayal, N., 250Kilian, J., 445, 447Kolmogorov, A., 315, 338Komlos, J., 372Ladner, R.E., 109Lautemann, C., 251Levin, L.A., 108, 109, 305, 370,445, 497Lipton, R.J., 133, 250, 305Lov�asz, L., 250, 445, 496Luby, M., 305, 370Lund, C., 445, 446Micali, S., 305, 370, 445, 447,542, 553, 555, 557, 570Miller, G.L., 250Moran, S., 639Motwani, R., 446Naor, J., 372Naor, M., 372Nisan, N., 305, 371, 445Papadimitriou, C.H., 499Rabin, M.O., 250Racko�, C., 250, 305, 445Raz, R., 524Razborov, A.R., 521Reingold, O., 193, 619Rivest, R.L., 552Ron, D., 497Rubinfeld, R., 305, 497Safra, S., 445, 446, 496Savitch, W.J., 192Saxe, J.B., 522Saxena, N., 250671

672 INDEXSelman, A.L., 109Shamir, A., 445, 552Shannon, C.E., 48, 314, 520, 551Sipser, M., 251, 252, 522, 632Solomonov, R.J., 315Solovay, R., 250Stearns, R.E., 153Stockmeyer, L.J., 133, 252Strassen, V., 250Sudan, M., 306, 446, 497Szegedy, M., 445, 446Szelepcsenyi, R., 193Szemer�edi, E., 372Toda, S., 252, 625Trevisan, L., 306, 598Turing, A.M., 48, 391Vadhan, S., 306, 619Valiant, L., 252Vazirani, V.V., 252Wigderson, A., 305, 371, 445, 523,524, 570, 619Yacobi, Y., 109Yannakakis, M., 499Yao, A.C., 305, 370, 522, 570Zuckerman, D., 371Algorithms, see Computability the-oryApproximate counting, 232{238, 243{246satisfying assignments to a DNF,234{235Approximation, 458{471Counting, see Approximate count-ingHardness, see Hardness of Ap-proximationArithmetic Circuits, 524{526Average Case Complexity, 471{495Blum-Micali Generator, see Pseudo-random GeneratorsBoolean Circuits, 41{47, 80{86, 120{124, 141, 336, 519{524bounded fan-in, 43constant-depth, 47, 347, 522{523

depth, 47Monotone, 47, 521{522Natural Proofs, 338size, 43{44, 121unbounded fan-in, 43, 46, 47uniform, 44, 45, 121{122, 170{171Boolean Formulae, 41, 45{47, 523{524, 647{649clauses, 46CNF, 46, 80{86, 648DNF, 46, 648literals, 46Monotone, 524Quanti�ed, 648{649Byzantine Agreement, 574Chebyshev's Inequality, 579{581, 585Cherno� Bound, 581{582Chinese Reminder Theorem, 449Church-Turing Thesis, 28, 37Circuits, see Boolean CircuitsCNF, see Boolean FormulaeCobham-Edmonds Thesis, 37, 52, 83,140, 142Coding Theory, 602{611concatenated codes, 607{608Connection to Hardness Ampli-�cation, 283, 293{296good codes, 608Hadamard Code, 280, 310, 426{427, 605List Decoding, 280, 293{296, 600,603, 610locally decodable, 609{610locally testable, 608{610Long Code, 605Reed-Muller Code, 294, 606{607Reed-Solomon Code, 606Unique Decoding, 603Commitment Schemes, see Cryptog-raphyCommunication Complexity, 523{524Complexity classes�P, 625{631]P, 222{238, 512, 625{631

INDEX 673AC0, 128, 347, 515AM, 404BPL, 221, 352, 356{358, 514BPP, 208{213, 215{219, 335{337,339{344, 352, 511coNL, 158, 184{187coNP, 91, 104{108, 127, 157, 184,517, 527coRP, 213{220Dspace, 152, 159, 182Dtime, 142DTISP, 168E, 513EXP, 61, 513, 514IP, see Interactive Proof systems,392, 396, 404, 417, 512L, 169, 170, 172, 514MA, 219, 403NC, 171, 184, 515NEXP, 513NL, 158, 180{187, 220{221, 356,514NP, 49{108, 124, 126{128, 130{132, 157, 180, 184, 347, 393,396, 403, 417, 422{444, 511,513, 514, 517, 526, 527as proof system, 57{59as search problem, 54{55Optimal search, 102{104traditional de�nition, 61{63, 128{130, 179, 205NPC, see NP-CompletenessNPI, 90Nspace, 182two models, 179{180Ntime, 147P, 49{108, 123, 124, 126, 127,168{171, 180, 181, 511, 517,520, 522as search problem, 53{54P/poly, 119{124, 130{133, 515PCP, see Probabilistically Check-able Proof systemsPH, 124{133, 210, 224, 513, 625{631

PSPACE, 189{192, 396, 514quasi-P, 347, 513RL, 221{222, 357, 514RP, 213{220, 512SC, 168, 356SZK, 418TC0, 515ZK, see Zero-Knowledge proof sys-tems, 410, 417ZPP, 219{220, 512Computability theory, 18{40Computational Indistinguishability, 318,320, 322, 325{330, 370, 540{541multiple samples, 326{330non-triviality, 326The Hybrid Technique, 327{331,334, 345, 356, 370vs statistical closeness, 326Computational Learning Theory, 338Computational problems3SAT, 85, 6483XC, 87Bipartiteness, 468, 470, 647Bounded Halting, 78Bounded Non-Halting, 78{79CEVL, 170Clique, 88, 460{462, 468, 647CSAT, 80{85CSP, 434{438Determinant, 226, 526, 650Directed Connectivity, 181{187,221Exact Set Cover, 87Extractingmodular square roots,651Factoring Integers, 107, 110, 112,533, 538, 557, 650Graph 2-Colorability, 647Graph 3-Colorability, 89, 414, 470,647Graph Isomorphism, 395, 412, 647Graph k-Colorability, 468Graph Non-Isomorphism, 395

674 INDEXHalting Problem, 30{31, 78, 79,391Hamiltonian path, 647Independent Set, 88, 647kQBF, 135, 648Perfect Matching, 225{232, 243,647Permanent, 226{232, 259, 526, 650Primality Testing, 110, 211{213,650QBF, 190{192, 400{401, 448, 648,649SAT, 71{72, 80{86, 105, 463, 648Set Cover, 86st-CONN, 181{187Testing polynomial identity, 214{215TSP, 461UCONN, 171{178Undirected Connectivity, 171{178,182, 221{222, 647Vertex Cover, 88, 460, 463, 647Computational Tasks andModels, 18{48Computationally-Sound proof systemsArguments, 447Constant-depth circuits, see BooleanCircuitsConstraint satisfaction problems, seeCSPCook-reductions, see ReductionCounting Problems, 222{249Approximation, see Approximatecountingperfect matching, 225{232satisfying assignments to a DNF,225Cryptography, 531{576Coin Tossing, 574{576Commitment Schemes, 416, 546{547, 574{576Computational Indistinguishabil-ity, see Computational In-distinguishabilityEncryption Schemes, 551{558

General Protocols, 564{576Hard-Core Predicates, see One-Way FunctionsHashing, see HashingMessage Authentication Schemes,558{564Modern vs Classical, 532, 551Oblivious Transfer, 572{573One-Way Functions, see One-WayFunctionsPseudorandomFunctions, see Pseu-dorandom FunctionsPseudorandomGenerators, see Pseu-dorandom GeneratorsSecret Sharing, 571{572, 575Signature Schemes, 558{564Trapdoor Permutations, 538{539,557{558, 561, 570, 573Veri�able Secret Sharing, 575Zero-Knowledge, see Zero-Knowledgeproof systemsCSP, see Computational problemsDecision problems, 21{22, 55{61, 486{488unique solutions, see Unique so-lutionsDiagonalization, 145{146Direct Product Theorems, 287{292,304Dispersers, 596Error Correcting Codes, see CodingTheoryError-reduction, 208, 209, 234, 236,242, 253{255, 388, 391, 392,407, 422, 443, 447, 632randomness-e�cient, 595{596Expander Graphs, 367, 611{623ampli�cation, 613constructions, 618{623eigenvalue gap, 612{614expansion, 613explicitness, 614{615mixing, 615{616random walk, 368{369, 616{618

INDEX 675Extractors, see Randomness Extrac-torsFinite automata, 40Finite �elds, 649Formulae, see Boolean FormulaeFourier coe�cients, 363G�odel's Incompleteness Theorem, 391Game TheoryMin-max principle, 299{300Gap Problems, see Promise ProblemsGap Theorems, see Time GapsGF(2), 649GF(2n), 649Graph properties, 467Graph theory, 645{647Hadamard Code, see Coding TheoryHalting Problem, see ComputationalproblemsHard Regions, see Inapproximable Pred-icatesHardness of ApproximationMax3SAT, 440MaxClique, 442The PCP connection, 438{442,462{465Hashing, 582{588as a random sieve, 236{241, 246{249Collision-Free, 563{564Collision-Resistant, 563{564Extraction Property, 594highly independent, 583, 587{588Leftover Hash Lemma, 584{588Mixing Property, 353, 585pairwise independent, 584{587Universal, 335, 583Universal One-Way, 564Hierarchy Theorems, see Time Hier-archiesHitters, 591Hoefding Inequality, 581Inapproximable Predicates, 281{305

hard regions, 298{301Information Theory, 274, 314, 532Interactive Proof systems, 388{407,445algebraic methods, 396Arthur-Merlin, 402, 404, 631{643computational-soundness, 406{407,548constant-round, 347, 371, 403for Graph Non-Isomorphism, 395for PSPACE, 396{401Hierarchy, 403{404, 631{643linear speed-up, 403power of the prover, 405{406public-coin, 347, 402, 404, 631{643two-sided error, 402, 404Karp-reductions, see ReductionKnowledge Complexity, 411Kolmogorov Complexity, 34{35, 44,315, 338Levin-reductions, see ReductionLinear Feedback Shift Registers, 364List Decoding, see Coding TheoryLow Degree Tests, see Property Test-ingLower Bounds, 517{530Markov's Inequality, 579Min-max principle, see Game TheoryMonotone circuits, see Boolean Cir-cuitsMulti-Prover Interactive Proof systems,443, 445Nisan-Wigderson Generator, see Pseu-dorandom GeneratorsNon-Interactive Zero-Knowledge, 550Notationasymptotic, 17combinatorial, 18graph theory, 18integrality issues, 18NP-Completeness, 74{97, 105{108, 170,417{418, 511

676 INDEXOne-Way Functions, 266{280, 326, 414,417, 495, 533{534, 537{539,542, 546{547, 558, 562Hard-Core Predicates, 274{280,370, 539, 547, 557, 573Strong vs Weak, 270{274Optimal search for NP, 102{104Oracle machines, 39{40P versus NP Question, 51{64, 472,476, 478, 490, 520PCP, see Probabilistically CheckableProof systemsPolynomial-time Reductions, see Re-ductionPost Correspondence Problem, 32, 34Probabilistic Log-Space, 220{222Probabilistic Polynomial-Time, 203{222Probabilistic Proof Systems, 385{456Probabilistically Checkable Proof sys-tems, 420{447adaptive, 422, 442Approximation, see Hardness ofApproximationfor NEXP, 444for NP, 424{438, 441{444free-bit complexity, 442, 452non-adaptive, 422, 423, 429, 431,439, 442non-binary queries, 443of proximity, 430, 433, 443{444proof length, 442query complexity, 442Robustness, 430{431, 433Probability Theoryconventions, 578{579inequalities, 579{582Promise Problems, 22, 97{102, 106,212, 238, 465{471Gap Problems, 462{465Proof Complexity, 518, 526{530Proofs of Knowledge, 418{420, 550Property Testing, 465{471Codeword Testing, see Coding The-ory

for graph properties, 467{470Low Degree Tests, 433, 470{471Self-Correcting, see Self-CorrectingSelf-Testing, see Self-TestingPseudorandom Functions, 338, 370,542{544Pseudorandom Generators, 313{384archetypical case, 320{339, 370Blum-Micali Construction, 334,557conceptual discussion, 338{339,347{348Connection to Extractors, 598{600derandomization, 335{337, 339{348, 370high end, 344low end, 344discrepancy sets, 366expander randomwalks, 304, 367{369Extractors, see Randomness Ex-tractorsgeneral paradigm, 314{320, 369{370general-purpose, 320{339, 370application, 321{325construction, 332{335de�nition, 320{321stretch, 330{334hitting, 367{369, 591Nisan-Wigderson Construction, 304,305, 342{348, 369, 371, 598,599pairwise independence, 302, 360{363samplers, see Samplingsmall bias, 363{367, 432space, 348{358, 371special purpose, 359{369, 371universal sets, 366unpredictability, 332{334, 345, 370Random variables, 578{582pairwise independent, 580{582totally independent, 581{582

INDEX 677Randomized ComputationLog-Space, see Probabilistic Log-SpacePolynomial-Time, see Probabilis-tic Polynomial-TimeProof Systems, see ProbabilisticProof SystemsReductions, see ReductionsSub-linear Time, see Property Test-ingRandomness Extractors, 371, 591{600Connection to Error-reduction, 595{596Connection to Pseudorandomness,598{600Connection to Samplers, 594{595from few independent sources, 592Seeded Extractors, 592{593usingWeak Random Sources, 591{593Reductionsamong distributional problems, 477{485, 487{488, 490Cook-Reductions, 66{76, 90{94,105{107, 223{249, 477Downwards self-reducibility, 111,137gap amplifying, 441Karp-Reductions, 66{68, 76{90,105, 224{225, 477, 511Levin-Reductions, 67{68, 70, 76{86parsimonious, 116, 224{225, 239{241, 243{246Polynomial-time Reductions, 65{94, 208, 511, 512Randomized Reductions, 215{218,253Reducibility Argument, 271, 273{274, 276, 281, 329, 345, 478,533, 539Self-reducibility, 70{74, 406Space-bounded, 164{170, 174{178,181{182Turing-reductions, 31, 39{40

worst-case to average-case, 283{286Rice's Theorem, 32Samplers, see SamplingSampling, 588{591Averaging Samplers, 590, 594{595Search problems, 20{21, 52{55, 60{61, 167{168, 182, 486{488Uniform generation, see Uniformgenerationunique solutions, see Unique so-lutionsversus decision, 60{61, 66, 68, 70{74, 167{168, 182, 486{488Self-Correcting, 284{286, 305, 425, 427,428, 433, 606, 609{610Self-reducibility, see ReductionSelf-Testing, 426, 606Space Complexity, 38{39, 157{202Circuit Evaluation, 168{170composition lemmas, 161{163, 177{178conventions, 158{160Logarithmic Space, 169{178Non-Determinism, 178{189Polynomial Space, 189{192Pseudorandomness, see Pseudo-random GeneratorsRandomness, see Probabilistic Log-SpaceReductions, see Reductionssub-logarithmic, 160{161versus time complexity, 161{168Space Gaps, 152, 168Space Hierarchies, 152, 168Space-constructible, 152Speed-up Theorems, 151st-CONN, see Computational prob-lemsStatistical di�erence, 326, 579Time complexity, 24, 36{38Time Gaps, 149{151Time Hierarchies, 141{149Time-constructible, 142, 143, 149, 341

678 INDEXTuring machines, 25{29multi-tape, 27, 142non-deterministic, 61{63single-tape, 27with advice, 45, 122{124, 140{141, 336Turing-reductions, see ReductionsUCONN, see Computational problemsUncomputable functions, 29{33Undecidability, 30, 32, 391Uniform generation, 241{249Unique solutions, 226, 238{241, 260,487{488Universal algorithms, 33{35, 38, 146{147Universal machines, 33{35Variation distance, see Statistical dif-ferenceWitness Indistinguishability, 550Yao's XOR Lemma, 283, 286{293, 297{298derandomized version, 301{305Zero-Knowledge proof systems, 407{420, 445, 544{551, 574{575Almost-Perfect, 418black-box simulation, 548Computational, 410, 549for 3-Colorability, 414for Graph Non-Isomorphism, 412for NP, 414Honest veri�er, 549Knowledge Complexity, 411Perfect, 409, 418, 447, 549Statistical, 410, 418, 549universal simulation, 548

	[F1]
	[F2]
	[F3]
	[F4]
	[F5]
	[F6]

